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1. Summary. Concrete decision rules are given for the problem of goodness of
fit and the problem of two samples with a risk smaller than any preassigned
value. The problem of estimation is also treated.

2. Introduction. In the theory of statistical decision functions it is very de-
sirable to give the problem considered a concrete solution which evaluates the
risk. We have previously given a concrete form of the decision function when the
distribution functions involved are specified, so that the risk can be made smaller
than an arbitrarily preassigned positive number by suitable choice of sample-size
(1], [2]). In that case, the following notions of affinity and distance played an
important role. Let F,, F; be simultaneously discrete or continuous distribution
functions, so that by the aid of a suitable measure m, the probabilities of a set
E under F; and F, can be written as:

F\(E) = fE pi(z) dm,  Fy(E) = fE po(x) dm

respectively. Here E denotes an arbitrary measurable set for which the prob-
ability under F, or F is defined. The distance between F, and F; is then given by

3
18 = Rl = ([ (Vo — Vi) am)
and the affinity between F, and F, by
p = fn V@) Vpe(a) dm

where R denotes the whole sample space (of one dimension).

In the present paper, using the distance || I, we shall give a concrete solu-
tion to the problem of goodness of fit and the two-sample problem and mention
finally that the estimation problem can be treated similarly. Our treatment of
the problem of fit is based on the following considerations.” It is not necessary
to decide whether the random variable on which the observation is made has
exactly the given distribution or not but to decide whether the variable has a
distribution near the given one. On the other hand, from a finite number of ob-
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632 KAMEO MATUSITA

servations it is impossible, or at least very difficult, to discern efficiently whether
the variable has exactly the given distribution when in the alternative class of
distributions there exists one which lies within any distance from the given dis-
tribution. From this point of view, we formulate the problem as follows.?

When a distribution F, is given, decide whether the random variable has the
distribution Fy or a distribution outside some neighborhood of F .

The neighborhood of Fy, mentioned here is defined s the set of distributions
{F:||F — Fy|| < €}, where a positive number e is determined according to the
nature of the problem concerned. Throughout this paper we shall consider only
discrete distributions with a finite number of possible outcomes. For practical
purposes this does not involve an essential loss of generality since in most statis-
tical applications the quantities observed can be grouped in a finite number of
classes.

The actual method of our treatment of the problem is based on the following
properties of distance which the distance | I possesses:

(1) Axioms of distance:

@) &F,G) z 0,
8(F, F) = 0,
(ii) o(F, @) = §(G, F),
(i) 6(F, @) + &(G, H) z &(F, H),

for any distributions F, G and H, where §(F, @) denotes the distance between
F and G.

(2) For any integer n and any positive number 5 there can be found a sequence
of numbers {B,} such that

Pr{s(F, S,) > n} = B.

for any F in the class of distribution functions under consideration, where S,
denotes the empirical distribution function based on n observations of a random
variable with distribution F, and such that B, — 0 as n — . There are, of
course, other distances having properties (1) and (2). For instance,

5.(F, F') = (Z:; (ps — p§)2>}

where F and F’ are discrete distributions defined on the same events with prob-
abilities py, -+, P, and p1, - -+, pr, respectively. Actually, our method can
be applied with any definition of distance which has properties (1) and (2).
Among the above properties, (1)-(ii) need not necessarily hold for the problem
of fit, but must hold for the two-sample problem. (1)-(iii), that is, the triangle
inequality, must always hold. A so-called directed distance, like

<f_i (Fiw) ~ I dm))’,

does not always satisfy these conditions, so that we cannot use it, at least for the
two-sample problem. Further, x’, itself, does not have property (2).
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Since the inference will be based on a finite number of observations, it is de-
sirable that the distance we use has the property:

(3) The distance represents well the discrepancy between distributions at
every point, or, for the problem of fit, it represents the discrepancy at the point
with large probability (or density) better than that at the point with small
probability (density).

Taking into account (3), the Fréchet distance 8;(F, @) = sup, |F(z) — G(z)|
is seen to be unsuitable, as is any distance similar to it, although it is useful in
cases where the convergence or a property in the limit is concerned. The same
can be said concerning x°. When we consider x° as a quantity which expresses
the discrepancy between the theoretical and the empirical distribution, the
discrepancy at the point with small probability is liable to make an excessive
contribution. This shows that, in general, x° is not always suitable for the problem
of fit.

On the other hand our distance || || seems to satisfy property (3) ade-
quately and is also simple to compute.

