ON LEHMANN’S TWO-SAMPLE TEST
By R. M. SunprUM

Division of Research Techniques, London School of Economics

Summary. This paper considers some properties of a two-sample test, sug-
gested by Lehmann [2], against general alternatives. Alternative expressions are
given for the test statistic; a general formula for the variance is derived and
evaluated for the null case; the expectation is obtained in certain nonnull cases;
and the exact distributions in the null case are tabulated for some small samples.

1. Introduction. A statistic for testing the null hypothesis that two inde-
pendent random samples come from the same population against general alter-
natives (subject only to continuity of distribution functions) was proposed by
Lehmann [2], based on the following lemma:

LemMa (4.1 of [2]). Let X, X'; Y, Y’ be independently drawn from populations
with continuous cumulatives F, G respectively, and let us denote for any random
variables U, U’; V, V' the event max (U, U’') < min (V, V) by U, U’ < V, V"
Then

p=P(X, X' <Y, Y)+ (Y,Y < X,X")

=s+2[@-ora(TE9),

and hence p attains its minimum value ¥4 if and only if F = G.

We can then base a test of the null hypothesis on a statistic which is a sample
estimate of this probability p and test in the usual manner whether this sample
estimate is significantly greater than 14. For example, given a sample of X’s and
Y’s, say of 2n observations each, we might choose #» nonoverlapping quadruples
at random each containing 2 X’s and 2 Y’s, and consider as our statistic the
observed relative frequency of quadruples in which both X’s are on the same
side of both Y’s. This procedure however appears to be wasting information.
Lehmann has therefore suggested that it is more reasonable to consider the rela-

tive frequency of such quadruples among all the <§'><72&> possible quadruples
that can be drawn from a sample of m X’s and n Y’s.

2. Alternative expressions for the test statistic. For practical purposes, Leh-
mann has given the following expression for the test statistic, which we denote
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L=1% <12n>“1 (g)—l{(m - 1) ﬁ;Rf —2(m +n—2) f‘_, iR

i=1

(1) —(m—2n+1)§Ri+(m+2n—3)mém+1)(2m+1)
) + im(m + 1)(m + n* — 3n + 1) — maln — 1)}1

([2], p. 174) where R;is the rank of the 7th ordered X-observation in the combined
sequence of the (m + n) members of the sample.

To see the structure of this statistic more clearly, write for the sample variance
of the ranks R;

e _ 1SN p _ py ol .
SR—-;-%;(R'L R) Where R _;'—zth

and for the sample “covariance” of 7 and R;

Then, ignoring constant additive and multiplicative terms from (1), we have

' 5 _m+mn+41) 2
@2 L =m(m—1)<R — ————2————) + m(m — 1) Sz — 2m(m + n — 2)C.
The test statistic has thus three components; the first term depending on the
average location of the X’s in the combined sequence, the second term depending
on the dispersion of the R;’s and the last term depending on whether the X’s are
evenly spaced out as they should tend to be under the null hypothesis.

Alternatively, let (yxy) denote the event that when one X and two Y’s are
drawn independently from the respective populations, the X-value lies between
the two Y-values; and let (ryz) denote the same event with X and Y inter-
changed. Then it follows quite simply that

3) p = 1 — P(yzy) — P(ayx).

Corresponding to the estimator L of p, we may consider as estimators of P(yzy)
and P(zyz) the relative frequencies L; and L, respectively of the specified events
among all possible triplets that can be drawn from the sample. In terms of ranks
we have

(4) u=22&aa—am+i—mmm@-n
(5) Lo = 225, (8: — 9)(m + i — 8;)/mn(m — 1)

where S; is the rank of the 7th ordered Y-observation in the combined sequence
of the (m 4+ n) members of the sample. It can then be shown that

(6) L=1-1L-—L

1 The last term is omitted in Lehmann’s formula.
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for any sample. This gives us an expression for the test statistic L which is
symmetrical in X and Y, and somewhat more convenient for practical use.
3. Expectation and variance of L. Let
D@, g k1) =1 X, X; <Y, Y00 Yy, Vi< X;,X; (@E#£5;k#1)
= 0 otherwise.
Then

@ B () L=ZETE 06k G<gk<d
consisting of (12n> (g’) terms. Therefore
(8) E(L) = E(DG,j; kD) =p=P (X, X' <Y, Y)+ (¥, <X, X").

