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4. Other applications. We mention two other applications of the results. If
there are s individuals with possibly different loss functions, W;;,(x) can denote
the loss suffered by individual k¥ when d; is made and F is true and z is observed.
Or different true situations may lead to the same distribution of the observable
chance variable, so that W;.(x) is the loss incurred under the kth true situation
leading to the distribution F;. The range of & may depend upon z, and all the
results hold.
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CORRECTION OF A PROOF*
By J. KieFER
Cornell University

In the proof of Theorem 3 of “On Wald’s Complete Class Theorems” (Ann.
Math. Stat., Vol. 24 (1953), pp. 70-75), the inequality appearing in the definition
of ra,m(£) should be altered to read r(¢, 8™) = r(¢ 8:) — ¢/2; the remainder of
the proof is then easily altered to give the desired result. Without the ¢/2, one
would still have to prove that the space D is large enough togive limu—, 2, m(£) <
. The author is indebted to Mr. Jerome Sacks for pointing out this fact.

* Received 7/11/53.

L

ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Stanford meeting of the Institute,
June 19-20, 1953)

1. On the Probability Function of the Quotient of Sample Ranges from a Rec-
tangular Distribution. LEo A. AroiaN, Hughes Aircraft and Development
Laboratories, Culver City.

In a recent paper Paul R. Rider (J. Amer. Stat. Assn., Vol. 46 (1951), pp. 502-507) has
derived the probability functicn of « = R,/R:, the quotient of the sample ranges of two
independent random samples from f(z) = 1/z for 0 £ 2 < %, f(¥) = 0 elsewhere, where
R, is the sample range in a sample of m and R is the sample range in a sample of n from
f(z). The power function of the test is derived, the tables are extended for the 5 per cent,
23 per cent, 1 per cent, and } per cent levels of significance. In case m and n large a Cornish-
Tisher expansion for the levels of significance is derived. The transformation w = % log. u
is found convenient and use is made of the moment generating function of w to find the
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cumulants of w, which are needed in the Cornish-Fisher expansion. Limiting distributions
are given for m large, n — « and vice versa.

2. Actuarial Validity of the Binomial Distribution for Large Numbers of Lives
with Small Mortality Probabilities. Joan E. WawLss, U. S. Naval Ordnance
Test Station, China Lake.

In actuarial work, one of the most widely used probability tools is the binomial dis-
tribution. Sufficient conditions for the validity of the binomial distribution for a group of
lives observed during some time or age interval are: (a) The probability of death within
theinterval considered is the same for each person of the group. (b) Thelives are statistically
independent with respect to mortality. Then the deaths occurring in this group during
the observation period have a binomial probability distribution. For practical situations,
these conditions are never exactly satisfied. Condition (a) is undoubtedly violated ap-
preciably for many groups of lives. The close association between friends, relatives, and
neighbors indicates that condition (b) also may be noticeably violated. Thus use of the
binomial distribution in actuarial work might seem a very questionable procedure. This
note investigates the applicability of the binomial distribution for a situation which appears
to be of common actuarial occurrence and where both (a) and (b) can be noticeably violated.
The binomial distribution is found to yield reasonably accurate probabilities for the case
of a large number of lives if the average death probability is used in place of the common
mortality value specified by (a).

3. On the Distribution of the Likelihood Ratio. HErMAN CHERNOFF, Stanford
University.

A classical result on the distribution of the likelihood ratio A is the following. Under
suitable regularity conditions, if the hypothesis that a parameter 6 lies on an r-dimen-
sional hyperplane of k-dimensional space is true, the distribution of —2 log A is asymptoti-
cally that of chi square with k — r degrees of freedom. On the basis of » independent
observations, let A be computed for a test of the hypothesis that 6 lies in w, against the alter-
native that 0 lies in + where w and r are disjoint subsets of k-dimensional space. Let the
origin be a limit point of both w and 7, and let J represent the information matrix per
observation at 6 = 0. If w and 7 may be suitably approximated near the origin by positively
homogeneous sets, the asymptotic distribution of —2 log X\ when 8 = 0 is the same as for
the problem where the observations have a joint normal distribution with mean ¢ and
covariance matrix J=1, and w and = are replaced by their approximations.

4. Testing the Approximate Validity of Statistical Hypotheses. J. L. Hopges, Jr.
AND EricH L. LEBEMANN, University of California, Berkeley.

A statistical hypothesis H, in the customary formulation, is frequently known a priori
not to be exactly true. A much discussed example of this situation is the problem of testing
for normality. The large-sample paradoxes inherent in such a formulation (see for example
Berkson, J. Amer. Stat. Assn., Vol. 33 (1938), p. 526) may be avoided by testing instead
the hypothesis H’ that H is approximately valid. The chi square test of goodness of fit is
modified to provide a large-sample test of H’. A number of related small-sample parametric
problems are also treated. For example, a strictly unbiased test is found for the hypothesis
that the mean £ of a normal population of unknown variance, differs from its hypothetical
value £ by not more than a stated amount &.

5. Distribution of Correlated Means. D. S. Virragrs, U. S. Naval Ordnance Test
Station, China Lake.

The maximum likelihood estimate of a population mean as computed from a set of sample
means correlated by a known amount, turns out to be a weighted average with definite
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weighting coefficients. These coefficients have been worked out for sets from four to twelve
and correlations corresponding to degrees of overlap of one third, one half, two thirds and
three quarters. The weighted sum of squares and products of deviations of correlated means
n Zf; A¥(z; — z)(z; — %) is shown to be distributed as chi square with degrees of freedom
equal to p — 1. These results are applicable to the distribution of moving averages on the
null hypothesis of zero trend with time.

