URN MODELS OF CORRELATION AND A COMPARISON WITH THE
MULTIVARIATE NORMAL INTEGRAL

- By J. A. McFADDEN

U. 8. Naval Ordnance Laboratory

Summary. In a special case of Polya’s urn scheme, the probability that the
first n draws are all of the same color is interpreted as a function of the (single)
correlation coefficient. A more general urn model is introduced in which the
correlation between pairs of results may differ from pair to pair, and again the
probability of consecutive colors is considered. This result is compared with the
probability of coincidence in sign under the multivariate normal distribution.
The comparison suggests a new approximation for the probability in the multi-
variate normal case. This approximation appears to be useful only in the Polya
case, where the correlations are all equal.

1. Introduction. Consider n correlated random variables z;, 2, -+, Zn . If
each variable z; may assume only the values +1 and —1 and either result is
equally probable (a priori), then, in terms of the correlation coefficients between
pairs (z;, r;), what is the probability that all n variables are positive? An ex-
ample of such a problem is provided by Polya’s urn scheme and by a generaliza-
tion given in Section 3.

A more difficult problem is the following: Consider n correlated continuous
variables &, &, - - -, £, , with each having a mean value of zero and symmetry
about the mean. If these variables obey a given distribution law (e.g., the
multivariate normal distribution), what is the probability that all n variables
are simultaneously positive? This second problem may be reduced, in principle,
to the first by associating the signs of the &; with the signs of the z; ; that is,

1’ Ei = 0)
¢Y) z; = i=1,2--,n
_1) £ < 0:

The next two sections are concerned with examples of the first problem
mentioned above.

2. Polya’s urn scheme. Consider the symmetric case of Polya’s urn scheme
(11, [2], 3]), in which an urn contains initially a black balls and a red balls. Suc-
cessive drawings are performed, with replacement, and with the further provision
that A extra balls are added after each drawing, all of the same color as the ball
most recently drawn. A may be negative, but it must obey the inequality,

2) a+ n—1)A =0,

where n is the total number of draws, in order that neither color may be
overdrawn.
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URN MODELS OF CORRELATION 479
The probablhty of drawing a black ball in the first trial is, of course, a/2a = 3.
The probabﬂlty of drawing two black balls in the first two trials is a(a + A) /
2a(2a + A). The probability of drawing n black balls in the first » trials is

®3) P, = (a/A)a/ (2a/8)n,

where (a)n = a(a + 1)(a +2) -+ (¢ +n — 1), and (a)y = 1. :

Let z; = +1 if the 7th draw'is black, and let z; = —1 if the ¢th draw is red.
Then Polya has shown ([3], p. 140) that the correlation coefficient between z;
and z; (7 = j) is

(4) ‘ r=A/@Qa+ A).

The result is the same for all possible palrs (7, 7). As A varies from —a / (n - 1)
to «, r varies from —1 / (2n — 3) to 1.

Equatlon (4) may be verified easily for the case : = 1, j= 2 Smce the mean
values E(z;) are all zero and the variances E(z}) are all unity, the correlation
coefficient between z; and z; is simply the expectation E(z;r;). For the first
two draws; there are four possibilities: (41, +1), (+1, —1), (=1, +1), and
(~1, —1). Then

ala + 4A) _9 Iy __ A
2a(2a + A) 2a(2a + A)  2a + A’

which agrees with (4). The same procedure may be carried out for other pairs

@, J)-
a/A may now be eliminated from (3) by equation (4); then, in terms of the

correlation alone, the probability that all the z; are equal is given by

(5) Po= (1 =r]/20)0/ ({1 = 11/7a.

At this point the integers @ and A may be forgotten. Let r assume any value
in the range from —1 / (2n — 3) to 1—not only the fractional values given by

equation (4). ,
P, may be expressed in terms of the beta function, as follows:

Bn+[1—=r7rl/2r,1 —7]/2r
B[l —r]/2r,1 —7)/2r) °’

or, equivalently, as a terminating hypergeometric series:
P, =27""F(—n/2,[1 — n] /2 1/21" 1)
@ _on nh—1)  aln— 1@ — 2@ —3) 2 1
- M g o e BB

[The identity between (6) and (7) follows from the theorem on F(a, b; c; l)——-see
[4], p. 282—and from the multiplication theorem for gamma functions, [4],
p. 240. See also [4], p. 262, problem 37.]

