THE MOMENTS OF THE SAMPLE MEDIAN! 2

By Joun T. CHu anp HarorLp HoTeELLING

University of North Carolina

1. Summary. It is shown that under certain regularity conditions, the central
moments of the sample median are asymptotically equal to the corresponding
ones of its asymptotic distribution (which is normal). A method of approxima-
tion, using the inverse function of the cumulative distribution function, is ob-
tained for the moments of the sample median of a certain type of parent dis-
tribution. An advantage of this method is that the error can be made as small as
is required. Applications to normal, Laplace, and Cauchy distributions are dis-
cussed. Upper and lower bounds are obtained, by a different method, for the
variance of the sample median of normal and Laplace parent distributions.
They are simple in form, and of practical use if the sample size is not too small.

2. Introduction. Let a population be given with cdf (cumulative distribution
function) F(z) and pdf (probability density function) f(x), and median ¢ which
we assume to exist uniquely. Let Z denote the sample median of a sample of
size 2n + 1. Then the pdf g(z) of % and the pdf h(z) of the asymptotic distribu-
tion of Z are respectively

(1) g(@) = ClF@)]"[1 — F(2)]"f(x),
where C, = (2n + 1)!/(n!n!), and
@ ) = (o) MO,

where 7 = {4[fE)(2n + 1)}

This asymptotic normality of Z, when f(£) is known or replaced by an esti-
mate, can be utilized to obtain approximate confidence intervals and significance
tests for £. Whether or not such approximations are acceptable in practice is
another matter. On the other hand one may use Z as a point estimate of £. Then
we would like to know the variance g, of %, since it is a conventional measure of
efficiency. In most cases, however, the exact value of /i, is hard to obtain. When
looking for approximations, a general question that follows naturally is: Can
the moments of the asymptotic distribution of Z be used as approximations to
the corresponding moments of %, and if not, how to find better approximations?
When the parent distribution is normal, this question has been answered by
various authors, e.g., Hojo [6], Pearson [8], [9] and more recently Cadwell [3]. It
has been stated, e.g., in [3], that experiments showed that the distribution of %
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594 JOHN T. CHU AND HAROLD HOTELLING

tends rapidly to normality, but the ratio g,/&; tends relatively slowly to 1. Be-
cause of this slow convergence, approximations were derived for that ratio when
the sample size is small. While different methods were used by different authors,
their results agree fairly well with each other. In fact, the problem should be
considered as completely solved but for the unknown error committed in using
such approximations.

One of us [4] recently proved that the distribution of %, for a normal parent
distribution, does tend to normality rather “rapidly”. Here in Section 6, Theorem
4, we obtain upper and lower bounds for the ratio /g . These bounds are fairly
close to each other if the sample size is not too small. It seems therefore that
even for sample sizes around 20 or so, 7. is not a bad approximation to f.. It
becomes a very good approximation if the sample size is large. However, for
large samples, even ‘“‘better” approximations are obtained by a different method,
in (49) and (56) which are also better lower bounds for g, (for all n) than the
one given in (57). (See Section 6, Remarks 1 and 2)

Before further discussion, the following notations will be introduced. If f(zx)
and g(x) are functions of z, then E,(g) denotes the expectation of g(z) with

respect to f(z), i.e., f g(x)f(x) dz. We use, where f, g, and h are given by (1)
and (2),
i = FEy(2), m = Eu@) = §

y,{ = By(x — m), w = E,(z),

@

and for any integer k = 2,

@ io= Bz — w)', @ = Bz — m)f,
pe = Ey@ — m)*, m = Efx — p)".

It should be pointed out that, although the pdf g(z) of Z tends to h(z) as the
sample size increases, the moments i of Z in general do not necessarily tend to
@ . In fact G may never exist [2]. Nevertheless, if the parent pdf satisfies certain
conditions, then it can be shown that g, and g are asymptotically equal (Sec-
tion 3, Theorem 1). Therefore under such circumstance, it is justifiable, at least
for large samples, to use fix as an approximation to ..

