ON THE APPROXIMATION OF A DISTRIBUTION
FUNCTION BY AN EMPIRIC DISTRIBUTION'

By JErROME BLACKMAN

Syracuse University

1. Summary. Let z,, - -, z, be independent chance variables with the
common distribution function F(z) and the empiric distribution function F*(z).
Let a, be the value of a which minimizes (1) below. In this paper the asymp-
totic distribution of v/n a, is obtained, subject to certain restrictions on F ().

2. Introduction. Let x; , 2, - -+ , . be n independent random variables hav-
ing the common distribution F(x). Suppose b,, by, ---, b, are the n random
variables in ascending order of values and F*(x) is the empiric distribution
function, continuous on the right, with jumps of magnitude 1/n at the points
b1, b2, -+, b,. Define the function H(a) by ’

) H@ = [ : Fe — @) — F*@)[' dF(x — a).

Thus H(a) is non-negative for all @ and since it is a Borel-measurable function
of the random variables {x,}, it is also a random variable. The value of a which
minimizes H(a) will also be a random variable. If the minimizing value of a
is @, , we shall be concerned with the limiting distribution of a, as n — «. Our
main result is the following.

TuroREM 2. If the first three derivatives of F(x) are continuous and bounded,
then

1 nxlv
lim P(v/na, < z) = ﬁ‘[ ¢ dy,
where

2
dy,

1
2
y =
0

b= [.: IF’(”C)I 2 dF (z), F—l(t) = sgp {z | F(z) = t}.

/01’ F'(F_l(t)) dt — foy g; 4[)@ tFI(F—l(t)) di

We shall henceforth assume the conditions of Theorem 2 are satisfied. In
what follows repeated use will be made of an important result due to Kolmo-
goroff [2].

TurorEM. Suppose that F(x) is continuous, and define the random variable D,
by D, = Lu.b.; |F(z) — F*(x)|.
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APPROXIMATION OF A DISTRIBUTION FUNCTION 257

Then for every fized z = 0, asn — », P(D,
18 the cumulative distribution function which for z
equivalent relations

Le) =1-2 5?{ (—1)" exp(—2"7") = Vr f:exp {_ @ = l)flz}

2 — L(z), where L(z)

<
> 0 s given by either of the

z =1 822

For z £ 0 we have, of course, L(z) = 0.

The Kolmogoroff theorem implies that F*(z) — F(x) uniformly in prob-
ability and that therefore a, — 0 in probability. Expanding the right side of
(1),

H = [ C P — @) — F*@)} dF(z — a)

= fw F(z —a)dF(x —a) — 2 f_m F(x — a) F*(z) dF(z — a)
@) - D
+ [ F¥(z) dF(z — a)

=14 [w F*(z — a) dF*(z) — [m F(z — a) dF*(z).
Therefore
(3) H'(a) = {—2 [w Flx — a) F'(x — a) dF* + .[w F(xz — a) dF*z(x)}.

Each @, must satisfy the equation H'(a) = 0. It will be seen below that all
solutions of H'(a) = 0 which converge in probability to zero as n — o« will
have the same limiting distribution. Putting H(a,) = 0 we obtain

207" 20 F(bi — an)F'(b; — an) = 07" 25 (& — (6 — 1)’} F'(bs — an),
where summation is from 1 to n, or
@ 2 {2nF(b; — an) — 20 + 1}F'(b; — as) = O.

Since I'(x) has a continuous third derivative,

® (F(b: — an) = F(bs) — F'(bs)an + 3F"(b; — 6a,) o, <01
F'(b; — a) = F'(b)) — F"(b)an + 3F""(b: — Ya,)an, 0=y =1
Placing (5) in (4) and dividing by »’ I:esults in
0= {—20"2 Fb)F'(b;) — n 2 (—2i + 1)F'(by)}
(6) + {207 F (0)F” (by) + 207 2 F"(b:) + n720(—2: + 1)F"(bi)}an

-+ Tn(a/n)ai.
where P{|T(a,)| = C} = 1 — ¢ for some C and for n > N(e) by the assump-



258 JEROME BLACKMAN

tion that the derivatives are bounded and that a, — 0 in probability. Equa-
tion (6) is of the form

(7) An + Bnan + Tn(an)azn = O-
Let a, be the solution of
8) A. + Baa, = 0.

