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1. Summary and introduction. There is presently available a large number of
techniques purporting to accomplish the inversion of matrices. While the purely
mathematical aspects of this problem, on one hand, are thus well recognized,
the computational ones, on the other hand, are not. The growth of the rounding
error, in particular, may be so rapid as to make some inversion procedures
altogether unstable. .

It is from this point of view that the partitioning method seems to be capable
of yielding more accurate results than do other methods. By stopping, at any
desired step, to improve the intermediate inverses until satisfactory accuracy
is attained, the growth of the rounding error may be kept in check.

The following sections, then, give a brief description of the partitioning method
and treat in some detail an effective scaling scheme permitting the inversion
routine to be carried out by high speed computing machinery.

Next a careful examination is carried out of the accuracy attainable by the
proposed scheme; together with an error squaring iteration procedure it is
found capable of yielding accuracies sufficient for most practical purposes.

2. Method of partitioning. The method of submatrices has been described
and discussed in great detail in a number of places, as, for example, Frazer,
Duncan, and Collar [1]. It is shown there that the inversion of a nonsingular
square matrix 4 of n dimensions may be accomplished as follows. Let

Ak=(aii)) i:j’=1y2"",k; k=1y2""1n

denote the sequence of successive principal submatrices of A, and let Ax4
be partitioned in the form:

o1, k+1
A, ay I- . ’
A = , o = . ar = (Qr41,1 **°* o)

' - I' . )
_Ck, k+1

Ak Qp41, k41
Then the inverse Ax}1 may be partitioned similarly.

-1 Cy Cr |
Ak+1= , y k=1,2"',7l’—1,
Ce Yk
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MATRIX INVERSION 429

and the components of Ax;; computed by the algorithm:

= —Ay @, wo= —a Ay,
O = Cyriq1 + @, Y=,
@.1)
C = TuYe, C = YTk,

C, = A7 + xcr .
As a byproduct one also obtains
det Ak+1 = 51: det Ak .

While the nonsingularity of A guarantees the existence of A7 it is possible
that some principal minors of A4 vanish. In such a case rearrangement of rows
of A will remedy the situation.

Certain simplifications result if A is symmetric. Then a; = a; where the
asterisk denotes transposition, z, = zr and ¢; = cp . While the partitioning
method is applicable to (nonsingular) matrices in general, we shall, in the
following, restrict ourselves to positive definite ones, that is, matrices A that
are symmetric and for which the quadratic form z*Ax is positive for any
vector x > 0. This does not constitute too serious a restriction since for any
nopsingular matrix 4 the matrix A* A4 is positive definite, and A™ = (4*4)7'4*.

Well known properties of nonsingular positive definite matrices A that will
be utilized are:

i) all diagonal elements are positive;

il) max | a;; | is assumed by an element on the main diagonal;

iii) all principal submatrices Ar of A are positive definite;

iv) the inverse of a positive definite matrix is also positive definite.

For positive definite matrices, then, v, > 0, so that also 6. = (1/y«) > O.
Now 6, = opprhs1 + Gir = ouqrepn — arAr ai. Since A’ is also positive
definite, ax A7 a; > 0. It follows that

(2.2) a,f Tr < Og41.k+1 0 < & < Oggr k1 -

In studying the efficiency of a method, especially if treatment on high speed
computing; machinery is anticipated, it is of importance to know the number
of arithmetical operations involved in the method proposed.

For symmetric matrices of order n a count of the operations reveals that the
method of partitioning, as described above requires 3(n — 1)n(n 4+ 2) multi-
plications, 3(n — 1)n(n + 1) additions or subtractions, and » divisions. Similar
counts carried out for the Gauss Elimination Method, as outlined by von Neu-
mann and Goldstein, [2], feveal that in the symmetric case the totals for multi-

.. plications and additions are identical with the above. Since other variations of
the elimination method take substantially the same number of operations, or
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more, it is clear that the basic partitioning method is neither favored or dis-
favored by virtue of operations alone.

3. Modulus of a Matrix. The measure of the magnitudes of the quantities in
the inversion process will ordinarily be the modulus, denoted by || || and defined
as the greatest absolute value of any of the entries, that is,

| (@) || = "jfﬂ?f{m | esi].

