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1. Summary. The initial distribution considered here is obtained from a
multivariate analogue of the Pearson Type III distribution, and the value of
the correlation is taken to be non-negative. There is obtained here the dis-
tribution of the maximum in samples of fixed size n from a random variable
which is the arithmetic mean of & such correlated random variables. This dis-
tribution is obtained for large values of n and for large values of k. The ap-
propriate expressions for the mode and scale parameters are also given.

2. Introduction. The mathematical model presented here is applicable when
the aforementioned samples of size 7 consist of independent observations from
a fixed population. The distribution function for this population, given by (4)
below, is obtained by regarding each of the & correlated random variables as
having the same fixed Pearson Type III distribution, and as having the same
correlation with each of the remaining variables. Such a model may be relevant,
for instance, in considering the tensile strength of a substance; in this case n
is roughly proportional to the number of flaws. Another possible field of applica-
tion is the investigation of maximum coincident loads in electrical engineering
problems; but in this case there are difficulties involved in determining the
appropriate value of n, and in assuming that the n observations of the sample
are independent. The above mathematical model could be extended to cover
such situations; however, the present article is confined to the theoretical prob-
lem stated in the summary.

3. Distribution of the arithmetic mean of correlated Pearson Type III vari-
ables. In many problems the primary distribution is skew and is well fitted by
a Pearson Type III distribution

—z/0 A—1
€'z
(1) pz;(x) = —m)-—, z > 0.

Before considering the problem concerning the maximum value of the mean,
it is first required to ascertain the distribution of (1/k)Y sZ:, where each Z;
has the probability density (1) and there is a constant correlation p between
every pair of Z’s. The assumption of constant correlation is indeed restrictive,
but it is most convenient to have a single parameter which measures the over-all
correlation of the population. It is possible to consider more general models by
the same methods described below, but the present article considers only the
case of constant correlation.
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The characteristic function of a multivariate analogue of (1) is obtained by a
device, similar to that used by Krishnamoorthy and Parthasarathy [1], as
follows. Consider the multivariate normal probability density

w0 = gy e (-57)

where X = (X1, X,, ---, Xi) and Q is a positive definite matrix. The charac-
teristic function of ¥ = (X1, X3, .-+, X}3) is

_ o
or(®) = m )

where T is the diagonal matrix

0 0 0 - &

Then [¢> ¥(£)]™ is the characteristic function of a natural multivariate analogue of
the x” distribution. Now

lpr@®)™ = |I — 2ic’TQ ™"
where I is the unit n X n matrix. Take 2m = A and 2¢° = 6 to obtain
) 6z(t) = | — 6TQ ™.

This is the characteristic function of Z = (Z., Z,, ---, Z:), where each Z;
has the probability density (1). Note that in (2) any positive definite covariance
matrix @ is permissible. The special case of interest here is

P p p -+ 1
The characteristic function of (1/k) > +Z; is then
1 — ito/k  —itp/k oo —ithp/k [

10 - —ithp/l 1 — it0/k -+ —itop/k
6)]

—itbp/k  —itp/k .-+ 1 — it9/k
(1 = Go/k) (1 — )71 — Gt8/k) (1 — p + k)™
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On referring to tables of Fourier integrals [2], one finds that the probability
density is

_ 1 Ea—1 —kx pkzx
(4) px) = -(-:-x exp [0—(1 — PS:I v (?\, k)\’B(l — 0 —p + p]c))

where
(5) ¢ = (/™ (L = )" (1 — p + pk)* T(NK)
and where 1F1(w, v, z) is the confluent hypergeometric function which is given by

ww+1) 2, ww+ Dw+2) 72
e+ 1) 20 @+ D +2) 3l

For p = 0 the density given by (4) reduces to that of an arithmetic mean of
Ik independent random variables, each of which has the density given by (1).

llpl(wy 'U, 2) = 1 +§'E; +

4. Asymptotic solution of a certain transcendental equation. Before obtaining
the large-sample distribution of the maximum value in samples from (4), it is
necessary to consider the solution of the equation

(6) z—Alogz+ B =C

where A, B, and C are constants and the value of C is large. If A < 0 there
is one solution but if 4 > 0 there are two solutions, as is easily seen by con-
sidering the intersection of y = z + B and y = A4 log # + C, and noting that
C — «. However the only solution required here is the one which increases
indefinitely as C increases indefinitely.