If the parent distribution satisfies certain conditions, a general method is
obtained in Section 4 for computing g , k = 1, 2, - -- . The method is based on
the Taylor expansion of xz(F), the inverse function of F(z). For example, if
z(F) — &£ = Y meran(F — 1™ convergesfor 0 < F < 1, an = 0(2™m") where
k 2 0 and f(x) is symmetric with respect to x = £, then whenn > 2k + 3,

1
() Iy ~ fo SLC.F"(1 — F)" dF,

where C, is given by (1) and S, = D r1 a,(F — 3)" (Section 4, Theorem 3).
Error in such approximations can be bounded, and it tends to 0 as m tends to
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. If the parent pdf is not symmetric, similar approximations can be obtained
(Section 4, (26)). Applications are given to the variances of the sample medians
of Laplace and Cauchy parent distributions (Section 4, Examples 1 and 2).

Finally upper and lower bounds are derived in Section 7 for the variance of
% of a Laplace parent distribution. It then can be seen that for estimating the
mean of a Laplace distribution, the sample median is a “better’” estimate than
the sample mean, not only for large samples, but for small samples as well.

3. Large sample moments.

Lemma 1. If 0 £ ¢ £ §, then form,n = 1,2, -+,
1/24¢ 4c2
(6) f ]u _ %Imun(l _ u)n du = (%)m+2n+1f t(m-—l)l2(1 - t)n dt.
1/2—c 0

In particular, if ¢ = %, and C,, = (2n + 1)!/n!n!, we have for fived m,
1
) f Colu — 3[™u"(1 — w)" du = 0(n™"),
0

1-3---2m — 1)
@Cn+3)2n+5):---(2n+2m+1)’

8) / Culus — ™" (1 — w)" du = ()™

1
f Colu — 3" (1 — w)" du
0

)
3+ (@n42m —1) (m — 1)!

24---(2n+2m) @n+3)2n+5) - Cn+2m—1)°

- ot

These formulae are easily proved using transformations » = ==(u — 3}), etc.

TueoreM 1. Let a population be given with cdf F(x) and pdf f(x). Suppose that
the median ¢ of the given population exists uniquely and f(£) # 0, and f'(x) exists
and is bounded in some neighborhood of x = §. If % is the sample median of a
sample of size 2n + 1, and i and [, as defined by (4), are respectively the K
central moment of % and the corresponding one of its asymptotic distribution, then
(10) lim foza = for,

n-»>00

(11) lim [ng/ﬁzk = ]., k= 1, 2, cecy
provided that in each case, jiz—1 and fin are finite for at least one n. (The RHS
(right-hand side) of (10) s of course zero; excepting that @ = £.)

Proor. We will prove (11) as an illustration of the method we use. (10) can
be shown in the same way. Obviously

’ = 2k o%k—j 12%k—j /1
(12) ﬂ2lc = Mok + ZO j (—‘1) M1 iy
J el

where (%) = (2k)!/{j!(2k — j)!}. We say that if jx is finite for a certainn = no,
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then fiy is finite for all n = no, and
(13) I»‘;m—l = O(n—m)y

2 2n 4+ 3)2n +5) -+ (2n + 2m —
form=1,2,--- K,
where ¢; = 1/f(£). On combining (12), (13), and (14), it follows that
- (a\* 1-3--- 2k — 1) -y
18) .= <é‘> G T Den ¥ 5 et s O

Since iz = 1-3 -+ (2k — 1)& , where g, is defined by (2), we have (11).
To complete the proof, it remains to establish (13) and (14). Now for example,

pin = [ @~ 9"CF@I N — F@]f(a)da

(16) o ,
[ +[+] -n+n+n, sy

where a < ¢ and b > ¢ will be chosen later. For 0 < F < 1, the function

F(1 — F) is nonnegative, reaches its maximum } at F = %, and is increasing
for 0 £ F = 1 and decreasing for 2 < F < 1. Let

17) r = max {4F(a)[1 — F(a)], 4F()[1 — F(b)]},
then 0 < r < 1. Since C,, = 0(2*"n'"?), it follows that
(18) I, + I; = 0(n**™).