Note that if ¥ — 0, the probability (7) approaches 27", which is the usual
result for a sequence of Bernoulli trials when the individual probabilities are %.

r=E@z) =2

(6) Pn =
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If r — 1, the expression in braces in (7) becomes the binomial series for
3[(14+1)"+ (1 — 1)" and therefore P, — %. This is the case of perfect coherence,
which leaves only two possibilities: all black or all red.

3. A generalized urn scheme. It was noted in Section 2 that the Polya scheme
yields a correlation matrix in which all elements except those on the main diagonal
have the value (4). The following model exhibits a general correlation matrix.

As before, the urn contains initially a black balls and a red balls. In contrast
with the single addition parameter A, this scheme makes use of a matriz of ele-
ments A;; . One ball is drawn and replaced, and A;; balls are added of the color
drawn. Again one ball is drawn and replaced; then Aj; are added of the first
color drawn and A,; of the second color drawn. After the (¢ — 1)th draw (and
replacement), Ay, are added of the first color drawn, Ay of the second, etc.,
and A;_y,; of the (¢ — 1)th color drawn.

" To simplify the algebra, let
k
®) Dmk=.Z_HAm-, m=12 -,k —1;
thus, immediately preceding the kth draw, D is the total number of balls which
have been added up to that time because of the mth draw. Some of the A’s may
be negative, but to prevent overdrawing they must obey the inequality,

k—1
©) a+ 2, Dm =0,
m=l
for all integral k& between 2 and n, inclusive. (n is again the total number of
draws.)
The probabilities of the sequences black-black and black-red in the first two
draws are, respectively,

a(a 4+ Dyy) P = ala)
2a(2a + D)’ * " 2a(2a + D)’

By symmetry, P__ = P,, and P_, = P,_, as in the Polya scheme. For three
draws the probabilities are

P — a(a 4+ Dy) (e + Dy + D2)
T+ 2a(2a —I— Dm) (2a + Dls + Dzs) ’

— a(a + Dl2) (a)
2a(2a 4+ D1)(2a + Dy; + Dy)’

P . = a(a)(a + Diy)
*~+ " 2420 +D1)(2a + Dz + D)’

P = a(a) (@ + D)
+— " 2a(2a + D1)(2a + Dy + Du)’

and the other four may be obtained by symmetry.

j S

(11)
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What are the correlation coefficients in this scheme? Again let z; = 1 or
—1 if the 7th draw is black or red, respectively, so that r;; = E(zx;z;). For the
first two draws,

(12) T2 = E(xlxg) = 2(P++ - P+_) = Du/ (2a + Dm).

The last equality follows from the substitution of (10). Equation (12) conforms
with (4), since for two draws the two urn schemes are identical.
For the first three draws, by (10) and (11),

ry = 2(Py4y — Py — Py + Py )
=2(Pyyy — Pyy) + 2(Pyy — P, )

Di3 4+ Dy Dy — Dy
13 =2P,, ——_— "~ ___ 1+ 2 —
( ) ++2a+D13+D23+ P+—2a+D13+D23
_ 2D13(P+++P+‘) + Dy (Pyy — Py)
-2a 4 Dyz + Dqs

— Dys 4+ 119 Dy;
2a + Dy + Dy’

and by a similar calculation,

_ 1Dy + Dy
(14) Tey = % + Du F Dn’

The above method is easily generalized for the first n draws. The result is

n—1
(15) r'.“=_2£',1—7%?j"_.’ i=1,2’...,n_1’
26 + 2257 Din

where r;; = 1 for all 7. Notice that if all the correlation coefficients are known
for the first (n — 1) draws, then equation (15) gives the remaining coefficients
necessary to correlate the nth draw.

The next quantity to be calculated is the ratio 2P, / P,_;, where P, is again
the probability of drawing n black balls in the first n trials. (P, = Py = §,
P, = P,,,P; = P,,,,etc.) By the first of equations (10),

P_“'i’ _ 2((1 + Dm) _ Dy,
(16) 2P+—20+D12_1+20+D12.
By equations (10) and (11),
(17) 2 P+++ = 1 + D13 + D23

P, 20 + Dy + Do’
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Similarly, for n draws,

P "3+ D;
18 2" =14 &= n n=23,--
(a8 P ' Ty 273 Dja ~

The next objective is to express the ratios (18) as functions of the correlation

coefficients alone. A new variable is introduced:
. o Dkﬂ )
(19) Gk”—2a+z:?—_llen’ k— 1,2,°--,n—1.

