BOUNDS ON A DISTRIBUTION FUNCTION WHEN ITS FIRST
n MOMENTS ARE GIVEN!

By H. L. Roypen
Stanford University
Introduction. Let F(X) be a nondecreasing function defined on the real line
with F(— ) = 0 and

f t* dF(t) = M, k=0,---,2n.

Then the problem of Tchebycheff is to find upper and lower bounds for F(X).
If X is a random variable with the cumulative distribution function F(X), this
is just the problem of determining the (sharp) upper and lower bounds for Pr.
(X = d). This problem has been solved by Markoff [2] and Stieltjes [5] and their
results are given in Section 1.

It is often of interest, however, to determine upper and lower bounds for
Pr. (| X| £ d). This is the problem of determining upper and lower bounds
on the cumulative distribution function F*(X*) = F(X*) — F(—X*) of the non-
negative random variable X* = | X |, and leads to the Stieltjes moment problem:
To determine upper and lower bounds on the nondecreasing function F* given

[ tde*(t)=Mk k:o’...’n;

and F*(0—) = 0. The numbers M} are now the absolute moments of X, that is
M, = E(| X |*). It should be noted that the set of moments.

Ma = E(| X ™) k=0,---,n,
serves just as well as M, , --- , M, , since they are the first n algebraic moments
of the nonnegative random variable Y = | X |* with the cumulative distribution

function G(Y) = F(Y'%).

In the second and third section we give a solution to this problem which cor-
responds to the classical Tchebycheff inequalities for the Hamburger moment
problem, and apply these general results in the next section to obtain the Cantelli
inequalities. I would like to point out that Theorems 1 and 2 can be derived from
very general Tesults of Krein [9]. However, the self-contained approach used
here seems to me desirable in view of the complexity and inaccessibility of Krein’s
results. In the last section we solve the problem of determining sharp upper and
lower bounds for a distribution given the first two (absolute) moments about the

mode.

1. The Tchebycheff inequalities. A point ¢ is said to belong to the spectrum
of the random variable X or of the corresponding distribution function F(X)
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362 H. L. ROYDEN

if there is no interval about ¢ in which F(X) is constant. A random variable (dis-
tribution function) is called arithmetic if it is continuous on the right and its
spectrum is a finite set of points. We say that a distribution function belongs to
a set of moments if it has these moments. By the mass at ¢ we mean the quantity
F(it+) — Fit—).

For the sake of completeness we include the method for determining the
(sharp) upper and lower bounds for the distribution function F(d), that is, Pr.
(x £ d), when we are given the first 2k algebraic moments of F(z) about the
origin. A distribution function belonging to these moments is said to be charac-
teristic for d if it is arithmetic and its spectrum contains fewer than & points
other than d. Then we have the following propositions.

ProrositioN 1. Given the moments My, --- , My, of some distribution fune-
tion F(z), and a real number d, there is a distribution function Fa(x) belonging
to them which is characteristic for d.

ProrosiTioN 2. We have Fa(d—) £ F(d) = Fd(d)

ProrosiTion 3. The points z; at which F; increases are the zeros of the poly-
nomial .

| 1 1 My, - M,
4 M - M
Qua) = Qur(a) = |
|
|
x k+1 dk+l 3 [k+l . M2k
The mass m; of Fy at z; is given by
(1) ms = 2 i M,
=0

where

0¥ () = Z Pt = T] &= %) (x — ;)

ik (:v, z;)°

(If @ has no multiple zeros we have Q¥ = (Q@)/(Q (x:)(x — w)).)
For a proof the reader may either refer to ([4], p. 43) or construct one analogous
to that given here in Sections 2 and 3.

2. The Stieltjes case. In this section we consider the sharpening of the fore-
going inequalities which is possible in the case of a positive random variable
Let My, My, ---, M,, be the first n moments of a positive random variabie

X with the cumulative distribution function F(X), that is, M, = j; & ar().

'
k
it I §97=0 a,lld A?k-{"l =

Then it is known [4]
| Miyisa | %5-0 satisfy
’ Al>0, l=0’...’.n
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unless the moments {M;} belong to an arithmetic distribution function having
mass at n/2 or fewer points, counting the point zero with multiplicity one-half.
In this latter case, that is, when A, = 0, the distribution function having these
moments is unique, and the upper and lower bounds are trivial. Consequently,
we shall assume that the A; are all positive.