On the other hand, if @ and b are so chosen that, e.g., F(b) — 3 = 3 — F(a) = ¢
is small, then for + — ¢ £ F £ } + ¢, z(F), the inverse function of F(x), is
uniquely defined and may be expanded, by Taylor’s method, into

(19) a(F) — ¢ = a(F — ) + Ro(F — 3),

where a, = 1/f(£) and R, is the remainder. Substituting (19) for z — £ in I, of
(16), it can be shown, using Lemma 1, that I, is equal to the RHS of (14). Com-
bining this fact with (16) and (18), we obtain (14).

Regarding the above theorem, we make

ReMARk 1. A sufficient condition for i, being finite for some n = ng (hence
all » = my) is that ux be finite. This condition, however, is not necessary. For
example, the variance of the sample median of a Cauchy parent distribution is
finite if the sample size 2n + 1 = 5, though the variance of the parent distribu-
tion is infinite (Section 4, Example 2).

REMARK 2. Theorem 1 states only some sufficient conditions under which (10)
and (11) are true. For a Laplace parent distribution, f/(£) does not exist, yet (10)
and (11) hold (Section 4, Example 1).
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The above theorem provides a justification, at least for large samples, for
using fi; as an approximation to g . In the next section we will proceed to show
that if the parent pdf satisfies some additional conditions, then satisfactory ap-
proximations can be obtained for g for samples of smaller sizes as well.

4. Approximations.
Lemma 2. If k is real, then the following series is convergent for every positive
integer n > k,

(20) f:l [0 ' m*[2(F — 3)|"C.F*(1 — F)" dF.

Proor. Use Lemma 1 and the fact ([1], p. 33) that if .. = 0 and
M(@n/ Oy — 1)

approaches r > 1, then ) m; @y, is convergent; or apply the Stirling’s approxi-
mation, with m large, to the gamma functions obtained by putting ¢ = % in (6).

THEOREM 2. Let F(x) be the cdf of a given distribution and & and % be respectively
the median and the sample median of a sample of size 2n + 1. Suppose that z(F),
the inverse function of F(x), is for 0 < F < 1 uniquely defined and equal to a
convergent series of powers of F — ; let

1) 2(F) — & = 3 ol — P,

Write

(22) Sm = g} a(F — %), and R, = ”g“ a(F — 3).
If there exists a sequence {b,} such that

(28) 3 (au/ba)’ < o,

(24) S - 7 < w,

for0 < F < 1, and
0 1

(25) S b2 j (F — 3)™C, F"(1 — F)" dF < o,
m=1 0 .

Jor some positive integer value no of n, and fiz , the variance of %, is finite for n = ngq,
then for all integers n > no ,

1 .1 2
(26) f ="]-:’Ig {j; SnC.F"(1 — F)" dF — (‘[) SnC.F*(1 — F)" dF)} .

Further, if f(x) is symmetric with respect to &, then the second term in the bracket
should be omatted.
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Proor. For simplicity we assume that f(x) is symmetric with respect to 2 = £.
In this case 4 = ¢ and

@) = f_ : @ — 9 CF@I"[1 — F@I"f(2) do = [_ w + f " f,, )

= I 1 + I 2 + I37
where ¢ < £ and b > £ will be chosen later. It can be shown that
(28) I1 + Is = 0(’)7/1/27'"),

where r is defined by (17). Choose a, b, and ¢ such that 0 < 1 — F(a) = F(b) —
3 = ¢ < %. Using (21) and (22), we have

1

(29) |12—f0 SLC.F' (L — F)"dF | £ Jy + Js + Js + Js,
where

1
(30) Ji = * SsC.F"(1 — F)" dF,

+c

3—c
(31) Jy = S5.C,F*(1 — F)" dF,

0

$+e .
(32) Jy = f RLC,F™(1 — F)" dF,

i+e
(33) J, = L 2| SR | CaF"(1 — F)" dF.

By Schwarz’s inequality, we get
0 2 o 1
(30 JLi+J.56G3—¢) Zl (%) -m}':‘,1 b fo (F — 3™ Coy F*(1 — )" dF.