Subtracting (8) from (7) gives that, with probability =1 — € for n > N(e),

’ To(as)| a% Ca’
(9) Qn — Qpn| = i = .
| | B.] .|

It will be shown below that B, — u # 0 in probability, so that
lan — a%| / |as| = 0 in probability.
It is therefore necessary only to find the limiting distribution of a where

, -4, w2 [F(b:) —i/n + 1/2n] F'(b:)

a/n= =

Bu a7 3R — i/n + 1/20] F"(b;) +n1 > F2(b,)
n 20 [F(b) — i/n]F'(b) + n~* 2 F'(b)
w2 IFM) — i/n] V(b)) + 07 > FP(b) + dn " 3 F(bs)
3. Lemmas. Three lemmas are useful in the proof of the main result, Theo-

rem 2.
LemMma 1. For every ¢ > 0

lim P( [0~ F'(b)[F(b:) — i/n] — 0™ X F/(F7'(i/n))[F(bs) — i/n]|l > ¢) = 0.

n—oo

(10)

Proor. Since
w03 |F' (b)) — F'(F'(/n))|  |F(bs) — i/n] }
= Lub.; [F'(b) — F'(F7'(i/n))| Lu.b.; |[F(b;) — i/n| n'?,
we need, by the Kolmogoroff theorem, show only that
Lu.b., |F'(b;) — F'(F'(i/n))| — 0 in probability.

Suppose ¢ > 0 and 9 > 0 given. Let A be the linear set such that F’(z) >
n/4 for x ¢ A and let A’ be the complement of 4. Let D = (b; , F'(¢/n)) be the
open interval with end points b; and F~'(i/n), and M = Lu.b., |[F” (z)|. By the
Kolmogoroff Theorem there is an N such that forn > N

(11) PQu.b.; |F(b,) — i/n| = n*/16M) < e

F~1({[n)
j ') de
b

i

s
= F'(z) d:cl = 1ygmeas[DNA].

Lub. | F(b:) — i/n| =

DnA
On the set of sample points for which
Lub.; |F(b) — i/n| < 9°/16M
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we therefore have
meas [D N A] < n/4M forall 7 £ n.

Tither meas (D) < n/4M, in which case |[F'(b;) — F'(F'(i/n))| £ (n/4M)M <
7, or there are points v; and §; for all ¢ < n such that v, , §; ¢ A7,

bvi — bl < a/4M,  |8: — F'(i/n)] < n/4M.
Therefore, in the second case
|F'(b:) — F'(F\(i/n))|
S|P — F'(ya)l + |F'(ys) — F'(3)| + |[F'(3:) — F/(F'(i/n))|
S M |b; — vi| + 2n/4 + M |5, — F'(i/n)|
S/4+0/2+0/4 =1

Therefore this inequality is true in any case except for the set of equations
(11). Combining our results we have for alln > N

P(ub.; |F'(b;) — F'(F'@/n))| > 1) < ¢

which proves the lemma.
LemMma 2. Let Ho(zx) = F/(F (z)) for0 £ z < 1 and

(12) H,(z) = % f H,@) di.
0
Then both

(a) fol 2 ' Hu(z) do < o,

(b) 2 (=)' Hy(x) = —1—,f t Ho(t) dt, uniformly in .
k=1 x* Jo

Proor. Let M = lLu.b., |[F”(x)|. Consider the curve y = F'(z) at the point
(z, F'(x)). If from this point a line of slope M is drawn to the z-axis, the line
must be completely on or below the curve y = F’'(z) in (— e, z), by the mean-
value theorem. Since F(x) = [Z, F'(x) dx, it follows that
(13) F(x) = LF"(z)/M.

This implies that lim,.o. Ho(x) = O and by an obvious induction that
lim; o4 Ho(x) = 0. ,
Differentiating (12) gives Hy(z) = —z "H.(z) + z 'H,1(z), or

(14) [l 7 H,(z) do = /oy v H,1(z) de — H,(y).

Therefore the truth of (a) for n — 1 implies it for n and we need show
[y & Ho(z) dx = [%w (F'(z)/F(x)) dF < . Define the set E by

E = {z|F'@2)/F(x) > F"@)}.
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If £’ is the complementary set,
1
w [ rere)ar s [ Pt s [ =
E’' E' 0

The set E consists of a union of open intervals, by the continuity of F and F’.
Let [a, b] be one such interval. On [a, b]

F'(z = F" (), fb F'(z)/F"(z) dz = fbda:

or 2[F"*(b) — F'(a)] = b — a. This implies that the measure of E is <2.
Using the inequality (13)

(16) [E (F'(2)/F () dF = f (F" (@) /F(z)) dz < 2M f, dv < 40,

This completes the proof of (a). Turning to (b) we note that by (14)
[Yx7'H,(x) dz is a decreasing positive function of n for each y and therefore
has a limit as n — . Taking this limit in (14) shows that lim, ., Ha.(y) = 0

for all y. Writing

1 " !
[« H@ de = [ 7 H@) do + f 2 Hy(x) do
Jo Jo n

n 1
< fo 2 Ho(z) dz + fn 2 'H,(z) dzx

we see that # can be chosen so as to make the first of these arbitrarily small,
and that the second then goes to zero by bounded convergence. Therefore
lim,w [, 2" Ha(z) dz = 0. From (14) we obtain

> rHi(x) = fo ’ ' Ho(t) dt — f ’ CYHL() dt.

