MAXIMUM LIKELIHOOD ESTIMATES OF MONOTONE PARAMETERS!
By H. D. Bruxk
Unaversity of Missourt

1. Summary. The maximum likelihood estimators of distribution parameters
subject to certain order relations are determined for simultaneous sampling from
a number of populations, when (z) the order relations may be specified by re-
garding the distribution parameters, of which one is associated with each popula-
tion, as values at specified points of a function of n variables (n a positive integer),
monotone in each variable separately; (ii) the distributions of the populations
from which sample values are taken belong to the exponential family defined
below. This family includes, in particular, the binomial, the normal with fixed
standard deviation and variable mean, the normal with fixed mean and variable
standard deviation, and the Poisson distributions.

2. Monotone parameters, and the exponential family of distributions. Let
m, n be positive integers. Let ¢ denote an n-tuple, { = (¢, &, -+, "), of real
numbers, and let &(k = 1, 2, - - - , m) denote one member of a set E consisting
of m such n-tuples. Let there be m populations from which sample values are to
be taken, and let the distribution of the k-th be completely specified by the
knowledge of a single distribution parameter 6,(k = 1, 2, ---, m). Let the
parameters 6; be known to satisfy the following monotonicity condition: there
is a real-valued function 6(¢), monotone non-decreasing in each of the separate
variables £(G = 1,2, ---, n), such that 6, = 6(%), k = 1, 2, -+, m. (If 6(2)
should be monotone non-increasing in some or all of the variables #’, a change in
direction of the corresponding axis in the n-space ®, would serve to render
0(t) non-decreasing in each variable.)

Let each population be a population of values of a stochastic variable, x,
such that there exist a finite or infinite interval I, a number ¢ ¢ I, a proba-
bility measure » on the Borel sets of the real line, a Baire function g(x), and a
strictly decreasing, continuous function 7(v) for » £ I such that the density func-
tion of x with respect to » is given by exp{—Flg(z), 6]} for some 6 ¢ I, where

® Fi,0) = [ @ =2 dra) = 96) + uls) = <,
and where '

v) = — ]:zdr(z).
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608 H. D. BRUNK
Then if A is a Borel set on the real line,
Prixedt = f exp {—Flg(x), 6]} dv.
A

Let the distributions of the stochastic variables associated with the m popula-
tions be obtained by holding I, ¢, v, g, and 7 fixed, and letting 6 take on the
values 6y, 6z, -+, Om .

As particular instances of such distributions, one obtains the normal distri-
bution with mean 6, variance 1, on setting [ = (—w, ®), ¢ = 0, g(z) = «z,
r(v) = —v, dv = exp (—2°/2)//2r dz; the binomial with parameter 6 on setting
I =1001,c=14% g&) =z, r(v) = log [(1 — v)/v], v the measure assigning
measure 1 to each of the two pomts 0 and 1; the normal with mean 0, variance
gonsetting I = (0, ©),¢c = 1,9() =2°, 7(0) = (1 — v)/2v, dv = exp (—2°/2)/
/27 dz; and the Poisson with mean 6 on setting I = [0, ), ¢ = 1, g(z) = =z,
r(v) = —log v, » the measure assigning measure ¢ */z! to each non-negative
integer x. :

The distributions described above belong to the exponential family ([5], p.
65). It is known that in sampling from a single population whose distribution
depends on a single parameter, under conditions implying sufficient regularity,
only distributions having density functions of the form

exp {—[v(8) + g(x)=(6)]}
with respect to a measure admit sufficient estimators ([6], [7]) and efficient esti-
mators (as defined in [4], pp. 479-481), and that the maximum likelihood esti-
mator is sufficient and efficient. It is further clear that, given sufficient regularity,

if the density function is of the form exp {—[x(o) 4+ g(x)¢(p)]} then the change
of parameter 6§ = —x’(p)/y¥'(p) yields a density function of the form

exp {—[y(0) + g(x)7(0)]} = exp {—F[g(x), 6]},
where y/(8) = —6+'(8), hence

Flg(z), 0)] = f o) — 2 dr(2)

(except perhaps for an additive function of z which may be absorbed in the
measure »).

The population whose distribution is determined by the distribution parameter
6, = 0(%,) will be referred to as the population af tx(k = 1, 2, - -- , m). Let there
be drawn from the population at ¢, , N (k) sample values, Zw. , Ze , = ** , vy .k -
The sample stochastic variable x; has the density function exp {—F[g(z), 6:]}
with respect to the measure », and for distinct j the stochastic variables xj

are independent (j = 1,2, --- ,N(k); k = 1,2, .-+, m).
The problem is to determine the maximum likelihood estimators of the
parameters 6, - -+ , 6. , subject to the monotonicity requirement.