Letr(z) =z — Alogxz + B — C.Nowdr/de =1 — A/x > 0 for x large,
which shows that the function is monotonically increasing for x sufficiently
large. As a first approximation to a solution, try

(7) 21=C— B+ AlogC.
This makes

®) r(x) = —A log{l

_B—-A4logC| A B —Alog()
C - C

for C large. This approaches zero as C — «. It can, in fact, be shown that the
solution satisfies

9) @ =C— B+ Alog C+ o(1/C")
where ¢ is an arbitrarily small number sucfl that 0'< e < 1. This is easily seen’
by noting that for C large enough,

r(C — B+ Alog C — 1/C") <0,

r(C — B+ Alog C + 1/C7) > 0.

! The author is grateful to the referee for simplifying this proof.
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If B as well as C is permitted to increase indefinitely, the asymptotic solution
(7) remains valid, provided B/C — 0. This requirement is obvious on referring
to (8). However, the order of the approximation indicated in (9) may not be
valid for this case. A sufficient condition for the validity of (9) is B = O (log C).

b. Large sample distribution of the maximum for the case p > 0. The main
problem now is to find the distribution function of the maximum in samples of
size n from the population characterized by the density (4). In this section the
distribution will be obtained first for large values of n, then for large values of
k and n. The two cases p > 0 and p = 0 will also be treated separately.

Let F(z) = [op(t) dit where p(t) is the density (4). Then [F(x)]" is the dis-
tribution function of the maximum in samples of size n. The probability density
of the maximum is

(10) g9(x) = nF"'(z) p(x).
Apply the transformation
(11) Ya = n[l — F(z)].

Then, if X is the random variable with density (10), and Y, is the random
variable defined by (11), Y, has the probability density function

Pr,x) = 1 — z/n)"7,

and it will be noted that lim,,.py,(x) = €7, for £ > 0. In solving (11) for x
as a function of y, , it will be shown below that X = —a log Y, + 8 for large
values of n (and hence large values of x). Consequently, by a limit theorem of
Mann and Wald [3], the limiting distribution function of (X — B)/a is the
distribution function exp(—e™).

We now proceed to solve (11) for z. The equation may be written

12) Yn = g f £ exp [0(1—1“,,)] Fi(\, kN, ot) dt
where 8 = pk’/8(1 — p)(1 — p + pk), and ¢ is given by (5).

Since the distribution will be considered for large values of n it will suffice
to find the solution of (12) which is valid for large values of z (cf. Fisher and
Tippett [4], Cramér [5]). In evaluating the integral in (12), the following proper-
ties of the conflue t hypergeometric function will be required.

(13) 4 Fiw,v,z) =2 Fw+1, v+ 1, );
dz v
(14) Fi(w, v, ) = a—:g‘i‘(%o) [1 +0 (%):I, T — .

Formula (13) follows from the definition of the confluent hypergeometric func-
tion (cf. [6]). A more general asymptotic expression than (14) is established by
Barnes [7].
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Integrate (12) by parts and apply (13) to obtain cy./n = a1 + a2 + a3, where

o _ o k— p) o Xp[e(l kz )] Fi(\, K, 82),
_ (1 — ,,)lgkx - 1) f M2 exp [0(1 kt )] Fi(\, kN, 81) di,
_ (1 — p)

® k1 kt
= /; 7" exp [‘9—(1——)-] Fi 1, kN + 1, 88) dt.

Now define @ = (1 — p + pk)/k. In virtue of (14), and for p > 0, these
expressions reduce to

o = _ 6 I; p) ;():1) 1;‘(20)3) — I:l + O( )]

01 — p)akr — 1 o T(kN) ol
az = A 22 A=) e TO) ! [1+0< ):l

o = 00 ;p)a 2 T et [1 + O< )]

Bk(k—l)—l T ()‘)

As a result of the above simplification it is now possible to write (12) in the
form

gn,_, 6(1 = p) (1 ;(f_al))x*" I;((I;x)) —ela [1 " 0( >]

A further simplification is afforded by referring to the representation of ¢ in (5).