In the null case, when F = G, we have p = 14 from the above lemma of Leh-
mann, or from the consideration that of the six possible arrangements in order
of magnitude of the members of a single quadruple, all equally probable under
the null hypothesis

TTYLTYT Y, Y YL YT Y YTrYY YT

in two arrangements only do both X’s lie on the same side of both ¥’s.
Further, from (7)

(9) (’;‘)2 <’2‘)2 L= {Z ZJ: > 3 DG, sk, z)}2 G<jk <l

2 2
consisting of (?) (g) terms which can be grouped in the following nine classes

of terms, involving the expectation terms shown against each class

. Number of terms.
Term Ezxpectation (72n) (g) times
DG, j; k, 1) P 1
D@, 5k, YD, m; k, 1) r 2(m — 2)
D(i;j;k) l)D(i7.77k7f) $ 2(%—2)
D@, j; k, )D(m, n; k, 1) t 3(m — 2)(m — 3)
D@, j; k, )D(, j; f, 9) u 3(n — 2)(n — 3)
DG, j; k, UD(, m; k, f) v 4(m — 2)(n — 2)
D@, j; k, DD(, m; f, g) b (m — 2)(n — 2)(n — 3)
+ D@, §; k, )D(m, n; f, g) P Yi(m — 2)(m — 3)(n — 2)(n — 3)

(%, j, m, n all different, k, I, f, g all dif-
ferent.)
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Collecting terms together and simplifying, we get

(1)(2) #@ = @ = #wn + & = et

+ (v + 6p° — 5a — F)mn + (3t + 359" — 2a)m’

+ Gu + 3sp" — 2b)n” + (2r — 35t + 10a + 6b — 8v — 155p")m
+ (2s — 5%u + 6a.4 10b — 8v — 135p")n

4+ (p + 3t + 3u + 160 + 9p° — 4r — 45 — 12a — 12b).

For evaluating the parameters occurring in the above expression, it is con-
venient to express them in terms of the probabilities of certain ordered arrange-
ments of a given number of X’s and Y’s drawn at random from the respective
populations. In the following, we extend the notation of Section 2 and denote
by expressions like, for example, (zyzy) the event that when two X’s and two
Y’s are drawn at random and arranged in order of magnitude, they have the
indicated arrangement.

P {(zzyy) + (yyzz)}
{(zzzyy) + (yyzaz)}
{(zzzzyy) + (yyazzz)} + L4P(zzyyaz)
{(zzzyyy) + (yyyzzz)} + 26P {(vayzyy) + (yyayzz)}
{(zz2zyyy) + (yyyzzaz)}
+ 18P {(zzzyzyy) + (yyayazz) + (zayyyzz)}
+ 6P {(vzyzzyy) + (yyazyzz) + (zzyyazy) + (yazyyzz)
+ (zzyyzyz) + (syayyzz)}
+ Y gP {(zyzyzzy) + (yzzyzyz) + (yrayaay) + (vyzyayz)}.
Similar formulae for s, » and b can be derived from those for r, ¢ and a by inter-
changing z and y.
These probabilities can be evaluated very simply in the null case from the
property that all permutations of the ordered sequence of 2’s and y’s are equally
probable. Then

p=2%¥% r=s=4; t=u=71s;

(10)

a2l

p
r
l
v
a

(11)

(12)

v=14%0; a

Il
S
Il
=

Substituting these values in (10), we find for the null case

4{m +n)im +n — 1) — 2}
45mn(m — 1)(n — 1)

(13) (L) =

and when m = n,
8©2n + 1)
45n*(n — 1)

The expectation of L can be obtained in certain nonnull cases by the use of

(3).

(14) (L) =
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(1) Rectangular distributions.

(a) Difference in location. Let X be uniformly distributed in the range 0 to 1,
and Y be uniformly distributed in the range A to 1 + A. Then it follows by
simple integration that .