The set of distribution functions which have moments of order n may be
considered as a set of positive linear functionals on the space 9 consisting of
those continuous functions ¢ on [0, «] for which lim,_. ¢(f)/t" exists.

We say that a sequence of distribution functions F; converges to the distribu-

L)

tion functions F if lim edF; = f ¢ dF for all ¢ £ 91. It follows at once
0— —

from the definition of the Stieltjes integral that everv distribution function is
the limit of arithmetic distribution functions. .
Let § = F(n, M) be the set of arithmetic distribution functions which have

mass on at most n + 1 points and for which f t"dF(t) £ M. We shall find
0—

it convenient to include in § the positive linear functionals on 9t defined by

Lig =  lim 29 A

’
t—ro0 t”

0.

v

We say that L arises by placing an “infinitesimal’”’ mass A at infinity. Thus if
F is an arithmetic distribution function having masses m; at x; and an infinitesi-
mal mass A at infinity we write

fwgodF =D mip(z:) +)\lim‘%nt).

LemmA 1. The set § is sequentially compact.

Proor. Given a sequence F? ¢ ¥, we may choosea subsequence such that
(a) each spectral point a_:.")'of F converges to some point z; ¢ [0, ©]. (b) If
z; # ®, the masses m{® which F*® has at z{” converge to some number m; .
(¢) The integrals I; = f " dF'? converge to some number I.

0

Any function ¢ € 91 may be written as ¢ = ¢y + at” where lim;_., o(t)/t" = 0
and lim;_,, ¢(t)/t" = «. Given ¢ > 0, we may choose 3 so large that

. <p__ot£_t_) < e/M for all t = 3.
Consequently,
E w(®) dFP < o/ M f; £ aFY < e
Since ¢, is uniformly continuous on [0, 3], we may choose j so large that

2 migo(z) — m{Po(zi?) } <e
2{<J
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Then

[t a2 — IR <2
whence, taking j so large that | I — I;| < ¢,

[ o aroq) - T, mnta) - of | <3e

Since ¢ was arbitrary and 3 — « as e — 0,

lim | j eolt) AF? = 3 mogn(z) + ol.
Also

I=tim [ £aF?0) 2 lim [*£dr90) = T m)"
0— 0— zig
Since 3 is arbitrary I = D mi(z;)", whence A = I — Y my(z;)" = 0. Since
e(®:) = eo(z:) + oz, we have

tim | j o) FP = 3 mip(z) + ok = fo j () dF(Q).

where F is that distribution function in § which has mass m; at z; and an in-
finitesimal mass A at infinity. Thus F*” — F proving the lemma.

LemMa 2. If {My, ---, M.} are the moments of some distribution function,
they are the moments of a distribution in § = F(n, M), with M, < M.

Proor. Every distribution function with n moments is the limit of arithmetic
distributions by the definition of the Stieltjes integral. Since F is sequentially
compact and the moments are continuous, it suffices to show that if M;, -- -,
M, are the moments of an arithmetic distribution, they are the moments of a
distribution ¥. Let A be the region in n-dimensional Euclidean space whose
points are moments of arithmetic distributions. Then A is the convex hull of
the curve

C:M; =1t t=1:--,n;, 0=t .

Thus every point of 4 must be in the simplex determined by some n + 1 points
of C, that is,

M; = Z;mj(tz‘)i; m;z 0; 2 m;=1
&

But this is just the statement that the M; are the moments of the arithmetic
distribution F which has mass m; at ¢;, and this belongs to F as soon as M, < M.

Lemma 3. The mass m = m(d), which a distribution F has at a given fixed point
d’is upper semi-continuous as a function of F. A
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Proor. Let F® with mass m?® at d converge to F with mass m at d. Let ¢
be a positive continuous function belonging to 9, which is one at d and vanishes
at the other spectral points of F. Then

m = f o dF = limf 0 dFP = m',
0— 0—

as was to be proved.

Dermrrion. Let Mo, My, -+, M,, be the Stieltjes moments of some dis-
tribution function. An arithmetic distribution function belonging to this set is
said to be characteristic for d if its spectrum contains at most n/2 points different
from d where zero and infinity are counted with multiplicity one-half.