By (23) and (25), the two series on the RHS are convergent for n > 7. Hence
if n > no, J1 4+ J2 tends to 0 as ¢ tends to 3.
Further, from (32),

(35) Js = i (05'>2- i fo 1 bi(F — H)¥C.F*(1 — F)" dF,

r==m-+1 br r=m+1
© a 2 00 ar 2P w . 1 N
o) ns2[5(2) S (& Zu [ ¢ -vrera-rra
roal br r=m-+1 br rml 0
As m tends to infinity, J; + J4 tends to 0. Consequently for any fixed n > nq ,
1
37) i = lim [ SAC.F"(1 — F)" dF.
0

m->0

An immediate consequence of Lemma 2 and Theorem 2 is
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THEOREM 3. If, in the preceding theorem, a,, = 0(2™m") for some integer k, then
(26) holds for every n > 2k + 3.

Proor. Choose b,, = 2™m**",

Thus we have found an approximation for

1
(38) iy~ fo SL.C,F"(1 — F)" dF,

for all integers » which are not too small. The integral on the RHS of (38) can
be evaluated by formulas given in Lemma 1. An upper bound for the error com-
mitted in such approximation is given by the sum of the RHS of (35) and (36).
Finally we note that the same method can be used to obtain the moments of % in
general.

Exampre 1. Laplace distribution. Let f(z) = %¢™'*!, then F(z) = 1 — 6™
ifz =0, and F(z) = 1 if x < 0. Hence

1 R
(39) G =2 f} SC, F"(1 — F)" dF.

If} < F<l,thenz = —log2(1 — F) = Y sy m[2(F — H)]™. S0 an = 2™"m™.
It follows that forn > 1,

1 m 2
(40) f=tim3 [ {; 2 — %)1'} C.F(L — F) dF
) 1
(41) =3 v f [2(F — 3) " C,F*(1 — F)" dF,
M. 0
where ([1], p. 84),
(42) Wy = f; i m—r+ 1) =2m+ 1) f‘;r‘l.
If we use
2k—1 1
(43) i~ 2w fo |2(F — 3) " C,F*(1 — F)" dF,

then the error committed is bounded by
2.4...9
Cn+ D@ +3) - Crnt2%k—1)

In deriving (43a), we used the facts that w. is a monotonically deereasing se-
quence of m ([1], p. 85) and the Wallis ‘product ([7], p. 385)

1'3 e (2n —_— 1) 1/2 —1/2
24---@n 7

(433) 27wy (1 + %)(n + k)72

is a monotonically increasing sequence of n. Similarly if we use

2k 1
(44) B~ 2w [ |2(F — 3 ™ €1 — P dF,
Mam]l (4



600 JOHN T. CHU AND HAROLD HOTELLING

then the error is bounded by

(2k + 1)
P (1 * 2n> @n + 1)(2n + HEnCES =)

ExampLe 2. Cauchy distribution. Let f(z) = 1/x(1 4+ 2°), then
F(z) = = 'tan™ z + /2],

for —0o < 2z < 0,80 2z(F) = tan 7(F — %) for 0 < F < 1. It can be shown
that the variance of the sample median of a sample of size 2n 4+ 1 = 5 is finite:

(44a)

1
(45) f= [ tan'a(F — D) C.F"(1 — F)" dF.
0
It is known ([7], pp. 204, 237) that
m—1 22m(22m ) 2m—1 ™
(46) tanx—Z( 1) ~—(2—>'—Bzmx , f0r|x|<§,
where

— of_1\ym1 2m)! <~ —om
Bom = 2(—1) Wgr :

We see that a, = 0(2™), hence by Theorem 3, (37) holds if n > 3.

