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We can now establish the desired result.

TueoreM 2. If X and Y are independent observations on the same unimodal
random variable, then X — Y 1s unimodal.

We prove the theorem in three parts.

Parr I. If X has as possible values only finitely many integers, the theorem is
an immediate consequence of the preceding one. The a’s are taken to be the
probabilities of the successive possible values of X. Since P(X — Y = k) = Sk
for k a positive integer, and since X — Y has a distribution symmetric about 0,
the theorem follows.

Parr II. Let the possible values of X now be numbers of the form rA, where
A > 0 and r is any integer. For simplicity we may assume 0 to be a mode. For
every positive integer s, define

, X if |[X| = s, v Yif|Y|=s

0if | X| > s, 0if |Y] > s.
That X, — Y. has a unimodal distribution is an immediate consequence of
Part I. But since P(X; — Y. % X — Y) > 0ass— o, weseethat X — Y
must also have a unimodal distribution.

Parr III. Now suppose X has a density f, with mode at m. For each positive
integer s, define

8

X = [X = m) Vsl/Vs,

where [«] denotes the greatest integer less than u. The cumulative distribution Gy
of X, — Y, cannot ever differ from G by more than a quantity which tends to
0 as s — . However, G is unimodal, by Part II. If G were not unimodal, we
could find e > 0, A > 0, and w — A > O such that G(u — A) + G(u + A) +
e < 2G(u), which would yield a contradiction.
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NOTE ON A THEOREM OF LIONEL WEISS!

By Lucien LeCam
University of California, Berkeley

1. Introduction. In a recent paper [1] it was pointed out by Lionel Weiss that
the class of sequential probability ratio tests is complete in a very strong sense.
The purpose of the present note is to show how this result can be derived from a
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slight extension of the usual theorems of decision theory, and to generalize this
result to the case where the number of alternatives is any finite number. Similar
results could also be obtained in more general cases.

2. Statement of the problem. Let{X,}, forn = 1,2, ---, be a sequence of
mutually independent random vectors. Assume that the distribution of these
vectors is given by a sequence of probability measures {m,,;},forn = 1,2, ---,
where j is an index taking one of the valuesj = 1, 2, -- -, k. Suppose that the
loss incurred by accepting j while 7 is true is a finite number W,; , strictly positive
if 7 # j and equal to zero if ¢ = j.

Let W be the class of matrices (W ;) satisfying these conditions. If 7 is the true
state of nature, we will assume that the cost of taking n observations is Ci(n),
nonnegative strictly increasing in n and such that Ci(n) tends to infinity as n
tends to infinity. Let @ be the class of all k-tuples of cest functions C = {C.(n)}
satisfying the preceding conditions. Let 6 = J x W x €, where J denotes the
set of integers J = {1, 2, ---, k}. For a particular decision function é and a
particular point 6 = {7, W, C} €6, let R(8, 6) denote the risk if § is used for the
state of nature 7, the loss function W, and the cost function C.

If D is any subset of the set D of all measurable decision procedures such that

(1) D contains all 8 ¢ D which minimize linear combinations of the form

K(u, 8) = ;#eK(ﬁ’eJ) ug >0; sZ;Me = 1;

(2) D is compact in the sense defined in [2];

Then it follows from a modification ([2] Theorem (5)) of a theorem of Wald
([3] Theorem 3.18)) that D is essentially complete. This means that whatever
8 & D, there exists & ¢ D such that R(6, ;) < R(6, &) for every 6 £ 6. Such an
essentially complete class is described below.

3. Description of the complete class. Let A be the set of probability distribu-
tions on J. Let Z, be the vector Z, = {X; --- X.} and let ¢(Z.» ) = {9i(Zx5)}
be the vector representing the a posteriori distribution of ¢ ¢ J given Z, , when
the a priori distribution of 7 & J is p. Let p be fixed. Consider the class D of all
decision functions defined in the following way. For each n = 0 choose k closed
convex sets {S,.;} withj = 1,2, --- | k, each contained in A, with disjoint in-
teriors and such that S, ; contains ¢ if ¢ = {¢:} with ¢; = 1.