If A is a Borel set in the sample space of points (zu , Ta, *** , Tz ), then
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N (k)

Pr{(Xu, - -, Xvgy) € A} = _/;exp{—- ; Flg(z;), 0}:]} dly X -+ X)),

where » X --- X vdenotes the direct product of the N (k) measures ». From (1)
it then follows that

Pr {(xu, -+, Xvayp) € A}
4 N (k)
= fAexp{—N(k)F [,; 9(x1) /N (k), Gk:l} dlv X -+ X).

Similarly, if 4 is a Borel set in the sample space of points

(@u, -+, Trvaya 3 Tam, T, NGy .m),
then

Pr{(xu, -+, Xvwa; * 5 Xm, * , Xvemym) € A}
N (k)

= /; exp {— ];V_;: NE)F I:]; g(xjk))N(lc), Gk:'} dlp X -+ X »),

where the integration is with respect to the direct product of the D pq N (k)
measures .

The numbers x; , as well as the functions g, F and the numbers N (k), are to
be regarded as given; the maximum likelihood estimator of the parameters
6 = 6(t), subject to the monotonicity requirement that 6(¢) be non-decreasing
ineach ¢ ({ = 1,2, -- -, n), is the set of m numbers for which the exponential in
the integrand assumes its maximum value in the class of all sets (6;, -+ -, 6,,)
satisfying the monotonicity requirement. The same set will also minimize the
negative logarithm of the exponential:

2) kz; N(k)F(gr , 04l

where g = 2 Y% gxa)/N(k) (k = 1, 2, - -+, m). This sum can be rewritten
in the form

®) | Fa®, 601 an

where the measure u assigns the measure N (k) to the point &(k = 1,2, -- -, m)
and where 7(&) = G = 2<% g(x4)/N (k). The problem of determining a func-
tion ©(f) minimizing, for given §(¢), the integral (3) in the class of functions
6(¢) monotone non-decreasing in each £(z = 1,2, ---, n) is a special instance

of the problem discussed in [3]. The problem discussed in [1] is again a special
instance of the problem of the present paper, obtained on setting n = 1 and
supposing that each population has a binomial distribution.

The results of the present paper as regards existence, representations, and
uniqueness of the maximum likelihood estimators are contained in correspond-
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ing results obtained by Ewing, Reid, Utz, and Brunk [2], [3]. The purpose of the
present paper is to point out the application of those results to the sampling
situation described above. Further, the fact that in the problem of this paper the
measure u has all its mass concentrated in a finite number of points makes it
possible to simplify very considerably, for this situation, the proofs of the results
mentioned above. In the interest of completeness these simplified proofs are
sketched in Section 4.

3. Example: a problem in perception. The following example, in which n = 2
and the populations have binomial distributions, has been suggested by G. M.
Ewing. Given a population of people, to be termed observers, let 6(t) = 6(', ')
denote the probability that an observer O will fail to see a certain object which is
idealized into a line segment, when the distance OM from O to the center, M, of
the segment is ¢!, and the orientation of the segment is specified by the angle
£,0 £ £ £ x/2, from the perpendicular to OM to the line segment. Imagine a
series of experiments in which ¢* and #* are controlled and in which corresponding
to each pair & = (&, &), k = 1, 2, -+, m, interpreted as a point in the ¢, £
plane, N (k) observers independently report whether they do or do not see the
object. Let §(t;) denote the fraction of the total number, N(k), of observers who
record not seeing the segment at distance # with orientation ¢ . Let
x0(G=1,2---,Nk);k =1,2, ---, m) denote the stochastic variable which
assumes the value 1 if the j-th observer at ¢, fails to see the object, otherwise the
value 0; then

N (k)

gt = [Z xjk] /N ().

It seems reasonable to suppose that 6(¢f) is monotone non-decreasing in ¢
and ¢’ separately.

If x denotes the number of successes in a single trial of an event with proba-
bility 6, then its probability function is 6°(1 — 6)" *(z = 0, 1). In the present
notation, Pr {x ¢ A} = [4(2 0)[2(1 — 6)]'" dv, where » attributes measure % to
each of the points 0 and 1. The distribution of x is the binomial distribution.

4. Existence, representations, and uniqueness of maximum likelihood esti-
mators. For points ¢, t* in ®. , write ¢ < ¢* if no coordinate of ¢ is greater than
the corresponding coordinate of ¢*, and ¢ < < ¢* if each coordinate of ¢ is less than
the corresponding coordinate of t*. The monotonicity condition on the pa-
rameters 6, - - -, 6, can then be described as requiring that there exist a real-
valued function 6(¢) defined for ¢ ¢ ®, such that 6, = 6(f,) and such that 6(t) <
8(t*) whenever t < ¢*.