6. On the Detection of Sure Signals in Noise. R. C. Davis, U. 8. Naval Ord-
nance Test Station, Pasadena Annex.

The purpose of this paper is to simplify and extend known results on the detection of
sure signals in the presence of noise. For a sure signal; that is, of completely specified form
and nonrandom, upon which a background noise is superimposed linearly, several criteria
for an optimum pre-detection filter are compared. The background noise may be any
continuous stochastic process possessing mean value zero and a known continuous
covariance function. Specifically, it is shown that when the input noise to a predetection
filter is Gaussian, the filter which maximizes—for a fixed false alarm probability—the
probability of detecting the signal when present is identical with the linear filter which
maximizes the output signal-to-noise ratio. An explicit expression is obtained for the
probability of detection. The stability of the optimum filter is discussed in some detail.
Finally it is shown how an optimum signal shape of given energy content can be chosen.

7. A Statistic Associated with the Joint Distribution of n Successive Ampli-
tudes. Preliminary Report. WiLLiam C. HorrmaN, U. S. Navy Electronics
Laboratory, San Diego.

In previous work the joint distribution of the n random variables R({;) =
(X2(;) + Y20t G =1,2, .-+, n), was found for X (¢;), Y (¢;) from a stationary Gaussian
process. A statistic ¢ = 2n~1 21 75 is now defined, and its characteristic function and small
sample distribution determined. The statistic ¢, which is an estimate of the parameter o2,
is shown to be unbiased, consistent, and in the case of simple Markov dependence, asymp-
totically efficient in the strict sense. It is also shown that ¢ is asymptotically normal.
Expressions for maximum likelihood estimates are found for the case of simple Markov
dependence, and ¢2 is shown to be asymptotically equivalent to ¢ in probability. A test of
independence versus simple Markov dependence is given.

8. Some Two-Sample Tests Based on a Particular Measure of Discrepancy.
Lours H. WEGNER, University of Oregon.

Let F and G be continuous cumulative probability functions. The quantity 6(F, G) =
§%w0 (F — ()2 dG is a measure of discrepancy between F and G and is such that 6(F, G) = 0
if and only if F = G. E. Lehmann has proposed a distribution-free statistic which is the
minimum variance unbiased estimate of the functional ¢(F, G) = 3 + 0(F, @) + 6(G, F).
Three other distribution-free statistics based on 6(F, G) are 6(F*, G*), 8(F*,G*) + 6(G*, F*),
and ¢(F* G*), where F* and G* are the corresponding sample cumulative probability
functions. The above four statistics, minus their expected values and multiplied by suitable
functions of the sample sizes, are shown to have the same asymptotic distribution. Under
H, : F = G, the asymptotic distribution is the same as that of the von Mises statistic.
Under H, : F # G, the asymptotic distribution is normal provided F and G are restricted
slightly. The tests based on large values of these statistics are shown to be consistent tests
of H, against H; . An example showing that these tests are not in general unbiased is given.
The variance of Lehmann’s statistic is found in terms of F and G and the power of the
corresponding test is investigated for the alternatives G = F? and G = F3,
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9. Confidence Intervals for a Proportion. Preliminary Report. E. L. Crow, U. S.
Naval Ordnance Test Station, China Lake.

Certain direct modifications of the Clopper and Pearson confidence intervals for a
binomial proportion p are discussed. The sample information consists of the number r of
items with a stated characteristic in a random sample of size n. To obtain confidence inter-
vals with confidence coefficient at least 1 — «, Clopper and Pearson determined, for each
given p, an interval of values of r by excluding at each end of the distribution values of r
with probability mass totaling not more than /2. If the excluded probability mass « is
not so restricted, then generally shorter intervals for r, and correspondingly for p, are
obtained. One modification consists of following Clopper and Pearson except that all the
probability mass « is removed at one end of the distribution of » when none can be removed
at the other. Another modification, proposed by Theodore E. Sterne, consists of excluding
from the interval of r for each given p those values of r having the smallest probabilities.
For1l — a = 0.90,0.95 and 0.99 and » = 1, 2, ---, 20, confidence intervals for p based on
these two modifications are tabulated and compared. ‘

10. On Estimating Both Mean and Standard Deviation of a Normal Population
from the Lowest r out of n Observations. JouN V. BREARWELL, North
American Aviation Company, Los Angeles.

Maximum likelihood estimates % and & of both mean and standard deviation are obtain-
able from the solution of a transcendental equation involving the ratio r/n and the ratio
D/S, where D is the difference between the mean of and the highest of the lowest r observa-
tions, while s is the standard deviation of these r observations. The asymptotically bi-
variate normal distribution of v/n(% — u) and v/n(é — o) is investigated, the elements of
the covariance matrix being decreasing functions of the ratio r/n. The biases in both i
and & are negative, of order 1/n, and are certain numerically decreasing functions of the
ratio r/n.

11. Strong Consistency of Stochastic Approximation Methods. JuLius R. BLum,
University of California, Berkeley.

Robbins and Monro have constructed a stochastic approximation scheme which estimates
consistently the root of a regression equation. Similarly Kiefer and Wolfowitz have pro-
posed a consistent sequence of estimates for the point where an unknown regression func-
tion achieves its maximum. It is shown that both of these schemes have the property of
strong consistency, under somewhat weaker restrictions. A semimartingale theorem due to
Doob is generalized and applied to prove strong convergence of a certain sequence of ran-
dom vectors. This is applied to problems of solving k regression equations in & unknowns
and of estimating the point where a regression function in k variables achieves its maximum.

12. Some Probability Results for Mortality Rates Based on Insurance Data.
Joun E. Wawss, U. S. Naval Ordnance Test Station, China Lake.

This paper considers the probability distribution of an observed mortality rate based
on a large amount of insurance data. A computationally feasible method of obtaining
significance tests and confidence intervals for the “‘true’” mortality rate estimated by the
observed rate is presented. It is only necessary to know the value of the observed rate, the
number of units (policies, amounts, etc.) exposed to risk, and the number of units associated
with each person who died during his observation period. In the derivations the lives are
assumed to be statistically independent but need not have the same mortality rate nor be
observed during the same period. The tests and confidence intervals obtained are nearly
100 per cent efficient. A generalization of the basic technique is used to derive the proba-
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bility distribution of actuarial cost functions and other quantities of interest. A method
whereby past data may be used as a help in estimating the future probability distribution
of these actuarial functions is outlined.

