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1. Introduction and Summary. It may frequently happen that a researcher,
wishing to decide which one of a set of alternatives to accept, finds that there
are several experiments available to him which he might perform to guide him
in reaching his decision. Thus he is faced with making a preliminary decision
as to which experiment or experiments he is to perform. If he admits the possi-
bility of performing more than one, then the question of how many, which ones,
and in what order arises. It is such questions as these that come under the head-
ing of comparison and design of experiments.

While a great deal of general theory of the design problem has been developed,
e.g., by Wald [1] and Maguire [2], few actual solutions of particular problems,
especially of the sequential type, have been investigated thus far. Robbin’s paper
[3] is the first published report dealing with various sequential rules for particular
nontruncated design problems. The basic purpose of this paper is to investigate
for certain cases the optimal design, which almost uniformly turns out to be
exceedingly complicated (see Section 3), and to propose and determine some
justification for certain simpler criteria.

Attention is restricted to problems in which there are but two alternatives,
or hypotheses, H; and H,, and it is required to decide between them with a loss
of one unit if the false one is selected, while no loss results from selecting the
correct one. Further, ¢ will denote the a priori probability that H, is true, and
the basic criterion for comparison will be the Bayes risks associated with the
various experiments. To say that an experiment is available to a researcher is to
say that there is a real random variable which he can observe whose distribution
is known under each hypothesis.

As an example of a situation in which this type of question may arise, consider
the problem of deciding between utilizing a use test as against a specifications
test for acceptance of a lot of manufactured items. A large lot of items has been
produced and a decision is to be made between, say, w;, and w, as being the pro-
portion of defectives in the lot. Let X = 1 or 0 according as an item selected at
random is defective or not as determined by subjecting it to a use test. Let ¥ =
1 or 0 according as an item selected at random is classified as defective (because
it fails to meet certain specifications) or not. If «, the probability that a non-
defective item fails to meet the specifications, and B8, the probability that a
defective item meets the specifications, are known, then both X and ¥ have a
binomial distribution with known parameter under each hypothesis.

Again, it might be that in the course of a series of treatments of a material
there are two points at which a certain characteristic may be measured, say
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the breaking strength of a metal undergoing a series of heat treatments. Let X
and Y, respectively, denote the value of the characteristic at the different points
in the process. It is reasonable to assume that under each of two simple hy-
potheses concerning the process and material, X and Y have prescribed normal
distributions.

In general, suppose that X and Y are two real random variables having dis-
tribution functions of F; and G, respectively, under hypothesis H; and with
corresponding densities f; and g; with respect to a common measure, ¥, such
that f; > 0if and only if g; > 0. Let Rz(¢) denote the Bayes risk against £ when
using experiment Z.

Now the computation and comparison of the risk, Rx(¢) and Ry(£), for all
£, which appears to be necessary in order to obtain an optimal design, is intrinsi-
cally complicated in most cases, as will be seen in the following sections. Hence
it is of some interest to investigate some more convenient criteria for choosing
between experiments. Any such criterion should, of course, dictate the use of
X if Rx < Ry (i.e., Rx(f) £ Ry(¢) for all§). To be able to check on this is but
one reason for interest in conditions that Rx < Ry . Another is that whenever
it is true that Rx < Ry, then regardless of the choice of actions open to the
researcher or the loss function used, use of X will never yield a greater Bayes
risk than Y. Also, if a total of, say, » independent experiments is to be per-
formed, the optimal sequential design is the nonsequential rule: take all n ob-
servations of X ([4], [5], [8]).

In Section 2.1 general conditions that Rx = Ry are derived, .some of which
are related to those obtained by Blackwell [5] via consideration of the standard
experiment. In Section 2.2 the Kullbach-Leibler (abbreviated hereafter as
K-L) information numbers are introduced, and it is shown, in particular, that
they provide a criterion which yields an especially simple necessary condition
that Rx £ Ry. The K-L information numbers are also considered as functions
of that transformation, ¢, such that the distribution of {(X) under H, is the
distribution of X under H,. The case in which all the distributions involved
are normal is analyzed in some detail in Section 2.3, where it is seen that the
K-L numbers do not yield a sufficient condition that Rx = Ry, though they
do yield a sufficient condition that Rx = Ry . The normal case gives an example
in which a second criterion, that of being “locally more informative” (Bayes)
at both zero and 1, yields a condition both necessary and sufficient that Rx <
Ry . X is termed locally more informative than Y at £ if £ lies in an interval
[£1, &] such that on [0, 1] n [£, &] Rx(¢) < Ry(£), with strict inequality at at
least one end point. This latter criterion is discussed further in Section 2.4.