3
P(yzy) = Ployz) = 34 — A + 2—‘3‘—, OsAas=1)
so that
(15) 4+ 28 — %

(b) Difference in scale. Let X be uniformly distributed in the range —3 to +1,
and Y be uniformly distributed in the range —A to A, where A > %.
Then we have

Pyzy) = L — 1/24A%, P(xyr) = 1/6A
so that
(16) p = (124° — 4A 4 1)/244°
(ii) Normal distributions.
(a) Difference in location. Let X and Y be normally distributed with the same

variance ¢° and means u; and p; respectively, where py, — py = 0. If z is an ob-
servation on X and ;, and y. are two observations on Y, and if we define

Um =, U = T — Y2

u; and u, are jointly distributed in the bivariate normal form with means —éo,
variances 2¢° and correlation coefficient . Then

0 5/\/_ 1
a7)

exp{ 2(1 e [fi — 20tit, + tﬁ]} dty diy with p = }

We also find the same value for P(zyz). These values have been tabulated for
various values of § in [3] and can be used to evaluate p.

(b) Diffexence in scale. Let X and Y be normally distributed with the same
mean, say 0, and variances o2 and o; ¢ o2 If u; and us are defined as in the pre-
vious case, they are now jointly distributed in the bivariate normal form with
means 0, variances o> + oo and correlation coefficient equal to o2/(c + o5.)
Therefore

P(yzy) = Pluaus < 0) = % — _lll_sin_l ox/ (o2 + ob).
By a similar argument, we find

P(zyz) = % — 1178“1 o)/ (o + o).
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Hence, we have

1 P | 0‘2 o =1 0'12,
(18) P = -—<8In —2——2+s1.n 30

2
™ oz + oy oz + oy

These methods of evaluating p can then be extended to cases where both loca-
tion and scale are different in rectangular and normal populations.

4. The distribution of L. In the null case, the exact distribution of L may be
computed for small samples by enumerating the whole set of equiprobable per-
mutations. As for the limiting case, L is an extension of a U-statistic defined by
Hoeffding [1] and by Lehmann’s Theorem 3.2 ([2], p. 167), v/n(L — E(L)) has
a limiting normal distribution under the condition m/n = constant. However
in the null case, the variance of L is of order n~2 and the limiting normal dis-
tribution of vVn(L — E(L)) is singular. ’

Some idea of the exact distribution in the null case may be obtained from the
following tables for small samples, which were obtained by complete enumera-
tion of the various possibilities.

m=mn=2 m=n=3
z 6P(L=z) PLZzx z 20P(OL =z) POL = z)
0 4 1.0000 1 8 1.0000
1 2 0.3333 3 8 0.6000
5 2 0.2000
9 2 0.1000

m = 2; n =3

z 10P(BL = z) P(3L = z)

0 4 1.0000

1 4 0.6000

3 2 0.2000

m = 3; n =4 m=mn=4

z 35P(18L = z) P(18L = xz) z T0P(36L = z) P(36L = x)
2 4 1.0000 6 16 1.0000
3 8 0.8857 9 24 0.7714
4 4 0.6571 12 12 0.4286
5 4 0.5429 15 2 0.2571
6 5 0.4286 18 8 0.2286
8 2 0.2857 21 4 0.1143
9 4 0.2286 27 2 0.0571
12 2 0.1143 36 2 0.0286
18 2 0.0571




TWO-SAMPLE TEST 145

m=4; n=3 m=mn=3

z 126P(60L = z) P(60L = z) z  252P(100L = z) P(100L = z)
10 4 1.0000 « 20 32 1.0000
11 8 0.9683 24 64 0.8730
12 12 0.9048 28 48 0.6190
13 12 0.8095 32 16 0.4286
14 4 0.7143 36 26 0.3651
15 12 0.6825 40 24 0.2619
16 9 0.5873 44 6 0.1667
17 4 0.5159 48 8 0.1429
18 12 0.4841 52 6 0.1111
20 3 0.3889 60 - 10 0.0873
21 8 0.3651 64 4 0.0476
22 8 0.3016 72 4 0.0317
24 2 0.2381 84 2 0.0159
25 2 0.2222 100 2 0.0079
26 2 0.2063

27 4 0.1905

30 4 0.1587

31 2 0.1270

33 2 0.1111

36 4 0.0952

39 2 0.0635

40 2 0.0476

48 2 0.0317

60 2 0.0159

I am much indebted to Mr. William Kruskal for many suggestions which
have greatly improved the form of this paper.
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