The decision function & consists of the following rule: if ¢(Z, ) € Sa.;, then
stop and accept j; if ¢(Z.,) is not a member of U;S. ;, then take one more
observation; if ¢(Z, ,) is a limit point of one or many S,,;, randomize appropri-
ately.

It is clear that the preceding description uses characteristics not depending
explicitly on p, so that p may be fixed and, for instance, taken equal to the uni-
form distribution on J. For this class D the following theorem holds.

TuroreMm. There exists on D a topology 3 for which (1) R(8, 8) is lower semi-
cntinuous in & for each 0 £ © and (2) D is compact and D is a closed, compact, sub-
set of D.
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If 8 is any measurable decision funciion & & D, there exists a 8, € D such that
R(6, &) =< R(9, é1), whatever may be 0 & Z.

Proor. A topology 3 having the desired properties has been defined more
generally [2] by a process analogous to the one used by Wald [3] for the defini-
tion of regular convergence. A classical theorem (see [4], Vol. 1, p. 246; Vol. 2,
p. 21; or [5]) states that the space of closed subsets of a compact metric space is
compact for the usual definition of distance between sets. It then follows from
the relationship between compactness in this sense and compactness in the sense
of 3 (or of regular convergence in [3]) that D is compact. This proves the first
part of the theorem.

The second part is an immediate consequence of Theorem (5) in [2], provided
we can show that Bayes’ solutions belong to D. To show this, let P;;(8) be the
probability of accepting j if 7 is true and & is used, and let Qi(n, ) be the
probability of taking at least n observations if 4 is true and 4 is used. Let 6 =
{7, W, C}. Then

R:(W,C,8) = R(6,5) = Z Wi Pi;(8) + g Ci(n)[Qi(n, 8) — Qi(n + 1, &)].
Consequently,
2w R0, 0) = 2 piRAW, C,0)

for suitable values of W, C, and {p;}. Therefore the Bayes’ solutions for our prob-
lem have the same structure as the Bayes’ solutions for the now classical problem
in which W and C are fixed. A very slight modification of the argument given by
Arrow, Blackwell, and Girshick [6] yields the desired result. This completes the
proof of the theorem.

As a particular case, if & & D is such that lim,..Qi(n, 6) = 0 for i e J, the
preceding theorem implies that there exists 6, ¢ D satisfying:

P:i(8) = Pii(50), forevery 7,jeJ; ©# j;
Qi(n, &%) = Qi(n, 8,), for everyieJ; n = 0.

If, furthermore, the probabilities {r,,;} satisfy the condition imposed by Weiss
[1], the boundaries of the S,; have measure zero and randomization is unncessary.

4. Remarks.

(1) the technique of enlarging the space of strategies of nature, say ©, to a
product @ x S with S finite has been used systematically by Weiss [7], [8] and
Lindley [9]. A more general type of extension is implicitly contained in the as-
sumptions of [2]. The standard form of Bayes’ solutions given by Theorem 47
of [3], or its generalization, remains usually valid under such modifications of Q.

(2) The proofs of the optimum character of the sequential probability ratio
test given in [6] or [10] also make use of classes of Bayes’ solutions obtained by
varying W and C. However, in these proofs C remains proportional to a given
C, . This is not sufficient for the present purpose.
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THE DISTRIBUTION OF DISTANCE IN A HYPERSPHERE
By R. D. Lorp

The Royal Technical College, Glasgow

1. In a note with the above title, Hammersley [2] has used ad hoc methods
to deal with the distribution of the distance AB, when A and B are points uni-
formly distributed in a sphere of radius @ in s dimensions. I show here how this
question may be treated by general methods which I have developed elsewhere
[3] for random vectors with spherical distributions. A random vector r will be
said to have a spherical distribution if its probability function is a function of
|r| only.

I start with the observation that the problem is in fact one of the addition of
independent random vectors with spherical distributions. We require the dis-
tribution of r; — r, where r; and r, are random vectors with the same uniform
spherical distriution. But on account of the spherical symmetry, —r, has the
same distribution as rs , so that the problem is equivalent to finding the distribu-
tion of r; + 1. . It will be dealt with in this form in what follows.

2. The first method uses the polar form of the characteristic function. For any
spherical distribution in s dimensions let

P(r)dr = Prir < [r| < r + dr}.
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