The set F of points ¢, corresponding to populations from which sample values
are taken is a finite subset of n-space, ®, . Let £ now be regarded as a funda-
mental space of points .

If ¢ ¢ E, determine % so that t = ¢ and set Q) = N(k), so that Q(¢) is the
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number of sample values taken from the population at ¢. For an arbitrary func-
tion 6(¢) defined on E, let

“) J[6@)] = 2 QWF(F(), 6(t)]

where the summation is over all ¢ ¢ £, and where
N(k

)
5 g@) = ,}.:1 gzp) / N() if t=t.

The problem is to minimize J(8(f)] in the class MM of functions 6(¢) such that
8(t) = 6(t*) whenever ¢ < ¢*.

It is clear from (1) that for fixed u, F (u, v) is strictly decreasing as a function of
v for v < u, and strictly increasing for v > u. It will be supposed that the given
function (), defined for ¢ ¢ E, is such that F[§({t), §()] > — « for ¢ ¢ E, from
which it follows that F[§(f), 6(t)] > — = for ¢t ¢ E, for every function 6(t).
Since F[F(t), ¢] = 0, and since the function 8(f) = c¢ is in 9, the infimum of
J[8(t)] for 6(t) € 9 is finite (and non-positive).

For a function 6(t) defined on E, set 6, = 0(t), & ¢ E. It is a consequence of the
above property of F that the search for numbers 6, - - - , 6, such that 6(¢) is
in 9 and minimizes J[0(f)] in N can be restricted to the closed, bounded m-
dimensional interval.

min g < 6; £ max ¥, =12, ,m,

where §, = §(t), k = 1,2, - -+, m. The problem thus is to choose (61, --- , 0.)
in that closed part of this interval determined by the monotonicity requirement,
50 as to minimize the sum in (2). The continuity of this sum in (6;, ---, 8,)
assures the existence of the minimum.

The following definitions represent slight modifications of corresponding defi-
nitionsintroduced in [3]. Each point of E determines a lower interval, the set of all
points t* in E such that ¢* < ¢, and an upper interval, the set of all points t* in
E such that ¢* > ¢. A union of lower intervals is a lower layer; a lower layer L
is characterized by the property: if ¢ is in L and ¢* is not in L then it is not the
case that ¢ > ¢*. A union of upper intervals is an upper layer, admitting an
analogous characterization. The complement in £ of a lower layer is an upper
layer, and conversely. The union and intersection of two lower (upper) layers
is a lower (upper) layer. If A < E, A denotes the complement in E of 4.
If R, S are lower layers, then the set £ n S is called a layer, and is denoted by
{R, S}. We note that if 6(f) is monotone non-decreasing in each of the variables
&, &, ---, t", and if a is real, then the subset of E on which 6(¢) < a is a lower
layer, the subset of E on which (¢) > a is an upper layer, and the subset of £
on which 6(¢) = ais a layer.

IfACE,let

(6) JMo@); A] = Z Q)FIH(?), 6()],
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and, if A is not empty (4 # ¢; ¢ is the void set), set
@) M(4) = 2QW5®) / 2 Q).

Thus M (A) is a weighted mean of the numbers (¢) at points ¢ ¢ 4.

We note the following properties of the function F, consequences of the
définition, (1).

If AC E, A # ¢, and if 9 is a fixed number in I, then

®) > QOFlF0, 0 = [Z IFM (4), )

(9) For fixed w ¢ I, F(u, v) as a function of » is strictly decreasing for v < u
and strictly increasing for » > w.
It follows from (8) and (9) that

(10) min ; RQWF[F®), 0] = LZA QWIFIM(4), M(4)],

that is, the minimum of the left member of (8) is attained for § = M (A).

Let 6(f) denote the maximum likelihood estimate, the function of the class
M minimizing J. Let 6' < 6° < --- < 6" be the r distinct values O(f) assumes,
and let E* denote the subset of E on which 6(¢) = 6°( = 1,2, ---, 7).

Lemma 1. M(E)) = 6° (G = 1,2, ---, 7). We have 6° = M(E®), for it is clear
from (8)-(10) that if 6° < M(E") then it would be possible to decrease J by in-
creasing O(¢) on E° while preserving the monotonicity of ©(t). A similar remark
shows that 6° < M(E").

Let S* denote that subset of E (a lower layer) on which 6(t) < 6, and set
S = ¢ (the void set). We have E' = {8™, 8} < 8¢ =1,2,---,7).