With this distance we shall give a simple upper bound of the risk and at the
same time show how to make the risk smaller than any preassigned positive num-
ber. This is not the case with the tests thus far presented, like the x*-test.

3. Properties of distance || || and affinity p. In this paper, we shall use only
the distance || | explicitly, but for its calculation the affinity p will prove use-
ful. Therefore, in the following we shall state the properties of p as well as those
of the distance || Il

First we have

0=p=1,
”FI— F2”2 = 2(1 - p(FI:F2)) -S- 27

A
A

IF: = PP s [ 19@) = paa)| dm < 21IF = il

From these relations it follows that
|F\(E) — Fy(E)| < 2||F, — Fy

for any set E, and that for a sequence of distributions {F,} and a distribution
F, it holds

[Fo = Fo| >0  (n— =)
when and only when
3.1) |Fo(E) — Fo(E)| — 0 (n— ) uniformly in E.

Further, ||Fy — Fi| = 0 when and only when Fi(E) = F.(E) for every set E.
We also note that ||F, — Fo| — 0 (n — «) implies p(F,, Fo) > 1 (n — =)
and vice versa.

Relation (3.1) is Wald’s definition of regular convergence in finite-dimensional
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sample space. When the set of distributions Q, therefore, is separable in the
sense of regular convergence, this topology is equivalent to that given by our
distance || I. It follows from this fact that if @ is compact with respect to
the topology induced by regular convergence, it is also compact with respect to
the topology induced by our distance.

4. Fundamental theorems. Let F be a discrete distribution with probabilities
P1, P2, -, px for the events (1), (2), - - -, (k), respectively. Let n; be the num-
ber of occurrences of event (¢) in n observations. We denote the empirical dis-
tribution (n,/n, -+, n, /n) by S.. Then, by definition,

. _
||F—Snll2=_z;< %—\/;7,->—2(1—21 )
The last expression in terms of the affinity p = Sk /1 \/17, can be used
for the calculation of the distance ||[F — S.||.
TureoreM 1. When the random variable concerned has the discrete distribution F,
then we have

Pr{IIF — Sall* < ’i:—lt} >1-1
n i
for any positive number t.
Proor. Let p1, -, por > 0,and poryn = -+- = po = 0 (K" = k). Then,
clearly
—ir - sl =2 (g5 vr) sEL(H-p) + 22
= n i=1 Pi \M i=k’+1 N
Accordingly,
K’ 2 | g _
(&) gZﬁE(’ﬁ—p.-) B DSt LN i ) Bl
i=1 Pi n Tl n n n

where E denotes the expectation with respect to F. Now, an inequality of Markov
shows

Pria’ < E(ADt} =z 1 —

Pr{A2<k—_—!t}gl—l
n t

which we wanted to prove.

When p; > 0,7 = 1,2, -+ | k, and n is large, X = D ka(ng — np,)’ / nps is
asymptotically distributed according to the chi-square distribution with £ — 1
degrees of freedom. Therefore, from the relation

|F = 8| = lz(n, np)<l+/‘/nzl;>—2

| -

for any positive ¢,

and we have



DECISION RULES 635

we have:
TuroreMm II. When the random variable concerned has the discrete distribution
Fuwithp; >0 = 1,2, --- k) and n is large, we have an asymptotic equality

Pr{|F — 8,|* < 8"} = Pr{xa—n < 4nd’}

for any number 8, where x{._y is a random variable having the chi-square distribu-
tion with k — 1 degrees of freedom.

When applying such an inequality or equality to the problem of fit, for instance,
it must hold for any distribution under consideration (sece below). Therefore,
in case the alternative class of distributions against the specified distribution
includes one with any small probability p;, we cannot use an inequality or
equality containing D*(x%), like

Pr{ilF — S,JI* <} 21— (1/a%){(k — 1)+ D’(X")},
which is derived from the relation ||[F — S,/° < x*/n when
P:>O(7' = 172) "'7]C)y

although it may seem more precise than the inequality in Theorem I at a glance.
For we have then supr D*(x’) = « and cannot obtain an adequate inequality or
equality for our purpose. On the other hand, the inequality in Theorem I holds
in any case and is applicable to the problem. When there is a positive lower
bound for all p;, we can obtain more precise inequalities. For example, let po be
such a lower bound. Then we have

Pr{||[F — S.|" <9} 21— %{k“’— 1+l<-"l—zf —2k+2>}
nn n

Po
or, when
nn>k+1+~—1—<k"k2_2k+2>
& — 1)-n \p ’
. 1+ g —k + 1 .
Pr|IF — S <n} 21— 2(;0__1)4.%(5—}3—270-{—2)
0

(See [4].) The result of Vora ([6]) could also be used. In this paper, however, we
shall not assume that there exists such a lower bound. In the following we shall
denote generally by (C,.x_1) or for short (C,) a class of distributions such that
x’ based on n observations of the random variable has asymptotically the chi-
square distribution with £ — 1 degrees of freedom for any F in (Cpx-1). A set
of distributions {(p1, p2, ---, p)} in the same finite discrete space, for which
there exists a positive number po such that p; > po, defines such a class (C,)
for n sufficiently large.