Thus
C1Yn - x)\—l —z/ o [1 + 0 (l)]
n ox/ |’
(15) Ake—1
o= a (1 _ p))\(k—l)-—l(l —p + pk )\(l—k)—lr()\)-
14+«

It now remains to solve (15) as a function of y, . If the terms involving O(1/éx)
are neglected, and we take logarithms of the remaining terms, we obtain

(16) z — a(A — 1) log z + a(log y. + log e1) = alog n.
Define
A7) A =a( — 1), B =alogy. +loge), C = alogn.
If k£ is small and » is large, then the solution (9) is applicable. Hence
(18) r = —alog y, + B + o (1/[a log n]"™),

= a [log (n/er) + A\ — 1) log (a log n)].

Thus, the limiting distribution of (X — 8)/ais exp (—e¢™*), and « and 8 re-
present respectively the scale parameter and the mode for large values of n.
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If k as well as n is allowed to increase indefinitely, then in order to apply the
results of Section 4, the expressions for B and C in (17) must be altered. In fact,
equation (16) may be written as

z — aA — 1) log z + «log yn
+ alog (71 — P71 = p + k) 847V TV}
= alog [ *{k + 801 — p + pk)}] + a log n.

Now if we define

B = alog y» + alog {§*7(1 — )71 — p + pk)FTO)},

C = alogn + alog [**{k + 86(1 — p + pk)}],
it follows, since & is of the order of magnitude of k, that

B & a\k log k, C & a\klog.k 4+ «log n.

Hence, if k log k¥ = o(log n), it follows that limy.,nB/C = 0, in which case
(9) is applicable. This gives * = —a log y» + B, with a = 0(1 — p + pk)/k
as in (16) and

(19) B = alog (n/c)) + a(x — 1) log {« log [n(kN)™(k + 60(1 — p + pk)]}.

6. Large sample distribution of the maximum for the case p = 0. The dis-
tribution of the maximum for the case p = 0 must be considered separately be-
cause & now reduces to zero, and the approximations employed in the evaluation
of a1 , s, and a3 are no longer valid for large values of z. With p = 0 the density
in (4) becomes

(x) e k)\—-l —ka:lo’ z > 0

where now ¢ = (8/k)*T'(\k). The same method as that described above is
applied to

0
n —1 —kt/0
[ g
C Jz

For large values of z this yields

cya/n = (0/k)e ™’ 1 + 0(1/x)).

As before, neglect the terms involving 0(1/z) and take logarithms of the re-
maining terms to obtain

(20) z — a(kr — 1) log z + oflog y» + log { k)‘”I‘(}\k)}] alogn
where now a = 6/k. If k is small and n is large the solution becomes again
z = —alog y, + B, where now

21 g = + a(kn — 1) log (« log n).

a IOgM"—‘I‘(%
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If k& as well as n is allowed to increase indefinitely, then, as before, the ex-
pressions for B and C must be altered to apply the results of Section 4. Rewrite
equation (20) as

z — a(kh — 1) logz + alog ¥, = alogn — a log [ T(\K)].
If we define

n
B=C¢10gyn, C=logm,

then liMyuw.nvw B/C = 0 if & 'T(\k) = o(n). We obtain, as before,
' z = —alogy. + 6,

where now

n n
(22) B =« logm + a(k)\ - 1) log{a ].Og m}.

6. Conclusion. A few remarks are in order regarding the results obtained in
this paper. Firstly, the cases in which both k and n are allowed to increase in-
definitely require that k should not increase too rapidly relative to n, if the
results obtained are to remain valid. Further, the order of approximation for
these cases need not be the same as for the cases in which only = is allowed
to increase indefinitely.

Secondly, some extensions of the results obtained here require further re-
search. For instance, as has already been stated, the correlation need not be
the same for all pairs of Z/s. Further, the initial distribution from which samples
of size n are taken need not be fixed but might change during the course of the
sampling. This might further be complicated by the fact that the observations
in the sample could be correlated.
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