Lemma 2. If {R, S°} # ¢ then M{R, 8'} = M(E"). If {S*™", 8} = ¢, then
M{Si—l) S} £ M(El)(z =12-..-, 7‘).

For if M{R, S’} were greater than M (E"), it would be possible to decrease J by
increasing ©(¢) on {R, 8°} while preserving the monotonicity of 6(f). A similar
remark establishes the second statement.

TueoreM 1. For ty ¢ E we have

(11) 0(t) = max min M{R, S},
R Sitoe{R.S)
(12) O(t) = min max M{R, S},
8 Ritge(R,S)
(13) O(t) = max min M{R, S},
RjtoeR 8
(14) 0(t) = min max M{R, S}.
SitoeS R

Proo¥. Determine ¢ so that t, ¢ E*; then 6(t) = 6°. We have
min M{R, S} < M{R, %}

8;tge{R,S}
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if & ¢ R, therefore
max min M{R, S} < max M{R, S} = M(E’) = ¢

R 8itoe(R,8) Ritoe R
by Lemmas 2 and 1. Also
max min M{R,S} = min M{S7, 8} = M(E) = ¢

R Sitoe{R,S) Sitoe{S¥—1,8)
by Lemmas 2 and 1. The two inequalities yield (11), and the proofs of (12)-(14)
are similar. (The above proof of Theorem 1 through Lemmas 1 and 2 is a further
simplified proof suggested by the referee; it provides an alternative proof of
Theorem 2.2 in the preceding paper.)
Since any of the formulas in Theorem 1 determines the value of a minimizing
function 6(¢) at an arbitrary point of R, the minimizing function is unique on E.

5. Calculation of minimizing function. ' ] ) )
Lemma 8. If S D S, {8, S} # ¢, then M{S7, 8} > M{S, 8} = ME) =
0, if R < S (R, 87"} # ¢, then

[1/1{1'3781}<]‘4(-En)=0z (’i=1,2,"',7').

For by Lemma 2 M{S™™, S} = M(E");if M{S™", 8} = M(E®) then J could
be decreased by setting 0(f) = M(E®) = 6° on {87, S}. The proof of the second
statement is similar.

It follows from Lemmas 2 and 3 that E' = S'is the mazimal lower layer of
minimal mean: that is, the union of those lower layers over which the mean is
the minimum assumed by the means of all lower layers. The layers
E'G = 2,3, -+, r) may be determined successively by the use of the criterion:
E' = {87 8} is the mazimal layer of minimal mean among layers {S*, S}
(G =23, ,r). Similarly, E" = {§, 8’} = {8, E} is the maximal upper
layer of maximal mean, and the layers E‘(G = r — 1,7 — 2, .-+, 1) may be
determined successively by the use of the criterion: B = {87, 8%} is the
mazimal layer of maximum mean among layers {R, S*}.

For the one-dimensional case (n = 1), the method of calculation discussed in
[1] is also available.

6. Consistency. In order to discuss the consistency of the maximum likelihood
estimator, let again ®, be the fundamental space over which ¢ ranges, and let
the distribution parameter 6 = 6(t) be defined (though unknown to the investi-
gator) on an open subset © of ®,, and be monotone non-decreasing in each of
the variables #({ = 1, 2, ---, n). We shall suppose that the set E of points
t(k = 1, 2, ---, m) corresponding to populations from which sample values
are to be taken is in 0. For ¢ ¢ E, let O(¢) denote, as in Sections 4 and 5, the
maximum likelihood estimator of 6(¢). Let O(f) also denote an extension to ©
of 6(t) defined on E which preserves the monotonicity property; for the sake of
definiteness, let 6(f) = max (%) for & ¢ E, &, < t. For fixed ¢, the value of
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O(t) depends on the sample values from populations at points of E; accordingly
this value is a stochastic variable, which we denote by @(¢).

The content of the consistency theorem for the one-dimensional case (n = 1)
may be stated roughly as follows: at a point, f,, of continuity of 6(¢), the esti-
mator @(f) will with high probability be near 6(f), provided enough sample
values are taken at points ¢ near £ such that ¢ < < ¢y, and enough sample values
are taken at points ¢ near f, such that ¢ > > f,. This consistency theorem gen-
eralizes that given in [1] for the binomial case.