Then equations (15) may be written

n—1
(20) : Tin = 2 145 Gin,  i=1,2-,n—1
j=1
and equation (18) may be written in the form
n—1
(21) A —1=ZIG,~,.—2P,./P,._,.,
J=

Now equations (20) and (21) constitute n equations in the n unknowns,
Gun, Gony -+, Gic1n, and 2P, / P,_; . The equations may be solved directly
for the last quantity; then a simple manipulation of the determinants yields
the result, : B ’ '

14+ 71 U Tie + Tin ccr Tyaer + Tie

Ti2 + Ton 14 7. cer Tony Tt Ten

e e e s e s .e . e & e e & e s e o o e o & o

(22) 9 P, — T1,n—1 + Ta—1n Ton—1 + Ta-1n °°° 1 +'rn—1,n , n=2’3,”.

y 1 1y e Tial
T12 1 To,n—1
Tin-1 Ton—1  *°° 1

The denominator is simply the determinant of the (n — 1)-variate correlation
matrix. ' ‘ ;

As in the case of the Polya scheme, the correlation coefficients may now be re-
garded as continuous rather than discrete. These coefficients may assume any
values between —1 and 1 which do not violate (9), i.e., which do not lead to
negative probabilities. By comparison with equation (18), it follows that the
inequality (9) may be rewritten

(23) P, /P, 20,
fork = 2,3, -+, n, where P, / P;_, is given by (22).
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Finally, by induction, the probability P, is given by

1475 e+ 713
1+ T12)
p, =92 Mo+ 7T 1+ 7y

1 1 T2

T2 1
1+ 7. 712 +71a c Tina t Tia

24

@) Tz + Ton 1+, ©r Tyn1 t Toa

.....................

'r, Tagn T Toin *+ 1 T,
. 1n—1+ n—1.,n 2.n—1+ n—1,n + n—1.,n n=2,3"'.

1 T12 o Tin
T12 1 T2,n—1
Tin—1 Top—1 °°° 1

When all the coefficients r;; are equal for 5,7 = 1, 2, -+, n (i ¥ j), equation
(24) reduces to the Polya result (5).
When n = 2 and 3 the result (24) becomes simply

(25) P, = i‘(l + 7'12)
(26) Py = 3(1 4 rio + 115 + r2).

For higher values of n the complete expansion of (24) is quite complicated.
However P, may be expanded in a power series in the ’s. To second order, for
n = 4,

(27) P, = iL(l + 7‘12 + 3+ s A+ T A v+ v+ rors + 7isres 4+ 7'147'23)
+ 0.

By induction, it can be shown that, for general n,

(28) P, =2" [1 + 2 ri4+ 2 (rgra - rara+ rarp) + O(T')]
‘ i>tzl I>k>>i21

When all the coefficients r;; are equal (7 > j), the number of first-order terms
in (28) is the binomial coefficient (7). The number of second-order terms is 3({');
therefore this special case of (28) checks (to second order) with the result (7) of
the Polya model.

If P, is expanded to a higher order, then the series is no longer symmetric
with respect to interchange of the variables z;, 22, -+ , 2, .

4. The multivariate normal distribution. The following example belongs to
the second type of problem given in the introduction.
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Suppose that &, &, - -+, & obey the multivariate normal distribution law
with correlation matrix

1 po -+ pm
(29) L
Pin Pon " 1

If all the mean values E(£;) are zero, what is the probability P, that all n vari-
ables are simultaneously positive?

As stated in the introduction, this question may be reduced to the correspond-
ing problem in the discrete variables x; , 2, - - - , 2, by means of equation (1);
however, it must be remembered that the correlation r;; between z; and x; is not
the same as the correlation p;; between ¢; and £; .

Various writers have investigated the probability P, for the multivariate
normal distribution. For n = 2 there is the Stieltjes-Sheppard result [5],

(30) A Py, =3 (1 + 1% sin™’ P12>
For n = 3 the result is (see Kendall [7] and David [8]):
@31 Py =1} [1 + ;2_r (sin™ py; + sin”™" py3 + sin”* st)]

For n > 3 no solution has been given in closed form, but there exists the
infinite series of Aitken, Kendall ([6], [7]), and Moran [9]. For n = 4, their series
may be written, to second order in the p;;,

2~ .- 4
32 P,= & [:1 + = Z sin™ pi; + = {p12pss + p13pae + prups + 0(P3)}:|
T j>iz1 ™ ,