The problem of determining the optimal designs, sequential and nonsequen-
tial, for the case in which all distributions are binomial and a fixed number of
experiments is to be performed is discussed in Section 3. The complete solutions
are found to be exceedingly complicated; a few are given. For the sequential
design, a system for obtaining the optimal design which avoids the complete
calculation of the successive risk functions was found.

In the final section, a sequential rule for terminating experimentation is con-
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sidered, and the problem of finding a sequential design which minimizes the
expected number of experiments is posed. Two reasonable designs are proposed,
are shown to be equivalent, and are shown to be better than either of the rules
which require that all observations be of the same random variable.

Throughout the paper it will be convenient to consider ¢/(1 — &), and this
will regularly be denoted by 7.

2.1. Uniform inequality of risk functions. With respect to a measure ¢, X and
Y have densities under H; as shown by

X Y
® H, h [0
Q-&€ H f ¢,

where fi(z) > 0 if and only if fo(x) > 0, and similarly for the g,’s. It is required
to decide which of the hypotheses is true on the basis of one observation, either
of X or of Y, with the usual zero-or-one loss.

Interest in the case of one observation stems not merely from general curios-
ity; but, as mentioned before, if for one observation Rx < Ry, then for any
number of observations, any set of actions, and any loss function, consistent
use of X yields a Bayes risk less than or equal to that of any other design. In view
of this strong property it is clear that the one-observation case holds some in-
terest, and that no criterion for choice of experiment should be seriously con-
sidered which would dictate the use of ¥ when Rx < Ry.

e

VI A

LemMma 2.1. Two conditions, each necessary and sufficient, that Rx() {

are:

) fo " min (s — 7,0) dE(u){ } fo " min (u — 7, 0) dF(),

(i) j: min (1 - %,o) dG(u){ }Lw min (1 —%,o) dH (),

where E and G are the c.d.f.’s of fo(x) / fi(x) under Hy and H, , respectively, and
F and H are the c.d.f.’s of g2(x) / g1(zx) under H, and H, , respectively.

Proor. From the well-known theory of Bayes solutions (see [3], Chap. 6),
the Bayes risk against £ using X is given by

VIA VIA

O R@=t [ i@a@+0-9 [ 5.

fa(@) [f1(2)>§/(1—§) f2(2) /f1(2) S &/ (1=£)
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With n = £/(1 — £), this can be written as

P f2@1f1=)gn f2@ 111
With
B = [ 5@ a),
fa(x) /f1(z)Su
(3) lRiFE.?} = fo u dE(w) — nfo dE(u) = £ min (u — 7,0) dE(u).
With
Fo) = [ £ &,
f2(@)/f1(x)Su
B:® _ _ [ _.["1 o
@ g —g“ﬂ—fo dF (u) ”fo - OF (u) —fo mln(l a,o>df(u).

With the analogous expressions for the risk associated with Y, the conclusion
is immediate.
<
LemMma 2.2. (i) Rx(%) {=} Ry(£) if and only <f
>

[orleza)al S o lts) o

where ax(£) s the probability, under H,, that in following the Bayes procedure
against ¢ with X, Hp, will be chesen.

VIA

@) If Gu) / u — 0 as u — 0, then Rx(f){ }RY(&') if and only if

f51<1+u)du{§}fo By<1+ )du,

where Bx(£) is the probability under H, that in following Bayes procedure against
& with Y, Hy will be chosen.
Proor. From equation (3) of the preceding proof,

) le(z) - / (w — ) dEG).
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Integrating by parts and noting that E(u) = 1 — ax(u /1 + u),
RE _[" >
@ = = [ ax (1 ) dEG.

From the similar expression involving Ry(£), concltsion (i) follows.

A parallel argument from equation (4) in the proof of Lemma 2.1 and G(u) =
Bx(u /1 4+ u) yields conclusion (ii).

TueoreM 2.1. Two conditions, each necessary and sufficient that Rx = Ry, are:

(1) fo/f1 and g2/ g1 have the same distributions under H, ;

(ii) fo/f1 and go/g1 have the same distribuiions under H, .

Proovr. The sufficiency is immediate from Lemma 2.1. To show the necessity,
suppose Rx = Ry; then for all » = 0, /

i

1) j:m min (u — 9,0) dE(w) = [n min (x — 9, 0) dF ().