13. Extensions of the U-Test to Three Populations. Lours H. WEeGNER, Univer-
sity of Oregon.

Let F, G, and H be continuous cumulative probability functions. Denote the classes of
triples (F, G, H) such that 1) F = G =H,(2) F < G < H,and 3) F £ G =< H (where at
least one of the inequality signs holds) by C,, C», and C; respectively. Two extensions of
the Wilcoxen-Mann-Whitney U-test are proposed and are shown to be consistent and
unbiased tests of C: against Cs . The test statistics are shown to be asymptotically normal
under C; and also under C; provided that for one of the statistics C; is slightly restricted.
Certain moments are found in terms of F, G, and H. Finally, it is shown that a test of C;
against C; proposed by D. R. Whitney is unbiased against C;, consistent against C. , but
not consistent against C ;.

14. Normal Regression Theory and Some Classical Statistics in Multivariate
Analysis. Junsiro Ocawa, Osaka University.

The purpose of this paper is to give a new method of derivaticn of the sampling distribu-
tions of the multiple correlation coefficient and the Hotelling’s squared generalized Stu-
dent’s ratio 7% Although the results here presented are well known and now are classical,
there seems to be some interest from the methodological point of view. The fundamental idea
of this paper was suggested by Prof. G. Elfving’s 1947 paper (G. Elfving, ‘‘A simple method
of deducing certain distributions connected with multivariate sampling,” Skand. Aktu-
arietids., Vol. 29-30 (1947), pp. 56-74). In this paper Prof. G. Elfving had attempted the
systematic derivation of the sampling distributions of the classical statistics in multi-
variate analysis utilizing the geometrical interpretations of the results of the normal
regression theory, but with repect to the two statistics mentioned above, he succeeded in
deriving their sampling distributions only in the null cases. Here we shall show that our
method gives their sampling distributions in general cases. In this connection, we had to
describe the main results of the normal regression theory somewhat more precisely than
those which are seen in the literatures, at least as far as the writer knows.

15. The Use of Maximum Likelihood Estimates in Chi Square Tests of Good-
ness of Fit. HErRMAN CHERNOFF AND EricH L. LErMANN, Stanford Uni-
versity and University of California, Berkeley.

Consider the problem of testing that a sample comes from a distribution of given form.
The test is performed by counting the number of observations falling into specified cells
and applying the x? test to these frequencies. In estimating the parameters for this test
one may use the maximum likelihood (or asymptotically equivalent) estimates based (1)
on the cell frequencies or (2) on the original observations. It is pointed out that in (2)
(unlike the well known result for (1)) the test statistic does not have a limiting x2-distribu-
tion, but that it is stochastically larger than would be expected under the x* theory. The
limiting distribution is obtained and some examples are computed. These indicate that the
error is not serious in the case of fitting a Poisson distribution, but may be so for the fitting
of a normal.

16. On the Treatment of Ties in Nonparametric Tests. JoserH PUTTER, Uni-
versity of California, Berkeley.

In applying rank tests to tied observations, two alternative procedures are customarily
used: either the tied observations are ‘“randomized,” that is, ordered in a way depending
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on the outcome of an additional random experiment, or the definition of the test statistic
is appropriately extended to cover the tied case. For (1) the Wilcoxon two-sample test and
(2) the sign test, the asymptotic distributions of the statistics concerned are derived. The
performances of the two alternative procedures are then compared, using Pitman’s concept
of asymptotic relative efficiency (cf. Noether, Ann. Math. Stat. Vol 21 (1950), p. 241).
In both cases, the ‘“‘randomized’’ test is proved to be less efficient than the ‘‘nonrandomized”
test given by the modified test statistic. In (1), the modified test statistic is essentially the
onesuggested by Kruskal and Wallis (Ann. Math. Stat., Vol 23 (1952), p. 538) ; the asymptotlc
relative efficiency of the randomized test with respect to the nonrandomized testis1 — 2 i,
where py are the jumps of the relevant underlying distribution at its discontinuities. In
(2), the nonrandomized test consists essentially of ignoring the zero differences z; — y; ;
the analogous asymptotic relative efficiency is 1 — po , where po = P(X; = Y;). (Research
sponsored by the Bureau of Naval Research.)

17. Asymptotic Relative Efficiency of Some Rank Tests for Analysis of Variance
Problems. F. C. AxorEws, Stanford University.

Let {Xij;¢=1,2,+--,¢;j =1,2, -+, n;} be independent random variables with
Fi(z) the continuous distribution function of X;;, n; = sin. Several nonparametric tests
for the hypothesis F; = F, = --- = F. have been proposed. To study the asymptotic be-
havior of two of these tests against translation differences, the sequence of alternative
hypotheses Fi(z) = F(z + 6:/A/n), i = 1,2, ---, ¢, Zi_1 (8: — §)? > 0 is assumed. With
mild assumptions on F, for this type of alternatlve hypothesxs, the limiting distribution
as n — « of the Walhs-Ixruskal H statistic is shown to be x’-;(\H), (noncentral x* with

¢ — 1 degrees of freedom and noncentral parameter \#), N = 12[S+ (F'(x))? dx]*-
Ziasi(6; — 8)%; for that of the Mood Brown median statistic xi(\M) with A¥ =
4(F'(a))? Zi.18:(6; — 8)2, F(a) = }. These results are used to determine the asymptotic

relative efficiency (a.r.e.) of the median test with respect to the H-test which is
1[F'(a) /SEL[F! (x)]? dx]? and the a.r.e. of the H-test with respect to the classical F test
which is 12[e#$T2 (F'(x))? dx]?, % is the variance of the d.f.F. These last a.r.e. results are
independent of the power, level of significance, and c, and so agree with the known results
in the two sample case.