For general n, the probability is

n

(33) P. = 2‘"[1 +2°3 sinpy

T j>i=1
4 n
+ ;2 I>k>5>i21
(This result will be derived in Section 6.)
Equation (33) may be compared with the corresponding probability (28) for
the generalized urn scheme. Note that under the transformation,

(pijpr +pixpjt + papsn) + O(Ps)]

(34) Ty = 7% sin™ pij,

the two expressions (28) and (33) agree to second order. [Note that r,;, given
by (34), is actually the correlation between the discrete variables z; and z;,
given by equation (1), when the #’s are normal. See equation (41).] This agree-
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ment suggests that the substitution of (34) into the closed form (24) of the result
for the generalized urn scheme might provide an approximation for P, in the
multivariate normal case, to be used in place of the poorly converging series of
Aitken, Kendall, and Moran. (See David’s remarks [8] on convergence.)

For n > 3 and arbitrary p;;, the agreement between the two power series
does not extend beyond the second-order terms.

5. Numerical results. The approximation indicated above has been tested by
a comparison with several known results for the multivariate normal integral.

When all the p;; have the same value, defined by p, then r is obtained from
equation (34); then- this value of r is used in the closed expression (5) of the
Polya scheme.

When n = 2 or 3, the result obtained from (5) is exact for all values of p;
that is, equation (30) and the special case of (31) follow immediately.

When p = 0, (5) gives P, = 27"; when p = 1, P, = 1. (See the explanation
at the end of Section 2.) It appears, therefore, that when p = 0 or 1 the results
are exact for-all values of n.

When p = }, then r =  and equation (5) gives P, = 1 / (n 4 1). This result
is also exact for all n. {See Ruben [10], p. 214, equation (70). In fact, Ruben’s
(70) holds for a more general class of distributions, as shown by Foster and
Stuart [11], p. 22.}

When 1/p = 2, 3, -+, 12, the results obtained from equation (5) may be
compared with those of Ruben ([10], pp. 222-223). For the case n = 4, the
comparison is shown in Table I. (Ruben’s values have been rounded off to seven
decimal places.)

The best agreement in Table I occurs for small p, as one might have predicted
after a comparison of the corresponding power series.

For a given value of p, the approximation grows steadily worse as n increases.
A comparison for p = 1 is shown in Table II.

TABLE I
(n = 4)

1/p Py [from (5)] Ruben’s #4(1/p)
2 0.20000 00 0.20000 00
3 0.14975 57 0.14973 77
4 0.12649 38 0.12647 92
5 0.11302 30 0.11301 25
6 0.10423 15 0.10422 40
7 0.09804 22 0.09803 67
8 0.09344 92 0.09344 51
9 0.08990 58 0.08990 27

10 0.08708 94 0.08708 71

11 0.08479 73 0.08479 5

12 0.08289 56 0.08289 4
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TABLE I1
=19
" Py, [from (5)] Ruben’s #,(4)
2 0.29021 53 0.29021 53
3 0.18532 30 0.18532 30
4 0.12649 38 0.12647 92
5 0.09069 62 0.09065 98
6 0.06754 16 0.06748 27
7 0.05183 56 - 0.05175 69
8 ©0.04076 86 0.04067 37
9 0.03272 29 : 0.03261 57
10 0.02671 93 0.02660 32
TABLE II1
x| e ou I u ou Py [from (24)] Plackett’s &}
3 -0 0 3 0 3 0.13393 0.13333
: 0.13194
0.13194
0.13393
3 3 0 0 3 3 0.16369 0.16667
’ 0.16369
0.16369
0.16369
3 3 0 3 0 E) 0.15000 0.15000
0.15278
0.14881
0.14881

It appears from Tables I and II that the Polya urn approximation might be
useful in many problems, at least where p is not greater than 3 and where = is
not much greater than 4. Formulas (5) and (34) are certainly more easily appli-
cable than Ruben’s integral recursion formulas or an interpolation in Ruben’s
table. :

In the general case of unequal p;; , the results are much less satisfactory. This
fact can be illustrated by a comparison with several exact values given by
Plackett ([12], p. 360) for the quadrivariate case. The comparison is shown in
Table III.