In some cases improvement would result if the norm or bound, (see [2]), were to
be used, but the modulus is the simplest and most easily used in the situations
discussed here. The following well known relationships will be used in the dis-
cussion of the rounding error:

lA+B|=[lAll+|BI,
ledll = lal-l4],
14B| = n|A}-]| B,
14z = 2”7 47, Pzl

4. The scaling problem. In putting the inversion problem on a machine
that is capable only of operating on numbers restricted to a finite interval, care
must be taken to insure that all quantities occurring in the course of .the in-
version procedure actually lie in the prescribed interval. This can be achieved
by means of appropriate scaling.

It seems advantageous to carry out the necessary scaling operations by ‘‘iter-
ated halving,” that is, successive divisions by 2; further, it will be assumed that
the scaling produces numbers restricted to the interval (—1, +1). However, for
a scaling scheme to be efficient it is not sufficient that it merely produce numbers
of absolute value not exceeding unity; clearly excessive reduction in magnitude
will adversely affect the accuracy of the numbers.

It is claimed that the scaling scheme to be described in the following sections is
very efficient.

To be introduced into the machine, a preliminary scaling of the given matrix
A’ is called for;if ¢{(: — 1) S || A’ || < #(.), where we write {(:) = 2', then the
matrix A = (eay;) = t(— 1)A’ satisfies 27 = || A ]| < 1.

In those cases where : < 0 this leads to upscaling, that is, enlargement of
absolute values; this is quite permissible.

Starting with A; = (an) we first “standardize” o, :

an = apt(l — N\y), 27 S < 1.

Then the choice of the scale factor {(—\;) will insure that By = oqy t(—\;) =
AT' ¢(—\) satisfies 27 £ | B | £ 1.

Let us suppose now that at the start of the kth stage, 1 = k = n — 1, we
know B; and ). so that

&

(4.1) By = (B%) = A7' t(—n), 27 =B < L
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The kth stage of the inversion process then consists in the calculation of the
properly scaled quantities defined in (2.1). Deleting the subscripts k, and putting
ary1641 = B, these equations become:

2t = —A7a,
4.2) ¢ = a*z, ¢ = v,
8 =8+4¢, R = zc*
¥y = 6—1, C = A~1+R.

Further, it will also be convenient to use the abbreviations a1 = a;, Apt1 =

M, so that
A a afl - C ¢
M = N a = : , M‘ =
a* B c* 7

ay

The process to be discussed in the following then consists in the determination
of a matrix D and an exponent w such that, corresponding to (4.1)

D=M4Y-w), 27=2|D|<1

The first step of this process calls for the formation of a suitably scaled z.
An examination of the relationships (4.2) reveals that the accurate determination.
of z is of paramount importance, so that it should be done as carefully as possible.

In forming £ = 2 ; Bs; a; it is observed that partial sums may exceed unity.
This can be remedied by computing instead

I-’h
y=1:p
L]
where

(4.3) to — 1) <k = tp).

Since | 8] < 1,]a;| < 1, clearly 0 = ||y || < 1. (From the positive definite
character of A and the fact that the quantities m;;, b; are digital numbers, it
follows that also 0 < || 7 || < 1, where as in Section 5, 7 is the computed approxi-
mation to y.)
However, if this is done, double precision accumulation, as described in
Section 5,'is imperative if sufficiently accurate values are to be obtained.
Next we find o as the greatest integer for which

(4.4) (1) lyll-te) <1
(ii) cEN+op

N = ; Bija;t(—p)

« and put # = yi(s).
In practice ¢ may be determined as follows.
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First, if z = 0, then y = 0, ahd ¢ = 0 is satisfactory. In this case the scaling
problem ig trivial, since also

. a7 o
t=c=R=Qand M =
0 =
The following discussion may then be restricted to x ¢ 0. We put ||y || =
n(—x), 27 = 7 < 1. Then if x < N + p, take ¢ = x. In this
case 27 S ||| < 1. If, however x > N\ + ptake ¢ = A + p. Then ||Z | =
t(—x + X + p), whencet (—1 —x + A +p) S [ 2] <27
Obviously

Z= —Bal(—p+o) =at(—p), pwp=\N+p—o.

By (i), 0 < || Z|| < 1, and by (ii) » = 0. We notethat if x < A + p, then
p>0;if x =N p, thenu = 0.

For the minimum value 0 of z, 2 = —A"a, so that  is never scaled higher
than the vector it represents. This is reasonable, since no gain in- accuracy
accrues from this type of overscaling.