5. Normal distribution. Throughout this section, f(z) = (2m)™" %" and
F(z) = [Z.f@) dt, and z(F) is the inverse function of F(z). No simple general
form of the derivatives of z(F) at F = 1 is known. But the first few derivatives
of z(F) can be obtained by direct differentiation, e.g.,

de _ 1 dz _ 1 d >

aF = f(x)’ sz - f(x) d:v f(z)
For finite m and 0 < F < 1, let
@) z(F)=a(F =3+ alF —3)'+ - 4 anF — 3)" + Runs(F — ™,
then

a2 = a4 == e e+ = 0’
(48) a = @m)", a; = (2)"*/31, a5 = T(2m)"*/51, - - -,
(27r)5/2 2 4\ 522/
Rs = (7 + 462" + 242"e™ g, - -+,

5!

where [g(z)]r, = glz(Fo)], Fo = + + 0(F — 3)and 0 = 6 = 1.

A. A lower bound Take the integral (39), let the range of integration be
divided into two: 1 to £ + ¢, and 3 4+ ¢ to 1, where 0 < ¢ < 1. If we neglect
the last integral; in the first 1ntegral repla.ce z(F) by its expansion (47) with
m = 6, and then neglect all terms containing the remainder term R; (which is
non-negative), and finally let ¢ approach 1 and use Lemma 1, we are able to
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obtain a lower bound for the variance g, of % of a normal parent distribution
with unit variance, i.e.,

137
“9) e [1 + 2(2n 75 " @ T 5@ T 7)]’
where
(50) A2 = 7/2(2n + 3).

Incidentally, for n = 3, we may expand the RHS of (49) into a power series in
(2n 4 1) and obtain an approximation for

(51) @z ~ ﬁ2[1 - (2 - g) @n+1)"— @r —4—137/24)2n+ 1) + - ] ,
where f; is given by (2). In terms of standard deviations, and with the numerical
values of the coefficients computed, (51) is equivalent to

(52) @~ @1 — (2146)(2n + 1) — (.0806)(2n + 1)7F + ---].

This agrees with a formula obtained by Pearson for the same purpose ([8], p. 363).
B. Approximations for large samples.

(8) &=z PCFEMN - FeV@da=2[ +2[ =L+,

say. Since F(z)[1 — F(z)] < F(a)[1 — F(a)]ifz = a = 0and C, £ (2r)™[1 +
(2n))(2n + 1)22""*, it follows that

(54) L/ < (2/7)**(1 +3/2n)(2n + 1)**4F (a)(1 — F(a))]"2 f 22 2r) e da.

In I, use F as the 1ndependent variable, and replace z(F) by ai(F — %) +
a(F — —) + My(F — 1)° where M; = MmaXo<s<a K5 = (27)*A4/5! and A =
(7 + 46a° + 24a*)¢**", then

24 1 3-5
Li/\ £ 1+2(2n+5)+< ) <a+é‘z§) (2n 4 5)(2n 4+ 7)

7\ 24 3.5.7
(55) + <§> 351 @n F 5 @n + T @n F9)

+<1r>‘<A>2 3:5-7-9
2/ \5!) @n+5) - @2n+ 11)°

Combining (49), (53), (54), and (55), we conclude:

™

Gs ~ First Approximation: \, = 2@n + 3)°

(56)

. . ™
Second Approximation: A, [1 + m] :
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TABLE 1
Proportional error
Sample Size First approximation Second approximation
501 3.2 X 1073 6.8 X 10-%
201 8.5 X 1073 7.8 X 10
101 2.2 X 1072 6.9 X 1078
51 9.2 X 1072 6.3 X 1072

If the second approximation is used, an upper bound for the proportional error
(defined to be | (True value / Approximation) — 1 |) is given by the sum of the
RHS of (54) and the last three terms of that of (55). If the first approximation is
used, then there is an additional error =/2(2n + 5), the second term in the
bracket of the second approximation.

Table 1 is given for illustration. We choose successively for a: .35, .50, .65
.75. It is to be noted that the RHS of (54) is a decreasing function of » for, e.g.,
n = 25, a = .75. The RHS of (55) is obviously also a decreasing function of n.
Therefore what Table 1 means is that: e.g., for sample sizes =51 (not just =51),
if the first approximation is used, then the proportional error is =.092, or ex-
plicitly: 1 < /A, < 1.092.