To obtain P,, one substitutes the values of r;; from (34) into the closed ex-
pression (24). When n > 3, (24) is not symmetric with respect to interchange of
the indices; therefore different results are possible. The four values of P, given
in Table III (for each correlation matrix) are those obtained when x4, 23, 2., and
x;, respectively, are considered as the fourth draw from the urn. Without
doubt the lack of symmetry in (24) is partly responsible for the poor agreement.
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It appears from Table ITI (and from other comparisons with Plackett’s figures)
that the generalized urn approximation is not a satisfactory method for com-
puting the general multivariate normal integral. The only possible exceptions
would be those situations in which the p;; are very small or are all nearly equal
to each other, i.e., approaching the Polya case.

Recently Plackett [12] has given a numerical method for evaluating the
quadrivariate normal integral. It involves more labor than the urn scheme but
yields considerably greater accuracy.

6. General remarks. This paper will be concluded by a discussion of the
general problem described in the introduction, in which no specific model or
distribution law is assumed.

Consider again the n mutually interacting (discrete) random varlables Z1,
Za, *+ , Ta . Let the observed values of these variables (in a given experiment) be
Y1, Y2, -, Yn, Where y; = 1. Then there are 2" possible combinations for
the n results y; , and each result has the probability

(35) Plxi=y1,22= Y2, " , Tn = Yn).

For any given distribution law there are 2" product moments, i.e., the expected
values E(1), E(z;), E(xz;xi), E(xjzizr), -+ -, E(xizs - - - z,). All other moments
degenerate to one of these, since 2} = 1[e.g., E(z}) = E(1); E(ziz,) = E(z,)]. '

The 2" moments may be expressed in terms of the 2" probabilities, as follows:

EQ) =221-P@ = 41,2 =4, *** » Tn = Ya),
Vs

E@) = 2 yiP@i =41, 5=, ,Za=Yn), Jj=12,---,n,
Vi .

(36) E@iz) = 2 yith P@ = 41,2 = Y2, 3 Tn = Yn),
Ve .

..............................

E@a, - z,) = Zylyz o YaP@ =, 1 = Y2, " Tn = Yn))
Vi . .

where the sums are taken over all combinations Yy = £1, y» = :l:l, cee,
Yn = =£1.

If all the equations (36) are added together, then all the probabilities cancel
except P(x; = x, = --- = x, = 1), which was previously called P, . Then

n

@) Po=2 [1 + 3 BE) + 3 Bl + - + B x)]

>iz2l

Now suppose that the symmetry of the distribution law is such that all product
moments of odd order are zero, i.e.,

E'(xl) = E(xz) i = E(xn) =0,

(38)
E(xlxzxa) = E(xlxym) T e = E(:v,._zxn_lx,,) = 0,
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etc. Then (37) becomes

n

39 P,=2T" [1 + ilE(xixj) + > E(z;zjziz) + :|

i>iz I>k>j>1 21 )

ending with a product moment of order n if n is even, or with moments of order
(n — 1) if n is odd.

It is now evident that P, and P; in equations (25) and (26) could be obtained
directly from the general formula (39) by the substitution of n = 2 or 3 and of
the definition E(x;x;) = r;; . In other words, it is only for n > 3 that a specific
urn model must be assumed, and this specialization is reflected in the values
of the higher-order moments E(z;z;z:x;), etc. in (39).

On the other hand, suppose §; are continuous random variables obeying a
given distribution law with symmetry as in (38). Then for the calculation of
P, and P;, E(z;xz;) must be obtained as a function of the parameters of the
original distribution. For P, and Py, E(x;x;x:x;) must be obtained, etc., and all
other P’s will follow two at a time from the higher moments.

It is now possible to derive equations (31) and (33). Assume that P, is given
by (30). By matching (30) with (39) when n = 2, it follows that

2 .
(40) E(xx) = o sin™" P12 .
Then by the symmetry of the normal distribution,
(41) Bziz) = Zsin™ py,

for all 7 and j, 7 > j, and equation (31) follows by the substitution of the moments
(41) into the general expression (39) with n = 3.

Now assume that P, is given correctly by equation (32). Then (32) may be
matched with (39) when n = 4, with the aid of (41), and the result is given by

4
(42) E(zyz324) = = (p12pse + prapas + prepes) + 0(°).
Then, by symmetry, the general fourth-order product moment is
4 .o
(43) E@:z;jzim) = = (pijprr + pixpit + papin) + 00, i<j<k<l,

and, since all higher-order moments are of higher order in the p;; , equation (33)
follows. The last operation is the substitution of the moments (41) and (43) into
the general expression (39).

This process is equivalent to a method used by David [8] to obtain P, from
P, when n is even.
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