Having determined % we compute next

¢ = a*E(—p), ¢ = Ot(p + p) = a*z.

The quantity ¢ should also be computed by double precision.

If we now recall that 0 < — ¢ < 8 < 1, we see that ¢ is already properly
scaled.

This is also true of 6 = 8 + ¢.

The formation of 5" again requires scaling. Let & be standardized:

= (1l — v), 2. < 1.

Then k = #(—v)/8 = yt(—v) will be subject to 27> <k < 1.

Continuing, we find that the quantity s = Z«x is properly restricted: || s || =
Iz« <1

Also, s = ct(—u — v).

Similarly, if T = Zs*, then | T || = || Z||-|| s|| < 1,and T = Ri(—2u — »).

The remaining part of the computation necessitates one more scale factor.
Its determination is facilitated by the following facts.

1. Since ¥ < 0, the diagonal entries of the matrix B = xz*y are positive;
II B || is assumed on the diagonal.

2. C = A7 + R is positive definite. Thus

el =na?ii+1erl, 147 01=lcl, IRlI=IcC].

Consequently, if || A" || = || R ||, then | A7 | S | C || £ 2|| A7 || ; if, how-
ever, || A7 Z|IR]|, then |R|| S |C|] < 2| R|. In both cases, then,

wax (| A7 |, IR = 1€l < 2max (A7, [ R
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Since A™' = Bt(\), R = Tt (2 u + v), it follows that
I Cll < 2max (| B tA), || Tl 42u + »)).

Putting ¢ = max (\, 2u + ») + ], we may thus conclude that || C || #(—¢) < 1.
However, the adoption of the scale factor ¢{(—¢) for all cases may entail some
overscaling, as we shall see presently.
The exponent y = § —1 certainly suffices to restrict

U = B/ty —\) = A7t(—y),
V = T/t — 2u — ») = Rt(—¢),

properly: [ U || < L || V| < L

But in the formation of W = U + V = C#(—y)-capacity may be exceeded.
To provide for this possibility we put Z = W/i(r) = Ct(—y¢ — =), = = 0Oor 1,
and are then assured of || Z || < 1. The actual value of  is best determined by
computing the diagonal elements of Z first.

Let us see now how the choice of t(—y) as scale factor for C affects the scaling
of the total inverse M. Clearly || M~ || = max (|| C ||, ¥), or, if we introduce
F = C%(—), then || F || = max (| W ||, &t(v — ¢)) < 1. While it is thus
certain that F is of modulus less than unity, the scaling exponent y may make this
modulus unnecessarily small. To recognize this fact we consider these distinct
cases:

LAZ2u+vHerey =N and|F|Z|W]z|U=IBllz 27
Thus ¢ is the correct exponent for C™, and = = 0.

2. A< 2u+v,u=0.Nowy = v,and || F || = « = 27" Here ¢ again is the
correct exponent, and = = 0.

3. A < 2u + », 1 > 0. In this case ¢ = 2u + ». Also it was established pre-
viously—below (4.3)—that for » > 0, [|Z]| 2 27" Thus [|[F[| 2 [|W] 2
|V =|IT|l =] %% =2 27 The exponent ¢ may then be low by a factor as
large as 2°.

For all three cases we may consequently put D = Ft(v), v = 0, 1, 2 in order
to guarantee 27 < || D || < 1.

Denoting the total scaling exponent of M ! by w, we have

4.5) D=M"w), w=¢+r—ny

There only remains the proper alignment of the parts C, ¢,y of M :
C = Zt) = Ct(—w),

(4.6) ¥ = xktlw — ) = 7i(—w),
E =8/t(w—pu—v) = ct(—w).

In summary, the proposed scaling scheme is to be used as follows.
Start with an = aot (1 — M), 27" S @ < 1, put By = iy #(—\1). At the start
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of the kth stage, 1 £k £ n — 1, B, = B,\;, = Nareknown,and B = A7TH(—N),
27" 2 ||B|| < 1. To obtain a scaled representative D of M~ ', where M =

'}

4 a
, proceed thus.
a* ﬁ .

1. Determine p so that t(p — 1) < k < #(p), and put y = —Bat (—p). Then
calculate o as the greatest integer for which (i) [y || ¢(o) < L, (i) ¢ = A + p.
Finally, put Z = yt(s), and define p = X + p — o.

2. Compute f = a*#t(—p), ¢ = dt(p + ), 8 = B+ . If § = (1 — ), 27l <
¢ < 1, letk = t(—»)/b.

. 3. Puts = i, T = Zs*.