18. Application of the Studentized Maximum Chi-Distribution. Preliminary
Report. T. A. JEeves, University of California, Berkeley.

If U is the maximum of X; , X, , -+ X, , where X has a chi-distribution with m degrees
of freedom, and n}Y has a chi-distribution with n degrees of freedom, then the distribution
of Z = U/Y is termed the studentized maximum chi-distribution. This statistic can be
applied to obtain confidence bands in problems of multiple regression and analysis of
covariance. For the comparison of many regression lines (hyperplanes), the bands so ob-
tained are the Neyman-narrowest bands about each line (hyperplane). With a slight modi-
fication the variance need not be assumed the same about each line. This statistic has also
been applied to obtain bands which are Neyman-shortest about each coefficient of the
regression hyperplane and to develop families of bands with flat boundaries. These later
can be used (i) in their own right (ii) as an approximation to the Neyman-narrowest bands,
or (iii) to facilitate construction of the later bands. Asymptotic expressions for the dis-
tribution have been obtained and short tables prepared.
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(Abstracts of papers presented at the Kingston meeting of the Institute,
August 31-September 4, 1953)

19. Sequential Probability Ratio Confidence Sets. (Preliminary Report.)
ArraN BirnBaUM, Columbia University.

Let ¢ = (21, 22, ---) denote a sequence of observed values of a random variable dis-
tributed according to f(z, ). Let T'(6’) denote the sequential probability ratio test of the
hypothesis H(6"): 6§ = 6’ against the hypothesis H(6’ 4+ A): 6 = 6’ + A, at size @ and power
1 — B, A > 0, with operating characteristic denoted by L (8), for 6’, ¢ + A and 6 in ©,
with @ a_(possibly infinite) interval. Let 6”(x) = inf {6’ | T'(6’) accepts H(8’) when z is
observed}. Under general conditions, L (¢) is monotone for all 8" and 6”(x) is convex for
all z. Let m(x, 8’) be the number of observations required for T'(6’) to terminate when the
sequence Z is observed. Let n(x) = sup {m(z, 6') | 6’ ¢ 2}; n(zx) and 6" (z) are functions of
the first n(z) components of z only. n(X) is finite with probability one. If @ is the true
parameter value, then Pr{¢”(X) £ 6} = 1 — a and Pr{6"(X) £ 6 — A} = B. Hence the
assertion I(X): “6”(X) £ 6 < ¢"(X) + A” will be true with probability 1 — « — 8. The
method has the advantages: (a) that it constructs confidence intervals of prescribed length
A and confidence coefficient 1 — « — B without need to consider the distribution of any
statistics, and (b) that it is applicable to certain problems for which there seem to be no
alternative methods available. Application of the method to sequential tests of composite
hypotheses is being studied.

20. Optimum Sample Size for Choosing the Population Having the Smaller
Variance. Paur N. SoMERVILLE, University of North Carolina.

Assume we have k + 1 populations, normally distributed and with variances 1 £ 6, <

. < 6; . Let it be required to select N individuals from one of the populations, where
those individuals that differ by more than an amount d from the mean are rejected, and
where the loss involved in rejecting an individual is 7. Suppose we take a preliminary sample
of size n + 1 from each population, and select the population having the smallest sample
variance for the selection of the N individuals. Let the cost of the preliminary sample be
c1 n + co . If we use the sample size which minimizes the maximum expected loss, then the
“optimum’’ sample size is an increasing function of N, /c; provided N,/c, is sufficient large
with respect to co that it is profitable to sample. Tables giving ‘“‘optimum’’ sample sizes for
d=1,2,3fork =1,k = 2, for various values of N,/c; are given. (This research was sup-
ported in part by the United States Air Force under Contract AF 18(600)-83.)

21. The Generation of Pseudo-Random Numbers on a Decimal Calculator-
Jack Mosuman, Oak Ridge National Laboratory.

Let p = 74K+1 and define po = 1. The digits of the sequence ps4; = pi-p (mod 10%), under
certain conditions, fulfill specified tests for randomness and provide 5-10*=3(s > 4) decimal
numbers before repetition of the basic cycle. It is found that the five last significant digits
should be omitted from the number before application and there is an uncertainty about
the sixth. Relevant theorems from number theory are cited and experimental values of
x? for various tests are displayed for 10,000 generated numbers.

22. The Integral Solution of Pearson’s Random Walk Problem and Related
Matters. Davip DuraNp aND J. ARTHUR GREENWOOD, National Bureau
of Economic Research and Manhattan Life Insurance Company.

Von Mises has shown that the vector mean of a sample of n from the population dp =
(2 JoGk))"t-exp(k cos z)-dx furnishes a significance test for the hypothesis ¥ = 0. This
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vector mean, multiplied by »n, has the distribution found by Kluyver in 1906 as a solution
to Pearson’s random walk problem. Kluyver’s distribution is computed by quadratures
and tabled, for n = 6(1)24. Two series expansions of the distribution are considered; first,
an expansion in Laguerre functions essentially due to Pearson, and, second, an expansion
in descending powers of n. For n = 7, 14, 21, the goodness of approximation of these series
is compared. For use in significance tests, the 5 per cent and 1 per cent tail-area points of
the distribution are tabled. The expansion in descending powers of n is inverted for use in
extending the table of percentage points.

23. On Optimal Systems. Davip Brackwern, Howard University.

For any sequence z,, Z:, --- of chance variables satisfying [z, | = 1 and
E@u | %1, y %) S -umax (| &a | | 21, -+, Tuor), where u is a fixed constant, 0 < u <
1,Pri{z+ -+ + 2, = tforsomen = 0} = [(1 — u)/(1 + u)]* for all t = 0, with equality,
for integral ¢, when the z, are independent and Pr {z, = &1} = (1 F ) /2. This result has
a simple interpretation in terms of gambling systems; a corollary is that for any chance
variables z , %2, --- satisfying |2z.| = 1 and E@. |1, -+, %ua, = 0, Pr
{ln 2 (xs+ -+ + za) | Z eforsomen = N} £ (1 4 €)—¥/(2+9) yielding Lévy’s result that
n~Y (& + --- + x.) — 0 with probability one.