6. The problem of goodness of fit. As stated in the introduction, our formula-
tion of the problem is to find a rule according to which, for any given finite
discrete distribution Fy and 8, > 0, one can decide whether a random variable
has distribution F, or a distribution F with ||[F — Foll = & .
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Now, let X be the random variable of interest. When X has the distribution
Fo we have by Theorem I

Pr{HFo = Sll* < ’“—;——1 t} >1-1,
and when X has a distribution F with ||[F — Fol| = &,
[Fo — 8ull Z [Fo — Fll — [IF — Sall 2 & — [[F — Sl

o~

and

e
.

Pr{HF - 8.2 < E—;-—l t} =1 -

{||F0 S| > 8 — 1/—}; —tl.

On the other hand, when

Consequently

k—1
8

k—1 1/lc -1,
n = n )
Therefore, we have:

TraeoreM II1. For any positive number &, let n = 4(k — 1)t / 8 . Then, when
X has the distribution Fo , we have

Pr{llF'o — 8. < l“-;—-l t} 1 - l,

n =4 A

we have

(1%

t
and when X has a distribution F with |F — Fol| = &,

Pr{HF.,— Sz B= lt} >1-1,
n t

According to this theorem we can answer the problem formulated above. The
risk then can be made smaller than any preassigned value € by taking ¢ > 1/e.
Here we assume that the weight function is zero when the decision is correct
and less than or equal to 1 when the decision is wrong.

If it is known that Fy and any alternative distribution (p, - -, px) are con-
tained in a class (C,), Theorem II is applicable instead of Theorem I, and we have
the following theorem.

TueoreM IV. Let Fo and a distribution F with [|[F — Fo| = & be in a class
(C.), and let n be any positive number smaller than 8 . Then, when X has the dis-
tribution Fo , we have

Pr{||[Fo — S.)* < 7'} = Prixtn < 4nn’}

and when X has a distribution F
Pr{||Fo — Sal’> = 7'} 2 PrixG—n < 4n(% — 7))
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where xtk—1y 18 @ random variable having the chi-square distribution with k — 1
degrees of freedom.

6. Two-sample problem. Let X and Y be (not necessarily independent)
random variables which have discrete (marginal) distributions F = (p{, - - - , px)
and G = (g1, -+, gi) on the same events (1), - - - , (k), respectively, that is,
pi = Pr{X = (@)},q = Pr{Y = (@)};4 =1, - -+, k. Further, let (ny, - -- , n)
(X n: = n) and (my, -+, m)(D,m; = m) be observations on X and Y,
respectively. Then we want to decide from the two sets of observations
(e, -+, m), (my, -, m) whether F = Gor |F — G|| = &, 8 being a pre-
assigned positive number. In this problem we are also interested in whether
F and @ lie near each other. Denote the empirical distributions (n,/n, - - - , nx/n),
(my/m, -+, me/m) by S, , Sm, respectively. Then we have:

TrEOREM V. Let n be any positive number smaller than 8y . When ||F — G| = 0,

(a) Pr{||S, — Snl| <n} =1-— k-1 <.i + __.1_>2

Tl E 7 \Vn ' Vm/)’
and when |F — G|| = é,

, E—1 1 1 \?

- >l - —(—+—=).

G Rl - Sz 21— g (Ut vm)
Moreover, if X and Y are independent of each other, we have

, 4k -1 /1 1 16(k — 1)2

@ Prllisn - Sl <o) 21 - R (L 1) 4 RO

when |F — G| = 0, and

@  PrllSe— Sz} 21— 7 ><_ _> 16(k — 1y

T @G—n'\n " m (80 — m)'nm

when ||F — G|| = & . In this case, (a) is more precise than (¢) when and only when
3(m + n) — 24/mn > 16(k — 1) / n°, and (b) is more precise than (d) when
and only when 3(m + n) — 24/mn > 16(k — 1) / (8 — ).