6. Normal distribution—a different approach. In this section a different
method is used to derive upper and lower bounds for the variance of Z of a nor-
mal parent distribution with unit variance. We state

TuEOREM 4. Let % and fiz be respectively the sample median and its variance of a
sample of size 2n 4+ 1 drawn from a normal distribution with unit variance. If
g2 = 7/2(2n + 1) is the variance of the asympiotic disiribution of %, then

1 3/2< o 1 3/2
(57) Bn<1 —m) =F2/.“2§Bn(1 +27L> )

where B, = C,&)"@2m)"?/(2n 4+ 1), and C, = @n + 1)!/(n!n!). Further,
for all practical purposes and n = 4,

m 43
24n?(2n + 1)

1

1
<B <+t imE =1

1
1+ i
or
. 1
(59) B,~1+4—.
8n
Proor. By using the foellowing transformations consecutively,
(60) u="F(y), v=u-—4%

where F(y) = [Yo (2m)™V %62 4z, we obtain

1/2 ”
61) i = 20.(3)% [o S — 49" db.
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Let
(62) v =31 — Oy
then
(63) i = 2B, fo (2m) 2yEe=HORIGRDL (4 o 4 1YV2) gy
where Iy(t) = {(1 — ¢™*)™* 2 1forall t = 0. Further, it is known [10] that
(69 [ arier as < 30— e
0
Using (64), it can be shown that y* = mf’. Therefore it follows from (63) that
1 3/2

- I T

(65) fs = B, (1 TR 2) fiz.

On the other hand, we have from (63),
(66)  fia = 2B.f fo @m) e/ m)yha(t/ (20 + 1)) dt},

where ho(t) = e/ — ¢~*")"2 If we can show that (2/7)y’ha(t/(2n + 1)**) £ 1
for all t = 0, then

1 3/2
(67) e = B, (1 + é;i) s
Now y’ha(t/(2n + 1)'*) £ go(y) where
(68) go(y) = ¥'(1 — 4°)/40".

It can be seen that lim,.q go(y) = 7/2. Hence it suffices for our purpose to show
that go(y) is decreasing. Let a prime denote differentiation with respect to y. Then,

(69) 90@) = /20" )n@),
where
(70) ny) = v(1 — 4°) — ',

g1(y) = ga(y)v’, where ga(y) = o — 120,
giy) = (12/m)e " gs(y), where

u i
0s(y) = (x/6)ye”" — & j; e~ dz.

It is known [10] that

(1)

v 0
(72) e f ey =D, /13- (20 4 1),
0

n=0
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Hence gs(y) = Xm0 {m/6n! — 1/1-3 --+ (2n + 1)}5***". It can be shown, by
a similar argument used in [10] for a similar purpose, that

(73) 95y) = yYlaey™ + ar + @ + -],

where ¢y < O and a; > 0,7 = 1, 2, --- . Hence there exists a yo > 0 such that
g:(y) 20if 0=y <yoand gs(y) = 0if y = yo. So as y increases from 0 to o,
g2(y) decreases steadily from 0 to a minimum and then increases steadily to .
Consequently ¢:(y) first decreases steadily and then increases steadily. As

limy.0g1(y) = lim,.e g1(y) = 0,

it becomes clear that gi(y) =< 0 for all y = 0. Therefore go(y) is a decreasing
function of y. This completes the proof.
Finally we note that (58) is obtained by using n! ~ (27)
REeMARKk 1. The lower bound for g, given by (49) is better than the one given
by (57) if we use (59) for B, . This is so even if the last term at the RHS of (49)
is omitted. For

1/2nn+1/2e—n+(l2n)_1‘

2
™ ™

5en +3) T 1@ ¥ 3)@n T 5)

(74)

_ [ _(8—21r)n+20—7r:l
T 20@n + 1) 2@n + 3)@n + 5) |

Now if n = 2, the last term in the bracket of (74) is smaller than (2n + 2)~

and (1 + 1/8n)[1 — 1/(2n 4 2)]"* £ 1. Therefore the quantity in the bracket
of (74) is greater than

1 1 1\
l ———=zZ2|1l+ )\l —577FF—5) .
2n + 2 8n 2n + 2
For n = 1, direct comparison shows also that (74) is greater than the LHS of
(57).