24. Maximum Likelihood Regression Equations. H. Lron HaArTER, Wright-
Patterson Air Force Base.

Consider the application of the principle of maximum likelihood to the problem of de-
termining the regression equation of one variable on p others. For a normal distribution
of residuals, the maximum likelihood solution is the familiar least squares solution, found
by minimizing the sum of squares of the residuals. For a Laplace distribution of residuals,
the maximum likelihood solution is found by minimizing the sum of the absolute values of
the residuals. For distributions of residuals with finite limits, only certain solutions are
admissible. For the truncated normal distribution, the maximum likelihood solution is
found by minimizing the sum of squares of residuals for the set of admissible solutions. For
the truncated Laplace distribution, the maximum likelihood solution is found by minimizing
the sum of absolute values of the residuals for the set of admissible solutions. For a rec-
tangular distribution of residuals, the likelihood function is a constant, and there is no
unique maximum likelihood solution, one admissible solution being just as likely as another.

25. Spherical Distributions. (Preliminary Report.) G. E. P. Box, Imperial
Chemical Industries, Blackley, Manchester, England and North Carolina
State College.

A wide class of test criteria, including the ¢ test, analysis of variance test, Bartlett test,
and tests of normality are independent of scale. Their null distributions are usually derived
on the assumptions of independence, normality and equality of variance. Such test criteria
follow the same null distribution and consequently the tests are equally valid under the
less stringent conditions that the observations y1 , %2 , -+ , ¥ follow what may be called a
“spherical’’ distribution, that is the contours of the joint density functions are spheres

(¢Y) Wi, Y2, oo Yn) = Kf(Z y?) 0<zZy*<L

where L may be infinite and k is chosen so that the integral taken over the whole space
is unity. The condition for validity is necessary as well as sufficient. The y’s would not be
independent except with the normal density function, (J. Clerk Maxwell, Philos. Mag.,
Vol. 19 (1860), p. 19; M. S. Bartlett, “The vector representation of a sample,”” Proc. Cam-
bridge Philos. Soc., Vol. 30 (1934), pp. 327-340), nevertheless spherical distributions are
important because (i) The spherical distribution, but not necessarily the normal distribu-
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tion, is an approximation to the distribution generated by standard randomization pro-
cedures, (ii) The spherical distribution is generated exactly by the process of angular
randomization, which can be used with certain multi-factor designs. (G. E. P. Box, “Multi-
factor designs of first order,” Biometrika, Vol. 39 (1952), pp. 49-57.) (iii) Using a parent
spherical distribution certain distribution problems may be attacked from a novel and use-
ful angle. When the null-hypothesis is not true, the power of the test criterion is not inde-
pendent of the function f chosen. However tests which are U.M.P. on the usual assumptions
are also U.M.P. for any spherical distribution in which f is a decreasing function.

26. On the Monotonic Character of the Power of a Certain Test in Multivariate
Analysis of Variance. S. N. Roy, University of North Carolina.

A test of the hypothesis H, of equality of means for & p-variate normal populations
(assumed to have the same dispersion matrix Z) has been put forward, (S. N. Roy, ‘“On a
heuristic method of test construction and its use in multivariate analysis’’, Ann. Math.
Stat., June, 1953) having the critical region: 6, = ¢, where 6, is the largest (necessarily posi-
tive) characteristic root of the matrix S* S—! and S* is the sample ‘‘between’’ covariance
matrix, everywhere at least p.s.d. of rank ¢ = min(p, ¥ — 1) and S is the sample “‘within”’
covariance matrix, everywhere p.d., and where ¢ is given by: F (6, =~ « ;, Hy) = « (say).
If we denote by H, the usual nonnull hypothesis and by =*, the usual weizu.ed “between’’
covariance matrix of the £ populations, it is well known and also has been shown, (see above
reference), that the power of the critical region, that is, P(6, = ¢ | H) is a function of just
the characteristic roots (all nonnegative) of the matrix =* =-1, It is shown in the present
paper that, for a given ¢, that is, «, this power is a monotonically increasing function of
each of the population characteristic roots, which incidentally proves that the proposed
test is unbiased.

27. Some Large-Sample Results on Estimation and Power for a Method of
Paired Comparisons. (Preliminary Report.) RaALrH A. BrADLEY, Virginia
Polytechnic Institute.

Certain large-sample results are obtained for a method of paired comparisons developed
by Terry and the author (Biometrika Vol. 39 (1952), p. 324). In that paper a parameter
1I; is postulated for each of ¢ items or treatments with =; II; = 1 and each II; = 0. It was
further postulated that in a comparison of item ¢ with item j the probability that item ¢
obtain rank 1 be II;/(II; + II;). A null hypothesis, II; = I/t for all 7, was tested against a class
of alternatives using maximum likelihood estimates p; of II; and likelihood ratio tests.
In the present paper formulas are developed for the variances of the estimators for large
samples and confidence limits placed on I; , (II; — II;), and (log II; — log IT;). It is further
gshown that, if 6; = \/n (Il; — 1/t) and if R is the likelihood ratio statistic for homogeneity
of treatment ratings, then —2log R has for large samples the distribution of a noncentral
chi square with (¢ — 1) degrees of freedom and parameter X = 3 Z; 63/4. The test is shown
to be asymptotically more powerful than a multi-binomial test formulated and to have a
relative efficiency, when compared with the analysis of variance, of ¢/{(t — 1)II}. Illustra-
tive examples in taste testing are given. (Research sponsored by the Bureau of Agricultural
Economics, United States Department of Agriculture.)