TuEOREM 1. If My, ---, M, are the Stieltjes moments of some distribution
Sfunction and d is a positive number, then there is an arithmetic distribution function
belonging to M, , - - - , M, which is characteristic for d.

Proor. By Lemmas 1, 2, and 3, there is an arithmetic distribution function
F4 belonging to My, - : - , M, which has the largest possible mass m, at the point
d. Suppose the spectrum of F; contained more than n/2 points. Then if » is
odd we must have one of the cases A or B below.

CasE A. Positive masses m; at the k points x; where &k = (v + 1)/2. Then

the Jacobian of the moments M,, ---, M, with respect to changes in m; and
x; is

1 1 0 0

Ty o Xk my . my,

= m ~~mkg(:c,-—-xj)4;60,
(3 .2

Lot - oz mmgxrt - gt
and we can increase the mass at d by a small amount and change the m; and
Z; so that the moments My, -+ - , M, remain the same. Thus case A is impossible.

Case B. Positive masses m; at the k points x; , mass m, at zero and infinitesimal
mass A at infinity, where £k = (n — 1)/2. Here the Jacobian is

1 0 1 - 1 0 . 0
0 0 = - x my . my
.
0 1 ¥ - zp mmal™' - et

=my - mad - 2k ] (o — x))* 0.

'

and Case B is impossible.
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Using similar arguments in the case of even n, we see that the spectrum of Fa
can contain at most n/2 points other than d, thus proving the theorem.

THEOREM 2. Let My, - - - , M, be the Stieltjes moments of a distribution function
F(x). Let Fa(x) belong to My , - - - , M, and be characteristic for d. Then Fo(d—) =
F(d) £ Fad). .

Proor. We consider four cases:
Cask A. Even n and the spectrum of F, consists of d and k < n/2 other points

z, -, x all different from zero and infinity. We construct a polynomial P(z)
of degree 2k + 1 which satisfies the following conditions:
P'(z;) =0 i=1,k
P@x) =1 z < d
Pd) =1
P@:) =0 z; > d.

Such a polynomial exists, since these conditions are 2k + 1 linear equations for
the 2k + 1 coefficients of the polynomial and the determinant of this system is
II@— =) I,‘I (z: — z,)* # 0.

1 i
It is e?,sily verified that P(z) = 1 for x < d and P(z) = O for all z. Since Fqu
has the same first 2k + 1 moments as F we have

Fy(d) = fo jP(x) AF(z) = fo jP(x) AF(z) = fo d_ P(z) dF(z) = fo idF(:c) = F(d).

Similarly Fa(d—) = F(d).

Cast B. Even n and the spectrum of Fy consists of d and k = (n/2) — 1
points other than zero and infinity. We construct a polynomial of degree 2k + 1
which satisfies the conditions

P(z) =0 i=1-,k
PO) =t
P(z) =1 z; < d
Pd) =1
P(:) =0 z; > d.

Such a polynomial exists as before, and also P(z) = 0 for x = d, and P(z) = 1
for 0 < z < d. Hence, since P is of degree less than n, we have

Fid) = [o iP(:L') dF(z) = fo jP(x) dF(x) = f., iP(:c) dF() = fo idF(:c) = F(d).

Similarly Fa(d—) < F(d).

5
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Case C. Odd 7 and the spectrum of Fy consists (possibly) of 0, d and k =
(n — 1)/2 other points all different from infinity. Construct P(x) of degree

2k + 1 such that

« P'(k) = 0 =1,k
PO =1
Pz) =1 z; <d
P@d) =1
P(;) =0 z; > d.

Such a polynomial exists as before and P(zr) 2 0 forz = d and P(z) = 1 for
0 < x < d. Hence

Fid) = [ P@ aru@) = [ Pa) dF@) 2 F@,

and similarly Fa(d—) = F(d).
Case D. Odd n and the spectrum of ‘F, consists (possibly) of d, infinity and
k < (n — 1)/2 other points all different from zero. Construct P(z) of degree

2k such that

P'(z:) = 0 i=1,--,Fk
P(x;) =1 z; > d-
P@d) =1

P(x) =0 z; < d-

Here P(z) = 1forz < d and P(z) Z 0. Hence Fa(d) = F(d) and Fa(d—) = F(d)

as before.
This plethora of cases establishes the theorem.