Now, for any a > 0, let ¢,(x) = n min (x — a, 0) and let y,(¥) = —n min
(w— (a+1/n),0),n =1,2,8, --- . Then

@ [ 6.0 720 2B = [ (@nt) + 7 dP1)

for all n. Hence,

Ela) + f A — nu — a)) dEwW) = Fla)

alugatl/n

®)
+ f A = n(u — @) dF@).

alugatl/n

Letting n — «, E(a) = F(a), i.e., the likelihood ratios f2/f1 and g,/g: have the
same dlstrlbutlon under H,. It follows immediately that ax(¢) = ar(£), since
E(u) = 1 —ax(u/ 1+ u). But Rx(§) = tox(t) + (1 — £)Bx(£); hence, Rx =
Ry and ax = ay implies 8x = By, which is conclusion (ii).

2.2. Relations between Bayes risk and the K-L information numbers. With
these conditions that Rx < Ry, attention is turned to the relation between the

condition Rx < Ry and the K-L information numbers.

The mean information per observation of X for discriminating between H,
and H, when H; is true as defined by Kullbach and Leibler [6], [7] is

(22.1) Ix(1:2) = f_ : fi(z) log ?E’”ﬁ dy(x) i=1,
and
Ix(2:1) = [: f2(x) log ?Ex; dy(x) i=2.
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The mean divergence between H; and H, per observation of X is then defined
to be

(2.2.2) Jx = Ix (122) + Ix (2:1).

Ix(1:2) and Ix(2:1) will be referred to as the K-L numbers for X. The K-L
numbers and the divergence for ¥ are similarly defined.

It is noted that if the distribution of X is of the exponential type, i.e., fi(z) =
Bws)e”*, then

Ix(1:2) = log Blwn) + ‘(wl — w) B, [X];

(2.23) Blwn)
Ix2:1) = log[% + (w2 — w)E.,[X];
and

Jx = (wl - wl)(Ewl[X] - E@z[X])-

Thus, Jx is an interesting measure of the “distance” between H; and H, relative
to the random variable X, being the product of two often-considered measures.

If Ix(1:2) = I(1:2) and Ix(2:1) = I4(2:1), then one would say that, in
the K-L sense, X is the more informative. When considering an a priori prob-
ability, £, it seems natural to consider the numbers

(224) Ix(8) = £Ix(1:2) + (1 — §)Ix(2:1)

and Iy(¢) analogously defined. Then X is the more informative in the K-L sense
if and only if Ix(£) = Iy(¢) forallg, ie., Ix = Iy.

Comparison of Ix(¢) and Iy(f) provides a very simple criterion for choice
between X and Y, especially in the sequential design problem, where after the
Jth experiment one could simply compute the a posteriori probability, £;, and
choose as the (j + 1)th experiment that corresponding to the greater of Ix(£;)
and Iy(¢;). It is hardly to be expected that this rule would be optimal, but it
will be shown that it will never lead to use of ¥ when Rx < Ry . This rule also
possesses some other nice properties described later in the paper.

TaEOREM 2.2. If Rx < Ry, then Ix = Iy.

Proor: Again with £ and F as defined in Lemma 2.1,

W [wib@ =i [ 5@ e - 1
° N @S

Similarly, fo u dF(u) = 1. Hence, for ¢ any linear function

@ [ o) amw = [ 40) ar).



396 RUSSELL N. BRADT AND SAMUEL KARLIN

By Lemma 2.1, Rx < Ry implies

® [ min @~ 2,00 aB@) < [ min @ ~ 2,0) dF ().

0 (]
It is easily seen by (2) and (3), then, that for any concave function, ¢,
@ [ #) dBG) < [ o) dFG).

0 0
In particular, for ¢(u) = log u,
) Ix(1:2) = — fo log u dB(u) = —{ log u dF(w) = Iy(1:2);
while for ¢(u) = —u log u,
6) —Ix(2:1) = —_{ ulog u dE(u) < —-f ulog u dF(w) = —1I,(2:1).
0

Equations (5) and (6) yield the conclusion of the theorem.

An immediate corollary is that Rx = Ry implies Ix = Iy, ie., Ix(1:2)
Iy(1:2) and Ix(2:1) = Iy(2:1).

As will be seen in Section 2.3, Ix = Iy does not in general imply Rx = Ry.
However, in all of the special cases considered by the authors, including the
standard distributions—binomial, Poisson, Gamma, and normal—it was true
that Ix = Iy imphed Rz = Ry.

An illuminating view of the K-L numbers is obtained (see Theorem 2.3,
below) if it is assumed that all the densities under consideration are elements of
a class, {fo:w €92}, of densities positive on the same set, and that there is an
Abelian group, T, of transformations of the domain of the f,’s and a correspond-
ing group of transformations, T, of transformations of @ such that if X has
density f., then for ¢ ¢ T, ¢(X) has density fiw) = w({)fu, ie., d¢ ¢X) =
w(@™) dy(z). Finally, assume that given «; and w, in , there is a ¢ ¢ T such that

= f(wl).