28. Nonparametric Estimation of Survivorship. Paur MEIer, Johns Hopkins
University.

A standard problem of life testing in general and medical follow-up in particular is the

estimation of the proportion of individuals surviving to time 7', for example, the proportion

of newly diagnosed cancer cases who survive 5 years. For the case of follow-up with unbiased
losses it is shown that the simple limiting form of the usual ‘“‘actuarial” estimate (taking
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the limit as the interval size goes to zero) is unbiased with variance well approximated by
a formula proposed by Greenwood. The estimate is also derived as the maximum likelihood
solution of the nonparametric estimation problem and the procedure is extended to the
case of competing risks. Various methods of estimating survivorship are compared, with
special reference to their sensitivity to biases in the data.

29. Comparison of Two Rank Order Tests for the Two-Sample Problem.
GorrrriED E. NoETHER, Boston University.

Recently, two rank order tests have been suggested for testing the hypothesis H, that
two samples of sizes m and n come from the same continuous population, the alternative
being that the two samples come from normal populations with different means, but common
variance. Let r stand for the ranks of the n observations in the second sample in the over-all
ranking of all m + n = N observations. Then Terry’s test (Ann. Math. Stat., Vol. 23 (1952),
pp. 346-366) is based on the statistic ¢;(R) = Z, E(Zy,) where Zy, is the rth order statistic
in a sample of size N from a standard normal population. Van der Waerden’s test (Nederl.
Akad. Wetensch. Proc. Ser. A, Vol. 55 (1952), pp. 453-458) is based on the statistic X =
3, ¢(r/N + 1) where ¢(p) is the p-quantile of the standard normal distribution. On the
basis of examples, it is easily shown that the two tests do not always lead to the same de-
cision. However, when H, is true, the correlation coefficient between ¢;(R) and X tends
to 1 as N increases, and the two tests are asymptotically equivalent.

30. The Poisson Distribution as a Limit of Dependent Binomial Distributions
with Unequal Probabilities. Joun E. WarLsm, U. S. Naval Ordnance
Test Station, Inyokern.

It is well known that the Poisson probability distribution approximates the binomial
probability distribution for situations where the sample size n is large and the probability
of “success’ small., This result was extended to the case of n independent binomial events
with possibly different probabilities for ‘‘success’” by B. O. Koopman (‘“‘Necessary and
sufficient conditions for Poisson’s distribution,’”” Proc. Amer. Math. Soc., Vol. 1 (1950),
pp- 813-823). This paper presents a further extension which appears to be of practical
interest and where an event is not required to be statistically independent of all the n — 1
other events. Roughly stated, the limiting conditions assumed are: First, each event is
statistically independent of at least n — m — 1 of the other events and m/n —0asn — .
Second, although the conditional probability of ‘‘success’’ for an event can be greatly
changed in ratio by knowledge of the outcomes for other events, m times this probability
tends to zero as n — . Third, the sum over all events of the unconditional probabilities
of “‘success’’ converges to a finite value as n — «. An approximate form of these conditions
for large but finite n is presented along with an outline of a general method of intuitive
verification for practical applications.

31. An Estimate of the Number of States in a Discrete Markov Chain. A. T.
ReErp, University of Chicago.

In this note we point out a way of obtaining an estimate of the number of states in a
discrete Markov chain with two absorbing states. Let us call the states By , Ey, --- , Eq;
and define transition probabilities 7;.i .1 = ¢/a, 1560 =1 —1/a ¢ =1, --- ,a — 1), and
ri1 = 1(Z = 0, a). The above chain (with E, and E, representing recovery and death of an
irradiated organism) has been used as a model in radiobiology (Bull. Math. Biophysics,
Vol. 13 (1951), pp. 153-163). It is of interest to obtain an estimate of a from the experi-
mentally observed times required for the system to enter either E, or E, . Suppose we ob-
serve the system on n occasions, m of which it ends up in E, . Call £;0(j = 1, --- , m) the
time required for the system to enter E, if initially it was in E, . Assuming « steps or transi-
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tions per unit time let kj(= at,o) represent the number of steps required for the system
to pass from E, to E; . Now ric is the probability of gomg from £, to E, in k¢ steps. The
likelihood, function iy P(kw , -+ , kmo; @) = Ifey m1° . Put & = 2%y kyo, then L =
WP =1Inrh , where 710 is the element in the first column and second row of the matrix R
r?_ilsed to the £-th power. Since R is decomposable we have r1p = r1i" 71, . The probability
ri1 can be calculated using algebraic methods. Differentiating L with respect to @, and
proceeding in the usual manner we can obtain a maximum likelihood estimate of the number
of states.

32. On a Test of the Rank of a Matrix of Means for k p-variate Normal Popu-
lations. S. N. Rov, University of North Carolina.

Suppose we have random samples of sizes n, (r = 1,2, --- , k) from &k p-variate normal
populations with a common dispersion matrix =. Let =* be the weighted raw ‘“‘between’’
covariance matrix of the k& populations, that is, the covariance matrix of means (without
reducing to the grand means) and S* be the raw ‘“‘between’’ and S the ‘‘within’’ covariance
matrices of the k samples. Almost everywhere, S* is at least p.s.d. of rank ¢ = min(p, k)
and 8§ is p.d. Also Z is p.d. and =* is at least p.s.d. of rank, say, r £ min(p, k). To test
the hypothesis that =* is of a specific rank r, that is, the p X k matrix of means is of rank
r, the technique of an earlier paper, (S. N. Roy, ‘‘On a heuristic method of test construction
and its use in multivariate analysis”’, Ann. Math. Stat., June, 1953.), is used, leading to a
critical region in terms of the characteristic roots of the matrix S*S—1, which are all non-
negative and of which ¢ roots are, almost everywhere, positive. Some properties of the test
are also discussed.

33. On the Monotonic Character of the Power of a Test of Independence in
Multivariate Analysis. S. N. Roy, University of North Carolina.