Proor. When ||F — G|| = 0, then

18 = Sull = IF — Sull + 1IG — Sall

Therefore, according to an inequality of Markov we have

Pr{]|Ss — Sull < 7} 2 Pr{||F — 8u|| + 1I1G — Sal| < 7}

1%

1 - néE(HF — Sl + 116 — Salp?

Y

L - 3 (WEF = 5P + V(G = 5,P)"

- A

v
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and moreover, if X and ¥ are independent,
Pr{||S, — Sull <2} = Pr {[|F — S./| < #n, (|G = Sal| < in}
= Pr {[|[F — 8.|| < 49} Pr {||G — S.|| < 3}

=1_4(k—1)<1+_1>+16(k~1)""

7 nm inm

When ||F — @|| = &, then
18, = Sull 2 |F = @ = [|[F — S| — |G — Sn!
z 00— [F— S| =[G = Sal

from which we can obtain (b) and (d).

The remaining part of the theorem can easily be seen.

On the basis of this theorem we can make decisions about the two-sample
problem.

Further, if it is known that X and Y are independent of each other and ¥ and
G belong to a class (C5), then we can make use of the following theorem.

TrEOREM VI. Let X and Y be independent, and F and G belong to a class (C,),
and let 9 be any positive number smaller than 8, . Then, when ||F — G| = 0, we
have the following asymptotic inequalities

1
2nx

1_.k;l<1+1)

27 \m  m

y . )
Pr{||S. — Sall <2} = PI'{ te-ny + %X(lzc-n < 172}

v

and
Pr{||S, — Sull <1} Z Prixt—n < n’}Prixi—y < mq'} ,

and when ||[F — Gll = &,

’ : 1 . 1,
Pr(lS. = S| 2 ) & Pr{ ks xhn + g xid S G = )

E—1 (1 1
> 1 — i
=1 2(6a~n)2<n+m>
and

Pr{|[S. — Su 2 7} 2 Pr{xt-n < n(d — n)*}Pri{xtn < m@ — 1)’}

where X1 and xi-1 are independent random variables each having the chi-
square distribution with k — 1 degrees of frecdom, respectively.

7. Estimation problem. Now, let us turn to the problem of estimation. In this
case too, as mentioned in the introduction, we confine ourselves to discrete
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distributions. Then, if (ny, - -+, n:), S, , and F denote n observations, the em-
pirical distribution, and the true distribution, respectively, we have for any
positive ¢
Pr{HF - 8.7 < k=1 t} >1-1,
n {
This means that

7.1 IF =S =3 (1/72 _ \/E)? ko,

=1 n n

is a confidence band for an unknown F with confidence coefficient at least 1 — 1/¢.

If the form of F is known and only the parameters a;, - - , @, involved in F

are unknown, the confidence intervals for a; , - - - , a, are also obtained from (7.1).
When it is known that the unknown F is in a class (C,), the relation

Pr{|F — 8, < &} = Pr{xa_y < 4nd’}

can be used to obtain a confidence band.

As to point estimation (see also [4], [5], [7], [8]), one can estimate parameters
by minimizing ||F — S.||” under the restriction Y p; = 1. Let F, , be the distri-
hution with these estimates replacing the parameters. Then one can show that
these estimates converge stochastically to the parameters oy, ---, o, in F,
respectively,® by means of the following relations:

”Fe.n - F” S ]]Fe,n - Sn” + ”F - Sn” = ZHF - ‘Sn”y

/k— 1\ 1 /=1 4
Pr{HFe_,.—FH< T/;Pr{HF—S,,H<21/ m t}gl—-t-

Of course, we assume here that the parameters depend continuously on the
distribution F. Further, the inequality

Pr{HF.,.,. - S < .k—;—l t} 21 —tl (t > 0)

or the asymptotic equality
Pr{||F. . — S.|* < 8"} = Pr{xG_.v < 416’}

can be used for the problem of fit when the specified distribution contains cer-
tain (say, s) unknown parameters. This inequality and equality can easily be
proved. For example, the last equality is obtained as follows. When

F=(p, -,m) withp;, >0 (¢ =1, ---, k) and n is sufficiently large, we
have

IF — Sal* = x*/ 4n
and

[Fer — Sall* = xe.n / 4n

3 We ean, further, prove that the convergence here is almost sure. See [4], [5].
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where x>, is x° with the minimum x* estimates of the unknown parameters re-
placing the parameters. As x. . has asymptotically the chi-square distribution
with & — s — 1 degrees of freedom, we obtain the above asymptotic equality.
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