4. Introduce ¢y = max (\, 2 + »), and form U = B/t¥ — N, Vo=
T/t — 2u — v), W = U + V. Compute the diagonal elements of W first,
thereby determining the exponent # = 0, 1in Z = W /t(x).

5. Follow with C = Zt(»), finding » = 0, 1, 2 so that ' < |0 <L

6. With @ = ¢ + = — » align «, s by calculating ¥ k/tlw — v), &=
s/tlw — u — »).
Then D =[§1 fr] =M't(-w),27 2 ||D] < L

From E, = Au(s) it follows that Ex' '= A7%(—v), and Expy = Dt (—¢ + ).
Further,

(47) det EH..] = Bkt(t) det Ek , det E1 = €1 .

5. Digital operations and basic estimates. In the discussion of the inversion
problem no mention was made of the fact that in translating the procedure from
theory to practice certain errors are unavoidable. They stem from the necessity
of having to replace mathematical operations on exact numbers by digital
numbers. A detailed discussion of the nature of digital numbers and operations
‘may be found in the paper of J. von Neumann and H. Goldstine [2].

Adopting some of the notions and relationships employed there, we define

p :
a “digital number” 7 as an aggregate ¥ = sgn (v) > af”, with B, the base,
=1,

denoting an even positive integer =2, a;, the digits, assuming the values
0,1,2, --+,B8 — 1,and sgn (v), the sign, being =1. A digital number necessarily
lies in the interval (—1, +1).

The “digital” operations of addition (+), and subtraction (—), have their
usual meaning. Digital multiplication (X) and digital division (<), however,
lead to numbers generally having more than p digits. The product of two digital
numbers ¥ and 3 has2p places, and will be denoted by ¥ X X § (double precision
multiplication); if it is desired to keep only the p more significant places, a
(rounded) product ¥ X § is obtained. The rounding, if necessary, will be as-
sumed to be of the ordimary type, that is, the product is truncated after p + 1

, places, 3/2 units are added to the (p + 1)st place, the possible carries thus
produced are effected, and then the first places only are kept. In this procedure
the absolute value of the rounding error cannot exceed ¢ = 8~°/2.
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The basic inequalities relating digital to true operations are:
(5.1) |7 X6 — %8| < ¢
|y =86 —7/6| S e
The digital operation of “iterated halving” satisfies
. |7 + 2% — /2% | £ 2
Further, if | ¥ — § | £ 2ke then
|7 + 2% — §/2%| < 2¢(1 + k/2%).

Next, let ¢ = (v;) be a digital row vector of k components, d = (5;) a similar
column vector. Then for their digital inner product:

k
(5.2a) eXd=2 9 X5
i=1
we have
le Xd—ed| < ke
However, if double precision & XX d = 2%y (7: X X 5;) is employed, then
(5.2b) |e XXd—¢ed| <

Finally, let A, B be digital matrices of common dimension k. Then clearly,
by 56.2), | A X B— AB|| S ke, | AXXB—AB|| L e

Inequalities (5.2) also furnish estimates for triple products of k-dimensional
digital matrices:

|AXBXC —ABC| = |AX(BXC) —ABXO|
+ || 4B x C) — ABC |
<ke+k|d]|BxC~BC|
ket Fe| A,

or
I 4 X (BxC) — ABC| < k(1 + k|| 4 |)e.
Double precision leads to
[AXX (BXXC) —ABC|| < (1 +k|4]e

The rounding error due to the enforced discrepancy between true quantities
and their digital representatives needs separate discussion. If ¢, d are the true
vectors whose digital representatives are &, d, then we define the errors

le=cll=U., |d—dl="Us,
_ and note that
(53a) ||éXd—cd] = ke+UaEl'y.l+UcZ[6.]+kUcUa
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This may be recognized as follows:
lexXd—cllslleXd—edl+]|ed—edl+]ed—cdl
Sketlled=—d+(€—adl
S ke + U«Z‘ZI%I+ Uc;laﬂ-

However, [8;| < | 8| + Us, 4 = 1,2, ---, k, whence (5.3a) follows immedi-
ately.
Double precision improves (5.3a) to

(53b) |eXXd—cd| S et Us X |[%:] + U2 |8 |+ kU Us.