A test has been offered (S. N. Roy, “On a heuristic method of test construction and its
use in multivariate analysis’’, Ann. Math. Stat., June, 1953.) for the hypothesis H, of inde-
pendence of two sets of variates, p and ¢ in number (with a joint (p 4 g¢)-variate normal
distribution), the critical region of the test bemg ap = ¢, where p £ ¢, and 8, is the largest
characteristic root of the sample matrix S5, Si2 Sz Stz , and 8y; and Se are the sample
covariance matrices of the p-set and the ¢g-set and S); is the sample covariance matrix
between the p-set and the g-set, and where P(6, = ¢ | Hy) = a (say). Almost everywhere,
the (p + ¢)th order sample covariance matrix is p.d. and S, is of rank p and thus all the
p characteristic roots are positive If we denote by Zi, =32 and I, the corresponding
population roots, then assuming that the (p + ¢)th populatlon covarlance matrix is p.d.,
all the p characteristic roots of the population matrix =i 2 22 212 are nonnegative. It
is well known and has also been shown (see above reference) that the power of the test,
that is, P(8, = c | H), is a function of just the characteristic roots of the population ma.trix
30 212 23 Z1.. It is shown in the present paper that it is a monotonically increasing func-
tion of each of these characteristic roots, which incidentally proves that the test is an
unbiased one.

34. The Asymptotic Variance of Estimates of the Mean Life of a Radioactive
Source (Preliminary Report.) Ricuarp F. Link, Princeton University.

Suppose the number of particles which disintegrate in K nonoverlapping time intervals
of equal length ¢ is recorded. Suppose further that thése particles come from a source with
mean life 7 or from a background of constant intensity «. The intensity of the background
may or may not be known. Let = be estimated by the method of maximum likelihood. The
asymptotic variance of this estimate is calculated for several values of: K, the number of
time intervals; Kt/7, the number of mean lives the source is observed; and «, the intensity
of the background.
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35. Testing the Equality of Means of Rectangular Populations. RoBERT V.
Hoaga, State University of Iowa.

Letz ,22, -+ ,Znand 41,2, *** , Ym be ordered samples from two rectangular popu-
lations having equal ranges but possibly different means. Using the likelihood ratio criterion
we find that the statistic t = max(z, — 21 , Ym — ¥1)/[max(z, , ym) — min(z; , y1)} is used
to test the hypothesis that the two means are equal. To find the distribution of this ratio
under the null hypothesis we proceed as follows. First, show that the ratio and its denomi-
nator are stochastically independent using an extension of a theorem of Neyman concerning
the independence of sufficient statistics and statistics whose distributions do not involve
the parameters. Second, calculate the moments of the numerator and of the denominator
and thus, by dividing, those of the ratio. Third, observe from these moments the interesting
fact that the distribution function of the ratio is a combination of the discrete and con-
tinuous types; namely 0, ¢t < 0; 2nmt**m=2/(n +m) (n +m — 1),0 £ ¢ < 1;1,1 < ¢. This
problem is extended to more than two populations.

36. Structure of the Sample Space for Group Organization Theory. LEo KaTz
AND James H. PowsLL, Michigan State College.

An organization of n individuals is connected by ¢directional bonds between pairs. Any
particular configuration of the bonds produces a directed graph. In the social psychological
applications, certain functions of graphs are employed. These are random variables over
the graphs, considered as points in an appropriate sample space. The context of the particu-
lar psychological investigation may induce a conditioning of the sample space. In the null
case, each directed graph of ¢ joins on n nodes is equally likely. These are partitioned dis-
jointly and exhaustively, first, by point-wise restrictions on the outgoing lines and, second,
by further point-wise restrictions on incoming lines. An unpublished result of Katz and
Powell on graph theory gives the number of points in a second-order subspace. The second-
order subspaces in a first-order space are obtained by standard combinatorial methods. In
special cases, many second-order spaces are isomorphic in sets; consequently, calculations
may be materially abridged. Applications are given to classes of unsolved problems of
group organization theory. (Work sponsored by Office of Naval Research).

37. A Family of Cumulative Frequency Functions for J-shaped Frequency
Functions. C. W. Topp anp F. C. LronE, Case Institute of Technology.

A three-parameter family of cumulative frequency functions is presented. These cover a
wide variety of J-shaped frequency functions. Upon testing a number of J-shaped empirical
distributions it was found that many of these had third and fourth moments within the
range covered by this family of curves. These empirical distributions are composed pri-
marily of life testing and failure data. A graph of o} and & has been prepared. This includes
some members of the family of frequency functions for different values of the parameters.
After a proper choice of a specific function from the graph, the cumulative frequency funec-
tion can be used directly for the chi square test of goodness of fit.

38. Multilayer Significance Procedures. (Preliminary Report.) Joun W. TUkEy,
Princeton University.

Even when satisfactory confidence procedures are available for multiple comparisons,
there is some real need, and more supposed need, for significance procedures. The framework
of multilayer significance procedures includes the procedures proposed by Fisher, Newman,
Duncan, Tukey (2 versions, one with minor modification), Keuls, Nandi, and Cornfield
and co-workers (at least in part) among others, (It is easy to imagine procedures which do
not fit into its framework.) and is patterned after Duncan’s recent discussion. Conceptually,
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at least, it involves testing every subgroup of the k determinations for apparent significance.
A subgroup which, together with all subgroups which include it, is apparently significant,
is adjudged significant. Various kinds of levels of significance are defined. As John Mandel
pointed out in connection with the author’s first multiple comparison procedure, the over-
all null hypotheses most likely to cause error are those in which the determinands (‘“‘true’’
values of the determinations) are equal in pairs, these common values being widely sepa-
rated. If WSD; is the allowance for J determinations based on the studentized range, then
3(WSDy + WSDs) may be used to test the range of subgroups of k from a group of k¥ with-
out exceeding the nominal error rate. A gap procedure may be added.