Since |fet "Ha(t) dt| <[5t 'Ha(t) dt — 0 it follows that D 3 Hi(z) converges
uniformly to [Zt " Ho(t) dt. Let J.(z) = 21 (—1)*"'Hi(z). Then J.(z) — J(z)
uniformly as n — «, and

Ju = 20(=1)"Hy()
=2 [Hy— Hy— Hi+ Hy -+ (=1)""Hoy + (—1)"H,]
=2 'Hy — 267y + xfl(—l)“H".
The right side converges uniformly for ¢ < # < 1 so that for0 < z £ 1,
J' 4+ 227 = 3 'H(z), 2’0 + 2zJ = zHy(x), d/dx(z’J) = zHi(z),

or J(z) = x* [ tHo(t) dt, proving (b) and thus Lemma 2.
LemMa 3. For every e > Oand s = 0,1,2, ---
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lim P[ l\%ﬁ lZ H, <%> {F(b,-) - i} — VA Z /“ﬂ H.@) do

n-—»00

Fb,) — Fb;+1D <+ 1 ~ ~
{ F(biy) n + }+\/_El 8“( ){F(b) n} > e]——O.

Proor. In what follows we take F(b,+1) = 1 whenever it occurs. Letting
Gv = D51 H,(4/n) and using the Abel transformation,

S -3

n—1

= Jn Gl F6) = Fowd + 5+ 6ulFG) ~ 1

n—1 iln

__\/_Zf H(x)dx{F(b)—F(bwl)'i‘ }
+ Vn nZI_ZI {7; G; — fo H.(z) dx} {F(bi) — F(biy) + l}
_ nol Fb;) — Fbu) 1+ 1
\/‘Zf H.() do { R +ﬁ}
n—1 iln
+ Vn Z {_ G; — ‘l H(z) dx} {F(bi) — F(bsy1) + %}

+\fZ_1f H()d{FM(b'_”“)}{ 11-1}

F(bia)
(16) + \f {F(b,) — 1}
2 F(b) — Fby) i+ 1
- \/;.;fo H,() dx{ o +ﬁ}

RN {hl- - [ e dx} {F(b.-) — Flou) + 1}
rvas [ @ de {M)}{ it 1}
1 0 n

e,
1 n 1+ 1
{Fan;) - 1} {F i) = — }

n i/n
+va2 [ H,(z) dz {F(b) — F(biy)}
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_ \/ﬁfole(x) dz {F(b) — 1}{1 _nt 1}

n

- Vi [ B dx{(m,,) ~prt! +%} D= 76 — 116,

We first must show that 4., 44, 4s, As, and Ay converge to zero in proba-
bility. That this is so for As, A¢, and Ay is a simple consequence of the fact
that since F(b,) represents the maximum of n uniformly distributed inde-
pendent random variables, the distribution function of 1 — F(b,)is 1 — 1—-=2)"
for 0 £ z = 1, from which it follows that 71 — F(b,)] converges to zero in
probability for g > 0. Of course, n ‘G, is bounded.

Using the Abel transformation

4= ni:f {f(i+l)/n H@) do — ;];Hs (z + 1>}

iln n
i+l 1
{re) - Pow) + 121 -4
-1 (n—1)/n n—1
a7 tvaflon- [T nw i) {F(bl) - ren) + 221
4o < n Y lub. max |Hix) — H. (’ + 1) Lub. IF(b,-) - ii
n < i n i n

<:|:,<_1—+1
= n

+ O(W{ |1 — F(ba)| + }L + F(bl)}.

The last term clearly goes to zero in probability since n'"F(b;) converges to
zero in probability for > 0. (The distribution function of Fby)is1 — (1 — 2)"
for 0 £ z < 1.) By the Kolmogoroff theorem, given ¢ > 0, we may choose A
‘and N; such that forn > N,

PAub.; |[F(b) — i/n] vV > A) < e

Since H,(z) is uniformly continuous, we may choose N3 so that for n > N,

lub. max |[H.(z) — H, (Z + 1>l < &,
it A m /A

For n > max (N1, Na) the probability is less than e that the first term on the
right of (17) exceeds e.

|[4s] £ V/nlub.