Of interest is also the matrix & X d of &’ elements. Since each element of dc
is the result of a single multiplication,

(5.4) ldXé—de|| e+ Uslc|| + U.|d| + U.Us.

6. The digital procedure. After outlining the scaled partitioning method we
must now. consider the translation of the exact mathematical technique into a
mechanical technique of digital operations on digital numbers. Let it be sup-
posed, then, that A has been digitalized: A = A. Starting with 4; = (),
Wwe express &y in the form &y = at(l — Ay), 27" < & < 1, and compute B; =
t(—)\,) <+ oy .

Suppose now, inductively, that B is a digital approximation to B. Then
A= = Bt()) is a digital approximation to A~

1. Find p satisfying (4.3), accumulate § = —B XX at(—p), determine o
as the greatest integer not greater than A + p such that || 7 || ¢{(¢) < 1, form
Z = §i(o) using double precision, and then round off.

2. Compute d = @* XX %t(—p), § = Jt(p + u), and suppose that { is suffi-
cently accurate for the inequality, 0 < —§ < B < 1, to be preserved. Next,
obtain § = B + {, standardize 8: 5 = (1 — »),27 < 1 < 1, and get & =
H(—v) + 6.

3. Determine § = % X «, T = & X §*.

4. FomU =B +tly —\), V=T + t(¢ —2u — »), W = U + V. Compute
the diagonal elements of W first, and take = = 0 or 1 so that all elements of
Z = W + () are less than unity.

5. Findv = 0, 1,2 to'get C = Z¢(v) into therange 27 = || C || < 1.

6. Adjust the other parts %, §:

=k + tlo — v), E=35+to—pn—y),

to obtain in D = [56; s] a digital approximation to D.
7. Bound for the rounding error. It has been pointed out that the total round-

ing error of any quantity § = f(3., ¥z, - - -) stems from two sources: the round-



MATRIX INVERSION 437

fng error due to the digital representations 41, 42, --- of the numbers v,,
72, -+ and the rounding error due to the replacement of true arithmetical
operations occurring in the function f by digital ones. It is the purpose of this
section to examine these errors in order to arrive at estimates permitting an
evaluation of the final accuracy obtainable.

The analysis of these errors leads to the following theorem.

TrEoREM. If the scaled digital inverse B of A™ is afflicted with an error E =
| B — B ||, then the scaled digital inverse D of M~ hasanerror E = ||D — D ||,
which is subject to

(7.1) E < [23 4+ 9 vt(v)]e + 9/812ut(») + 1%\ — w)E

with v = max (1, rt(8)), r = > ;| a;].

The error may thus accumulate from stage to stage, requiring iteration to
keep it within reasonable bounds. In that the method of partitioning easily
permits such iteration whenever necessary lies one of the advantages of this
method. The bonds (7.1) are readily computed as the inversion proceeds; they
are frequently sufficiently close to be of practical utility.

Let us now prove the theorem. The inversion starts with the computation of
Bl = t(—')\l) -+~ an . Thus,

(7.2) Ei=||Bi— B | = || t(—N)/au — t(=\) + an ]| S e

The first quantity computed at the kth stage is &; its largest error will be E, =
|Z — £| . From

E— & =B XX a\ — u) — Bat(\ — p)
= B XX at(\ — p) — Bat\ — p) + (B — B)at(\ — u)
we infer E, < ¢ + 7Et(A — p). Next we estimate E; = [ ¢ — { | . Since
¢ — = ast(p) — a XX &tlu)
= agt(u) — a XX #t(u) + at(u)(F — &),

clearly E; < ¢ + 7E-t(u).

Continuing with the estimates we remark, further, that for D to be positive
definite it is necessary that 1/8 be positive. This, in turn, necessitates 8 + { > 0. .
Indeed thé inequality 3 4+ §{ > E. may be used as a test for singularity of M
relative to this process, in that if it fails, there could be a singular matrix # which
would yield by this computation the same pivotal element Z, while if it holds,
(and C exists) we may be sure of the nonsingularity of M. We observe in passing
that E; is a function of the computation as well as the matrix and may be im-
proved in case the test fails.

Sinced = B+ §,6 = P -- ¢, we have

E;

I
o
|
>
I
=
|
UNr
I
=
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Further, E, = |% — x| = | t(—»)/6 — t(—v) + §|
E,St(—v)|1/6 — 1/6| + |t(—v)/6 — t(—») + 5|

t(—v) |8 — 5|/05 + e

S (Bs/9)/(t()5) + e.