3. Determination of Fg.
LemMA 4. Let n be greater than or equal to 2k, and let the roots of

N My, - Mg
‘ MM
D(x) = . . . . = O,

)b Mk ¢ Mgk_l
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be Mt = N =, -+, £ N Let the roots of
0 My - M, |
0, M, :
AG) = . . . . i=0
|
i
I

0 My - My

be <0< - Z60:.Then0 =0 <N\N<6b <N < 6,and the poly-
nomial k

% 1 1 Mo . Mk-ll

e d M
Qu(x) = ‘

|

|

k+1 k+1
T d .M k+1 M 2k

has all positive roots if either 0,1, < d < \; for some ¢ or 6, < d and has one
negative root if

N<d<o

for some ©. )

Proor. We first note that D(A) is (apart from a constant factor) the orthog-
onal polynomial degree k with respect to dF. Hence ([6], p. 43) the X\; are all
positive and distinct. By Propositions 1 and 3 there is an arithmetic distribution
G, defined on (— «, ) whose spectrum consists of the zeros of Qa(z), and which
has My, --- , My, as its (algebraic) moments. By Proposition 2 we see that the
zeros of Qa(z) and Qz(x) separate each other. Consequently, as d increases, the
zeros of Qi(x) must increase until the largest becomes + . Proposition 2 also
shows that Q. can have at most one negative zero. Hence for d < 0, d is the only
negative root of Q4. As d increases all roots of @ increase and so for d slightly
larger than zero all roots are positive and remain so until the largest becomes
infinite, but: this happens only when the coefficient of z**" in @, vanishes, that is,
when D(d) = 0. Thus all roots are positive if 0 < d < A, . For d slightly larger
than \; we have a large negative root which increases to zero as d increases, and
Q. has a negative root for \; < d < 6;, where 6;, is the smallest root of A(6)
which is larger than d. Continuing this process we see that the roots of A(8)
separate those of D(A) and that the lemma is true.

THEOREM 3. Let n = 2k be even, and let \; and 0; be defined as in Lemma 4.
#Then if 8,5 < d < \; or 8, < d, the spectrum of Fa consists of the roots x; of
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: 1 1 M 0 ¢ M -1
E x ) d M 1
Qd(x) = e

. ektl k+1
' d M k41 ° Mzk

The mass m; concentrated al x; is given by
k
(2 mi = 2, i M,
1=0
where
% .
) — 0,1 _ Qa(x)
Q7@ = ;)c; v= Q) — )’
If 6; < d < \; the spectrum of F4 consists of « and the roots x; of

x a M, - Mk_li

Ry(x) = Rap(z) = | | = 0.
!x"“ A My © My
The mass m; at x; 18 given by
k
@ mi = 2, bi" My
where

NN YO
BO(x) = 2 bi%' = rrsi =S

Proovr. If
0;y <d <\ or Or <' d
then the characteristic distribution F,; of Proposition 1 is by Proposition 3 a
characteristic distribution for the Stieltjes problem, and the masses are as stated.
Suppose on the other hand that F; as guaranteed by Theorem 2 had mass at

d and the k other points z;, - -, z; all different from zero or infinity. Then
Qa(x) is orthogonal to all polynomials of degree ¥ — 1 or less. Thus

0= fo j Qi(x)(x — z) -+ (& — 2p) dFa(z) = mi Qulr)

since Qa(d) = 0. Hence z; is a root of Qs(x) and so must the other x; be, and we
* must have all roots of Qa(x) nonnegative in this case. Thus in the case of a nega-
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tive root of @; we must have the spectrum of F; consisting of at most 0, d, in-
finity and the £ — 1 points 2, , - -+ , Z:3 . Now Ra4(z) is orthogonal to all poly-
nomials of degree ¥ — 2 or less and vanishes at zero and d. Consequently

0= fo i Ri@)(z — z) -+ (x — zh_g) AF4(x) = Mu—y Ru(z1r)

and z;_; is a root of R, . Similarly with the remaining z.’s.

Thus we need only verify the expression for the masses m;, which follows
immediately from the fact that R‘”(z) is of degree less than » and vanishes at
all spectral points of Fy except x; where it has the value one.