As in Section 2 we suppose that x is a random variable having a density func-
tion exp {—F[g(x), 6]} with respect to the measure », independent of 6, on the
class of Borel sets, where g(z) is a Baire function. The density function of the
stochastic variable y = g(x) with respect to the induced measure x = »g " is
exp { —F(y, 6)}; for a Borel set B on the y axis,

Pr(ye B} = [ exp (~F(,0)) dx
([6], p. 163). In particular, -
[ e (=4l @) ~ +@1} dx = exp O,

where v(6) = — [%2 dr(z). With the change of parameter r = 7(6), this integral
becomes a bilateral Laplace transform, representing an analytic function of 7
in its strip of convergence ([9], p. 240; [5], p. 67). The above hypotheses on x
in effect imply the convergence of the integral for 6 ¢ I and hence the analyticity
of v(0) and 7(8) on the interior of I. Straightforward calculations then yield

(15) E(y) = 6, Vary = —1/7'(6)
Let —1/7'[8(f)] be bounded:
(16) —-1/718@®)] < C fort ¢ o.

For the binomial distribution (—1/7'(v) = v(1 — v), 0 < » < 1) and the normal
with mean 6 and standard deviation 1(—1/7' = 1) for example, this is no re-
striction. For the Poisson (—1/7'(») = v, 0 < v < ) and the normal with
mean 0, variance 6 (—1/7'(v) = 2°), (16) requires that 6(¢) be bounded in ©.
For given ¢ > 0 and 4 > 0, let K = K(¢, 7) be a positive integer such that

> 1/ + 1/4K < £'/128C.
y=K

TuEOREM 2. Let n = 1. Let the above conditions on the family of populations and
on the function 0(f) be satisfied. Let ty be a continuity point in O of 0(t). Let ¢/, t”
be so chosen that t' < ty < t” and that |0(t) — 0(t)] < ¢/2 for ¢’ < t < ¢”. Then

Pr{|@(t) — 0(t)] < ¢} >1— 19

provided that at least K = K(e, 1) sample values are taken from populations at
points in [t', to] and at least K from populations at points in [ty , t”].
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The proof requires only minor modifications in the proof of the special case in
[1], and is omitted.

It is not difficult to see that for » > 1 the maximum likelihood estimator does
not have precisely the consistency property which is the obvious analog of the
consistency for n = 1. It is not true that, provided enough sample values are
taken from populations at points near f, and ‘“‘above” f, and enough from
populations at points near tp and “below” ¢, the estimator @(f) will assume a
value near 6(f;) with high probability. This can be illustrated with an example
in which the populations are binomial: each of the sample stochastic variables
yi(j = 1,2, ---, N(k)) corresponding to a population at f, assumes the value 1
with probability 6(t:) = % and the value 0 with probability 1 — 6(%) = %;
let 6(¢) = %. Let t, be a point of 0. Let E be an arbitrary finite set of points
in 0, and let the total number of sample values to be taken from populations
at points of E be H. Let Sy be a union of n-dimensional intervals, each of the
form {t:8! < d, £ £ d* - ,t" £ a"}, wherea =_(a', d’, -+, a") € R, . Let
the boundary of Sy contain no segment parallel to a coordinate axis. Let fy ¢ S,
and let Sp be so chosen that & ¢ Sy, for every point # ¢ E such that & > > f.
(8o can be chosen, for example, so that its boundary is a hyperplane separating
to from points #, > > & .) Now add to F points t* > > &, on the boundary of So,
obtaining a set E* containing F, and take one sample value from each of the
points added. By adding enough such points to E, the probability can be made
arbitrarily near 1 that at least 9H of the corresponding sample values will be 0.
Let S; be a lower layer (with reference to the extended set E*) containing those
points, and only those among the points added, where the sample value is 0.
Then if £, € {R, Si} we have M{R, S} < H/10H = 1/10, hence

0(t) = max min M{R, S} < 1/10.
R 8itoe{R,8}

It is clear that adding points to E near {, need not bring ©(f) near 6(f,) = %

with high probability, but can, indeed, if the points are added in a suitable way,

bring 6(f,) arbitrarily near 0 with arbitrarily high probability.

It appears not unreasonable to expect that the consistency property will hold
if the points of E are required, for example, to constitute a rectangular array.
To decide whether or not this is the case would appear to require a study of
properties of maximum means over layers in rectangular arrays, with a view to
obtaining an analogue of the theorem of Kolomogorov on which the proof of
Theorem 2 is based (cf. [1]). )

The above example suggests the possible desirability of grouping together
observations made at closely adjacent points, to avoid the paradox of the example
in which more observations may be made to yield less precise results.

It should perhaps be mentioned that if the points of E are held fixed while the
size of the sample from the population at each is increased indefinitely, then it
follows from the strong law of large numbers that, with probability 1, @(¢) will
approach 6(¢) at each point of E.
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