REMARK 2. Since the upper bound (57) for j, is greater than (1 + 1/2n), we
cannot be sure that in using &, as an approximation to g, , the proportional error
is less than 1/2n. But if the second approximation given by (56) is used, the
proportional error is much smaller than 1/2n for large samples (Table 1). One
may say that (56) is a “better’”” approximation for large samples.

7. Laplace distribution. We shall now employ the same technique, used in
Section 6, to derive upper and lower bounds for the variance g of the sample
median £ of a sample of size 21 + 1 drawn from a Laplace distribution with pdf

(75) f@) = 37

Clearly, the variance in this rase of the asymptotic distribution of 7 is
1

(76) e =

2n + 1°
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We state
TrEoREM 5. If fi: and [, are as defined above, then
1 3/2 1 /2
77 B, (1 - m) < o/l < 1.51B, (1 + :2-7;) ’

where B, is given by (57) and (59).
Proor. It can be seen easily that . is equal to the RHS of (63) if v and ¢
satisfy (62) and

v
(78) v = £ 1e™" dzx.
We proved [4] that for all y = 0,
(79) v <11 - V),

From (62) and (79), we have y* = gf’. Hence it follows from (63) that /g
has a lower bound given by (77). :
Further, from (63)

(80) fs = 2Bnﬁ2/; (27)—1/2t2e—nt2/(2n+1)y2h2(t/(2n + 1)1/2) dt,
where ks(¢) is given by (66). We say that
(81) v'ha(t/(2n + 1)) < 151,

If this is true, then the RHS of (77) is an upper bound of ;/f; . Thus the proof
is completed.

To establish (81), we introduce, as in (68),
(82) 90(y) = ¥*(1 — 4°)/4,
where y and v satisfy (78). For all y = 0, go(y) is not smaller than the LHS of
(81) and

(83) lim go(y) = é as y— g-
Let a prime denote differentiation with respect to y, then
(84) go(y) = 2—?;391@),

where

(85) qi(y) = v — 4} — Jye.

(86) 71(y) = 3¢ 70:(y),

where

(87) 9:(y) = —120* + y.

(88) g2(y) = —1206™" + 1 = ga(y).

(89) gs(y) = 12673 — €.
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If f(z) is a function of z, and if as = increases from 0 to =, f(z) varies from, e.g.,
positive to negative, and then back to positive, we will write, for simplicity, as
2:0— o, f(z): +, —, +. Now

v

(90) 9:(y) % 0 according as y Z log 2,

and ¢5(0) = gs(«) = 1, and g(log 2) = —3. Soas y: 0 = =, gs(y): +, —, +.
Now ¢2(0) = 0, while go(0) = . We say that as y: 0 — o, g:(y): +, —, +.
Otherwise g2(y) = O forally = 0, so gi(y) = 0 and ¢s(y) = O forally = 0, as
¢1(0) = 0. Hence go(y) is steadily increasing. This, however, contradicts (83).
It follows that as y: 0 — o, gi(y): +, —, +. Now g:(0) = gi(®) = 0, hence as
y:0— o, g1(y): +, —. Therefore we conclude that as y: 0 — «, go(y) increases
steadily from 1 to a maximum, and then decreases steadily to 0. To find the
maximum of go(y), we first solve g:(y) = 0, which is equivalent to 20(1 + 2v) —
y = 0. Using table [12], we obtain an approximate solution y = 1.15. The
maximum of go(y) is then found to be 1.51. .

REMARK. The variance of the sample mean (of a sample of size 2n + 1) drawn
from a Laplace distribution with pdf given by (75) is 2/(2n + 1). It follows,
from Theorem 5, that the sample median has smaller variance than the sample
mean for sample size 2n + 1 = 7. In a recent paper, Sarhan [11] found that for
sample sizes equal to 2, 3, 4, and 5, the variance of the sample median is also
smaller than that of the sample mean.
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