39. Estimation in Truncated Multivariate Normal Distributions. A. C. ComneN,
JR., University of Georgia.

This paper represents an extension of results which the author presented before a joint
meeting of I.M.S. and the Biometric Society in Washington, D. C., April 30, 1953, concerning
bivariate normal distributions. Maximum likelihood estimators are derived for parameters
of a multivariate normal population which are functions of a random sample in which one of
the variates has been subjected to a truncation at known terminals. Single and double
truncations both for known and unknown numbers of eliminated observations are con-
sidered. The estimators are reduced to simple algebraic forms for easy application to practi-
cal problems. Asymptotic variances and covariances of the estimates are obtained from the
likelihood information matrices.

40. The Extrema of Certain Functionals of Distribution Functions. (Preliminary
Report.) WassiLy HoerrFpiNg, University of North Carolina.

Two types of problems are considered. Problem I. Let o(F) = f e / K(xy, o+, z,)

dF (z) --- dF(z,), where F is a cumulative distribution function (cdf) on the real line and

K a given function. Let D be the class of all cdf’s F (z) with f 2dF(r) =c¢;,i=1,---,7r,

where ¢;, -+, ¢, are given numbers. To determine suprep o(F). Problem II. Let

F = (F,---,F,) be a vector of n cdf’s on the real line, o(F) = f fK(:c; y v, Zn)

dF\(z1) --- dF,(z,), and let V be the class of vectors F with f 2 dF (@) = ci5,1 =1, ---,

r;j =1, -+, n, where the c;; are given. To determine supreve(F). For Problem II it is
found that if ¢(F) is continuous with respect to the metric d(F, @) = max; sup; | F;(z) —
G;(2) |, then suprev ¢(F) = suprev,4,0(F), where Vr411is the subelass of V where the com-
ponents of F are step functions with at most r + 1 steps. For Problem I a similar reduction
to discrete distributions is possible only under more restrictive assumptions. Preliminary
results for certain cases where K takes on the values 0 or 1 have been obtained. The results
permit a sharpening of inequalities of the Tchebycheft type when the chance variable in-
volved is assumed to be a sum of independent chance variables.

41. Probability Distributions Related to Random Transformations of a Finite
Set. (Preliminary Report.) HERMAN RuUBIN AND ROSEDITH SITGREAVES,
Stanford University.

Let X be a set of n elements, and let J be a set of transformations of X into X. For a

given z &£ X and T ¢ J, the smallest set of elements y € X closed under T and including z,
is called the structure in T containing z.
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Let m be the number of structures in T, ¢ be the number of elements in the structure
containing z, s be the number of successors of z (including z), and p the number of prede-
cessors of z (including x). We assume that elements are selected at random from X X 3,
each pair (z, T') having probability 1/nt of being chosen where ¢ is the number of transforma-
tionsin J. For each of these functions, exact probability distributions, together with asymp-
totic expressions for these probabilities as n becomes large, have been found when J is the
set of all transformations of X into X, and when J is restricted to transformations for which
an element = £ X has either zero or k immediate predecessors. Asymptotic expressions for
several of these probability distributions have been obtained when J is the set of trans-
formations for which an element = has no more than k¥ immediate predecessors.

42. Characterization of Tolerance Regions. D. A. S. Fraser, University of
Toronto.

f\ distribution-free or nonparametric tolerance region for a class of distributions
{Pz/0 £ @} over S%(QI) is defined as a mapping S(z1, --+ , ) fI‘OIIol 9 into U for which the
distribution of P;(S(X1, -+ , ,)) induced by the distribution P, for each z; is independ-

entof 0 e Q. If p,(x1, --- , z,) is the characteristic function of the set S(z1, --- , z,) thea
a necessary and sufficient condition that S(z; , --- , z.) be distribution-free is that there
be a sequence a1, az , +-- such that gepey (@1, -+, Tn) — a1, @apty (@1, *+° ) Tn) Prpaa

(€1, +++ 5 Tn) — a2, --+ are unbiased estimates of zero over X»+1, Ar¥2 ... |

43. A Nonparametric Model for the Linear Hypothesis. D. A. S. FRASER,
University of Toronto.

If the errors of a linear hypothesis design are assumed to have a spherically symmetric
joint distribution, then an orthogonal rotation putting the problem in canonical form per-
mits the use of standard methods: rank tests, most powerful tests for specific alternatives,
or tests based on substitution of order statistics from an independent normal sample.

44. On the Analysis of Diurnal Fluctuations in Physiological States and Per-
formance. (Preliminary Report.) E. CurisTiNE Kris, Illinois Institute
of Technology and University of Chicago.

In studies dealing with the quantitative relationship between physiological states and
work performed on various tasks over a perod of time, the problem of locating optimal pe-
riodsfor testing arises. Previous studies have utilized either the method of constant interval
or random time sampling. We know, however, that certain physiological states exhibit
periodic variations adapted to some cycle; for example, body-temperature fluctuations
coincide with the day-and-night as well as with the menstrual cycle. Now if variations in
work-output and performance on tests can be related to these known metabolic cycles, pre-
diction of low and high points on a person’s curve should be possible in terms of expected
changes which can be calculated from the beginning of an iterative series to later portions
of it. In this vein a time series analysis of diurnal variations in body-temperature, heart-
rate and a work-output test based on five measures per day was undertaken upon data
gathered on a female subject over a period of three months. For this a punch-card technique
was used. Significant auto- and cross correlations are indicated. In addition a two-way
analysis of variance showed the following: the within day variation is five times greater
than the day to day variation in all three variables, although both are significant at the
.01 level. The greater part of the variation is contributed by the consistently lower measures
obtained in the early morning and late night hours. Since the peak periods differ over the
middle of the day in the three variables, no one best testing time for all can be established.
It is however apparent that time-portions of established cycles can be used as indices of
known conditions of variation.