.12 n i/n
Fb) — % Z{ [ @ dx}{ﬂbfu) - FO)

IIA

Vn lub. ‘F(ba — %\ max Hi(z) z F&}%_T—:_;P“(H
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.12 1
< ¢ v/nlub. ‘F(b, _t do
i n| Jrapy T
.12
= C v/nlub. |F(b;) — % In F(by)|.
By the usual argument | 44| — 0 in probability. We now return to 4; .
i/n .
n 141
A = S [ @ dx{F(bm) ~tt }
iln .
H.(x) dx{F(b..) — Fbi) + l} { i+ 1}
T o n n
i Jreo -3}
n—1 (i+1)/n - 1
(18) +\/—Zz+1 » H(x)dx{F(b,H)— " }

1 n 1/n 1
+ Van+1 fo H.(z) dx';z + \—/‘;nfo H.(z) dx{F(b,) — 7—1}

n n iln 1
+ Vn 21: T fo H,(z) dx{F(bi) — F(biyr) + 1—'} {

i+ 1
n

To complete the proof of Lemma 3 it is sufficient to show that |B;f — 0 in
probability for ¢ = 2, 3, 4, 5. The simplest arguments suffice for ¢ = 2, 3, 4.
In order to treat Bs note the identity

I
»-Mo\
o]

22 (@i — @ip)aipn = af — Ggq1 — 2, (@i — i)’
where sums are from 1 to K. If we set a; = F(b;) — ¢/n, we obtain
220 {F(b:) — F(bip) + 1/n}  (F(bs) — i/n}]
< |F(by) — 1/nf + |[F(bxr) — (K 4+ 1)/nl* + 2 {(F(bs) — F(bina) + 1/n}’
< 2 Lub.; |F(b) — i/n> + X {F(b:) — F(bip)}® + 3/n.

From the joint distribution of the quantities {F(b;) — F(bi11)} given in [3] it
is simple to show that

P{F(biy1) — F(b;) = h} = [1 — A]", i=12 -, n
Therefore
P { lub. [F(biy)) — F(by)| < h} =1 — P(U} [F(bir)) — F(b)| =
1<i<n

v

1—‘12,[1—h]" - 1 —afl — "
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From this it follows that if —1 < o < 0
lim Pf{ Lub. [F(biy) — F(b))|] < n®} =

n—o0 1<ig

so that, choosing « = —7/8, there exists an N such that, for n > N, with
probability greater than 1 — e

|22 {F(b:) — F(biss) + 1/n}  (F(biys) — i/n}]
< lub.; [F(b)) — i/n)* + n~¥* + 3/2n.
Now applying the Abel transformation to Bs,

.12
Bsl £ v/ [l.ui.b. ) — & L+ 71%]
=l on Y n (DI
(19) .2131,__+10 TFTh _H,(x)dx
if 1 3 n 1
+ '\/_7; l:luzb. F(b;) — - -+ ) + %]n i j; H,(2) de.

The second term on the right clearly converges to zero in probability. We
observe that

z foz H,(@) dt = foz FUH(8) — Hoa()] dt

and that by Lemma 2 the right side converges absolutely. Therefore

n—l (i+1)/n
‘— f H.(z) dz — ;—_?_—Ifo ’ H,(x) dx

n—1

>

iln 1 (1+1)/"
[ - faae - [ L, - Bl e

(i4+1)/n 1
f [H -_— Hs+1] dx
i/n

< [ Lum) + i @ = .

1

Now

n—1

2

1

n iln (i+1)/n
f H.dx — f H, do
(]

1+ 1

+

nZ—-l (i+1)/n (i42)/n .
< H, / H,
=2 _/0‘ der — + 5 dx

—1 (i+1)/n n—1 (i42)/n

n
. - H,
; 14+ 1Jia T 14+ 2 fm—l)/n dz
n—1
Cl+2maxH(x)E =Ci+ C:lnmn.
0<z<1

With this estimate the first term in (19) converges to zero in probability and
Lemma 3 is completely proved.
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4. Proof of main result. In statistics the random variable F(b.y;) — F(b.)
are known as coverages and the random variables