A similar argument gives

TureoREM 3’. Let n be odd and k = (n — 1)/2. Then if

0i—1<d<)\" or 01,<d

with \; and 0; as in Lemma 4, the spectrum of Fai(x) consists of tnfinity and the
roots z; of Qax(x) = 0, and the masses m; at x; are given by (2). If \; < d < 6;
the spectrum of Fg4 consists of the roots x; of Rar41(x) = 0 and the masses m; at ;
are given by (3) with Ry (x) replaced by Ra 1 (x).

4. Some special cases. If X isa random variable with algebraic moments M,
and M. given, we can use Propositions 1, 2, and 3 to calculate the inequalities

M, — M}

0=Pr.(z=d) = =M
A TR T T AL '
and
M, — M,
- >

This is the well known inequality of Tchebycheff.
If we know in addition that X is a positive random variable (say the absolute
value of another variable) then Theorems 1, 2, and 3 enable one to calculate

M, — M}

0<Pr(X=d = . 0<d=M

rX £ S oL — O '
_Ml < <]l__l_2
— M : M.

1— M, — M: <Pr(Xs<d =1, L LI

M, — Mi+ M, — d)* M, =

which are the Cantelli inequalities [7]. We see that they are an improvement over
the Tchebycheff inequalities in the region M; < d £ M./M, .

6. Unimodal distributions. In this section we determine the (sharp) upper
and lower bounds for Pr. (X < d) of a unimodal distribution when its first two
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moments about the mode are given. It should be emphasized that this is a distinct
problem from that in which the moments of orders « and 2« are given, since one
‘of the transformations

X*=XxV X = (X0
does not take unimodal distributions into unimodal distributions if d # 1,
although the methods used below should work equally well in the case of any

two moments.
Mathematically, we consider distribution functions of the form

X
@) FX) = FO + | olt)dt
where ¢(t) is a nonincreasing function of ¢, and we are given

) fo dF(X) = 1, f:XdF(X) - M, _/:XZdF(x) = M.

Every distribution function F of the form (4) is the limit of distributions of the
form

(6) F =Y miF;, m; = 0, >om =1,
where the F; are rectangular distributions, that 1s,
X X sy
(M Fi(X) ={ &
1 Xzt
or
0 X=0
F 0=
1 X >0

For brevity we call these the rectangular distribution at ¢; or at zero, and say
that F has rectangular distributions of strength 'm; at ¢; .

We consider the space ¥ of all convex combinations of five rectangular dis-
tributions whose second moment does not exceed some fixed constant M and
compactify it (as in Section 2) by the-addition of an infinitesimal distribution
at infinity. Then we have the following lemma by the method of Lemma 2.

LeMMA 5. Let F(X) be a unimodal distribution on [0, =] and d a given positive
number. Then there is a distribution F* wn § for which

F(d) = F*(a),
[ xare) = ["xaroo, [ x*arcn = [ x*ar0.

"
Thus we need only consider convex combinations of a finite number of rec-
tangular distributions. Since the upper limit for Pr. (X = d) is a continuous
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function of d, we consider only cases in which there is a rectangular distribution
at a finite point larger than d and take 1 for the sharp upper limit of Pr. (X = d)
after this upper limit once becomes one.

If X is a positive random variable with a unimodal distribution function and
moments 3, and M, , we normalize by taking + = X/2M, . Then « has median
1 and second moment M,/4M; = A/3. It is known [1] that a necessary and
sufficient condition for A; and M, to be the first two moments of a unimodal
distribution is that A = 1. If now F = 3_ m;F; + \F,,, then

1=Em; 1=Em.~t.~ A=Zm§+)\.

Suppose that F had rectangular distributions on at least two finite points #
and £, which are greater than d. Then
P =Pr(z £4d =("ﬁ
h
where ¢ is independent of m, , m., & and £ . In order for P to be 2 maximum or
a minimum with the total mass, first and second moments fixed, the Jacobian
of these quantities with respect to m, , m2 , {; and ¢; must vanish. But this Jacobian
is

+112>d+c
t2

d d —dm dm
LA

i

& 2mb 2meby !
Hence an extremal distribution function must have a rectangular distribution on
exactly one finite point ¢ > d. Suppose now that an extremal distribution had
rectangular distributions at two points ¢, , ¢ which are less than or equal to d,
and one of which (say ¢) is different from zero and d. Then the Jacobian with
respect to # , m; , my, and m; would have to vanish. But this Jacobian is

| dmy |

i 173 t21 t: '