However, {(v)5 = 27 2 1, s0 that E, < ¢ + vE; . Proceeding in the same manner,
we find

A

IIA

E,=|s—5||=|&—2X«|
Sle—gllc+ 2l {e—7|+ [ 2x — & X &
SEx+E|z|| + e

But ||| = B+ ||| < E. + 1,x < 1. Thus E, < ¢ + E, + (E. + 1)E..
Employing the same technique for Er = | T — T || :

Er = || %s* — & X &|
<e+ E,+ (E, + 1)E,.
Next, we must bound E¢ = || — C ||
BeS || M/Ho =N =M +to~N ||+ || T/o—2u—v) =T + tlw—2u—1»)||
S 2¢+ B\ — w) + Ert2u + v — w).
Finally, By, = | — 7| £ ¢ + Et(v — ),
E.=|lt—¢| = e+ Etlu+ v — o).

It is seen that the bounds for E, and E; contain second order terms of the
form E,Es, where E, , Es are bounded thus:

Ea = we azE; Eﬁ = Bie + B E.
Consequently,
E.Ep £ a1 i€ + (a1 Bz + a2 B)eE + az B B

However, it would be too cumbersome to carry along expressions of this type,
and so certain simplifications recommend themselves.

Clearly, if any of the error moduli E,, E., etc., exceeded unity there would
be no accuracy left at all. Thus the assumption E, < 1 is certainly justified.
We shall in the following make the supposition that all quantities may be com-
puted to at least two accurate binary places, an assumption which certainly
_ does not impose any undue restrictions on the discussion.

" Inthatcase B, £ 2%, E < 27° and

(7.3) E.Es £ 2% min (E., Ep).



MATRIX INVERSION 439

Making use of this inequality and putting » = v 4+ vy7¢(u) we may summarize
our results as follows:

E. e+ rt(\ — p)E
B =1+ nt(wle + O0E
E. £[1 + hle +v7tON)E
E, < [(25/8) + hle + [(9/8)t(—u) + yrlrt(NE
Er < [(21/4) + hle + [(9/Dt(—p) + vrlrtN)E
Ec < {24 [(21/4) + hlt@2u + v — w)}e
+ {1 + [(9/D(—p) + vrrl2e + »)}t(N — w)E.

Now in the three cases discussed in Section 4, preceding (4.5), the quantity
2u + v — w never exceeds 2. Therefore,

Ec < [23 + 4h]e + {1 + [(9/DU(—p)+yrlrt(2e + »)I(N — w)E.
Similarly, E, < [5 + 4hle + yr't(—\ + v — w)E.

Ec < [(27/2) + 4hle + [(9/8)t(—p) + y7IrtA + 1 + » — w)E.
Clearly the bound for E. is larger than that for E,, which, in turn, is larger

than that for E, . It follows that E = max (E¢, E., E,) also does not exceed
the bound for E.

From E, = |« — k| = | yt{(—v)—%| we may infer that:
y S &+ Et(v) < (14 27%() = (9/8)4(»).

Obviously 2% (1 4 7t(s)) < max (1, 7t(u)) = v. Thus, b = y(I + rt(n)) <
9/4)vt(v), and

E < [23 4+ 9ut(¥)]e + [1 + (9/2)ut(v) + (9/2)v"t(2n)t(\ — w)]E,
which we may write as:
E < [23 4+ 9ui(»)]e + 9/8[2vt(») + 1t(\ — w)E.
From the digital matrix D the numerical inverse M—! of M is obtained ‘by

upscaling: M= = Di(w). I the error of M~1is denoted by E(M~"), then clearly
EM-') = Et(w). By (7.1) then,

E(M™) < [23 + 9ut(»)]t(w) + 9/8[2ui(») + 14(NE.

REFERENCES

[1] R. A. Frazer, W. J. Du~can, axp A. R. CoLLaR, Elementary Matrices, Cambridge
University Press, 1950.

(2] J. von NEumanN axp H. H. GoLpsTINE, “Numerical inverting of matrices of high
order,” Bull. Amer. Math. Soc., Vol. 53 (1947), pp. 1021-1099.

[3] E. Bopewia, ‘“Bericht uber die verschiedenen methoden zur losung eines systems
linearer gleichungen,’”” Nederl. Akad. Wetensch., Proc., Vol. 50 (1947), pp. 930~

941.