{[F(biy) — FO)/F(bira)}, 4 =20,1,2, -+, m,

are independent (as usual F(by) = 0 and F(b,41) = 1) with density 7(1 — u)"" du.
From this one calculates easily that the independent random variables
_JF(b:) — Fbip)s4+1 | 1
x”“{ F(biy) o ta

have mean 0, variance 7 °[¢/(2 + %)}, and E( |X:.*) < 16n7°. In what follows
it will be necessary to apply the Central Limit Theorem to sums of the form
Sn = D.r1a;.Xin. Although the Liapunoff version of the Central Limit
Theorem is usually stated for sums of the form (D o)™ ®>" Y., in this slightly
more general form the proof [1] goes through with no change at all. It will be
easy to show that the Liapunoff condition,

S el B(Xa®)
20 l ' o=
(20) me 3 @i BOCA

holds. Let

——1— n . i _ & riin
Vew = Jn S HG [FO0) = £, Wew=va % [T 00) i X,

n ~t/n in dx z

V,, == \/',_7, Z{] Ho(.l‘) dz — f —Tf tHo(t) dt} X,',n.
1=1 0 0 T 0

Theorem 1 shows that we can replace n"*) { F'(b,)[F(b:) — %/n] by V.

which is the sum of independent random variables.

TureoreM 1. For every ¢ > 0

lim P[ > e] =0,

n—00

w20 F'(0)IF(b) — i/n) — Va
1
Proor. By Lemma 1 it is sufficient to show that

(21) lim P[|Yon — Vi > ¢ = 0.

This probability is
P[!Yo.n - n)l > 6]

= P[ Ig (—l)k{Yk.n - Wk.n ;*‘ Yk+1,n} +I§ (—'l)lec.n - Vn

(22) + (__ 1)M+1 YM+1,1.

]

< 5/3] + Pl|Yasrn| > /31,

M
< D PlYim — Win + Yigia > ¢/3M]

k=0
M
+ P[ Eo (“l)ka,n - Vn
k=
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The sum in the second term can be evaluated as

M
2 (=1 Win — V.
k=0

_ WZ{ /0 “"g (—1)* Hy(x) do — fo " H(e) dz + fo H"%jf fo " H () dt} X

_ \/,;{g fo " [g} (=1)* Hi(2) do + a% fo ") dt] da;} X,

By Lemma 2 the integrals appearing in the sum may be made uniformly less
than 1/&/27 for all M = M, . The variance of > (=1)*Win. — V. is then
<é/27 for all n.
By the Tchebycheff inequality
> i] < % allm,all M = M;y;

(23) P [ 3

(24) |Y ses1n| £ V/nlub. |F(b) — i/n| max, Hyu(z).

Since limi.e Hi(x) = 0 uniformly, we can, by the Kolmogoroff theorem, find
an M, and N, such that for M = Myand n > N,

(25) P(|Y s11,0] > €/3) < ¢/3.
Now fix an M, say M = max (M,, M,). Lemma 3 states that
lim P[lYkm - Wk,ﬂ + Yk+1,»| > 5] =0

n—+00

for all k and all ¢ > 0. Therefore for N > N,
(26) ZP”Yk,n — Win + Yiq1a] > ¢/3M] < ¢/3.

Combining (22), (23), (25), and (26) we obtain P[|Y,, — V.| > ¢ £ e for all
n > max (N1, N»), which proves Theorem 1.

It is now easy to prove Theorem 2, our main result, as stated at the outset.
The variance of V,, which is the sum of independent random variables, is
asymptotically for large n

}2)::1[ fo " Ho(?) dt — fo .-/,.g; /:tHo(t) d‘T
——)‘/o.l ]:Ho(t) dt — ]‘)‘”(gj‘;tho(t) dt

It is easily verified that the Liapunoff condition (20) is satisfied, so that by the
Central Limit Theorem

M
Z (—l)k ch,n - Vn
k=0

2
dy = .

1 zlv
lim P(V, < z) = ﬁ.—f e,

n-—s00
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By Theorem 1,
N mP(=Xre)|[re) -] <a) == [T
n—o0 '\/'ﬁ 1 * i n '\/27[‘ — o0 )
Returning to (10),

. 1 ul . 1 n 1 n . ,
lim o Zl: F'(b;) = lim 58 E F"(b) = 0; = Z [F(bi) _ %:l F"'(b) — 0

S

n—oo n—oo & 1 1
in probability.

By the weak law of large numbers, n~* Y 7F’ (b;) converges in probability to
e F'z(x) dF(z) = u. Combining these with (9), (10), and (27) gives our final
result,

(ulv)z

_ 1
lim P(Vna. < z) = E-[ e dt,

The constants » and p cannot be zero. This is obvious for u. If » were zero, it
would be necessary to have [§ Ho(t) dt = [§27"dx 5 tHo(t) dt. Differentiating
this twice leads to the equation Ho(t) = c/¢, which is impossible.
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