Cge : mymed
N T R G
!tl &y my mg

| 1
o 11 %

| ‘|

0 1 1 1 _ d 2

| = om(l-S) G-~

fml tltzti

' |

omit & &
In a similar manner it is readily verified that ap extremal distribution which
has a rectangular distribution at a point &, , 0 < # < d, can have no rectangular
distribution at infinity, and that no extremal distribution can have rectangular
‘distributions at zero, d and infinity. Thus an extremal distribution must belong
to one of the following cases.
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Cask 1. Rectangular distributions at exactly two points ¢; and ¢ with 0 < ¢ <
d < t. Then

@®) P=rPrnesdm+™?
and
) l=m+m 1=mty+mt A=mi+ mt.

In order for P to be an extremum

1 fit. 0 Ztm’,—‘?
o=|11 0 0 =m1:;“d(222-3td+t,d),
L ¢ m my
6 2mt 2myt
and hence
(10) d= 3t3f t"

In order for there to be numbers m; and m, for which equations (9) are satisfied,
we must have

11 1,
t 1] =A—t—t(1-—29,
fi t’Al

=

.
= |
|

whence ; = (t — A)/(t — 1). In order for ¢; to be positive and less than ¢, ¢ must
be greater than A, solving (9) '
_ t— 1) _ A-1
MEA I+ -1 ™TAr+ (- 1P

and thus
A-1
(11) P=3tz—-4t+A
and
B -
d=23 " mta

Since ¢ = A, Case 1 can only arise when d = 2A/3.
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Case 2. Rectangular distributions at zero, d, t and possibly infinity. In order
to have an extremal distribution we would need

1 d .

ERE

L 0o TG gxo
0d t m

0 4 2mat

Thus Case 2 never occurs.
Cask 3. Rectangular distributions at d, ¢ and infinity. Then for an extremal
distribution

bood —med !
:1 T TR 0;
i — 2
o= 11 1 o _mit=d _,

rd ¢ me Oi
fdE 8 2met 1

Thus Case 3 can never arise.
Cask 4. Rectangular distributions at d and ¢ only. Then

12) m+m=1 md+mt=1 md+mt=A
and
‘11 1/
0=|d ¢t 1| =A—d—t1—ad,
1d* ¢ Al
or
(13) (=220
In order to have 0 < d < ¢, we must have d < 1. Solving (12) using (13), gives
A-1 A—1
M A0 —d ™A1=
and P=Pr.(x§_d)=m1+mzfti—=1—v(k—:——_d;2.

Case 5. Rectangular distributions at zero, ¢ and infinity with 0 < d < ¢.
Then

me+m =1 mt=1 m1t2+)\=A
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whence m; = 1/¢, and consequently 1 < ¢t £ A. Now
1 ,.d
‘t‘ + Eiy

and P can be an extremum only if £ = 1, ¢ = A, or dP/dt = 0. In the first alterna-
tive we have

P=Pr.(:v§d)=mo+m1%=l-—

I\
p—

P=4d, d

The second alternative gives

IIA
>

1 d

The last alternative arises when 1/f = 2d/t* or d = /2. Then
P=1-1/4d, 3<d=<A2

We summarize these results in the following theorem.
TurorEM 4. If F(x) ¢s a unimodal distribution whose first and second momenis

are 1/2 and A/3, then

< —_—
Fd) <1 T for0 £d =1
Fd) =1 dz1
and
Fd) = d Oédéé
1 1 A
1 d A 2A
>1--4 92 a < “A
F@z1-3+5 ssds
_A-1 2A
F@ z21-37 "5+ 3 =4
where
#— g
d=237 4Ht A

These inequalities are the best possible.
Removing the normalization from F, we get the following theorem.
TuareoreM 4. If F(zx) s unimodal distribution with moments M, and M, , then

@M, - a)
S1— i 4 0sd=2
F@) =1~ g5 —anr, = d =20

Fd) =1 2M, =d
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and
d
F(d) 2 5~ 0sd=s M,
211
LM <q <
F@d) > 1 54 M1={Jl=4—M1
aM5 | 8Mid 3M, M,
> - Pttt had <L < £
A—-1 M,
Fd 2l -gr 41z m =
where
3M» £ -0

A=pr o d=4Mgr Ty
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