As an example of such a class of densities and groups of transformations,
consider the T distributions

Il

(2.2.5) folx) = T ( ) e (w > 0,z > 0),
with T = {t.;:t(z) = ex, e > 0}, u(t;") = ¢, and i(w) = ew.

TueoREM 2.3. Ix(1:2) and Ix(2:1) are functions only of the transformation
that carries fi into fp and not of fi and f individually.

Proor. Choose ¢ ¢ T such that fo(z) = fi(t7z)u(t™"). Then

® fl(w)
_[ fiz) log W) dy(x)

~log ) + [ 1(a) log S ap(o.

1(1:2)

I

1)

I



DICHOTOMOUS EXPERIMENTS 397

To show that the value of the integral is a function of ¢ only and does not depend
on fi , choose fo & {f,} and let fi(x) = fo(s"x)u(s™). Then, with y = s 'z, "y =

t 7% = s 'z and (1) can be rewritten as

@ 10:2) = ~log ™) + [ 1) 1og 2L ayw).

A similar proof holds for 7(2:1) and the proof is complete.
For the example of the I' distributions, if the parameters under H, and H;

are w and aw, respectively, the K-L numbers are given explicitly as functions
of a by

(2.2.6) Ix(1:2) = a[—loga — 1 + q]

and
I=(2:1) = a[loga, 14 %]

It can be verified that for this class the relation between 7' and the K-L numbers
is one to one.

Whenever the random variable Y is obtainable from X by a relabeling—more
precisely, whenever there is a ¢ ¢ T such that ¥ and ¢{(X) have the same dis-
tribution under each hypothesis—we write Ye»¢(X). In such a case, clearly,
Ix = Iyand Rx = Ry.

If, as in the I' distributions, the relation between T and the K-L numbers is
one to one, then Ix = Iy if and only if Rx = Ry, since Ix = Iy implies
Ye {(X) implies Rx = Ry implies Ix = Iy. Without the one to one condi-
tion we have

THEOREM 24. Ye> {(X) implies Rx = Ry, and if the likelihood ratios, fo/f
and ¢g./¢1, are monotone in the same direction, then Rx = Ry implies that
Ye {(X).

Proor. The first statement is clear. Without loss of generality, let X and ¥
have the common density » under H; and densities f and g respectively under
H, . It then suffices to show that f = g.

From Theorem 2.1, if Bx = Ry, then

) [ W) dyte) = [ h() dp(z)  foralln = 0.
S (@) /h(x)Sn 9(®)/h(z)Sn
Let
{x :% < } = {z:z £ ()},
and

—
8
Q
B
IA
gf,_/
]
Y
8
IIA

’Yz(n) } .
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Since all densities are assumed positive together, it follows from (1) that v, =
v: . Hence,

@ {z:f(x) < nh(z)} = [:9(z) < wh(2)}.

If g(z0) > f(x0), then an 7 can be found such that f(xs) < nh(zs) < g(xs), con-
tradicting (2). If f(z)) < g(xo), then a similar contradiction arises. Therefore,
f=g,

2.3. The case of normal distributions. We now consider the case in which
both X and Y have normal distributions under each hypothesis. Since for normal
distributions, both the risk function and the K-L numbers are invariant under
affine transformations, there is no loss of generality in treating the situation
given by

X Y
(¢ H. N(,1) N(0, 1)
(1 - E) H2 N(", 0'2) N(m7 0)
where u = 0,m = 0, and ¢° = 0.
The interest in a thoroughgoing study of this case follows from the central
role of the normal distribution in statistics, especially in that determination of

the cases in which Ix > Iy and in which Rx < Ry in terms of the parameters
p, o*, m, and v would be of use in asymptotic comparisons for many types of

problems.
The K-L numbers for X are:
. 2
(2.3.1) Ix(1:2) = %[log =14 ~1—2 + &2],
(/2 g
and;

Ix(2:1) = %;l:logal2 - 14624 u’].

Those for Y are the same, with the obvious substitutions.
TureoreEM 2.5. The following three statements are equivalent:
() Bx = Ry;
(i) Ix = Ir;
(i) o =vandp =m.
Proor. By Theorem 2.2, (i) implies (ii) and clearly (iii) implies (i). Assuming
(ii) to be true,

2 1 2 2
(1) log-<%>+%—;=’_n__*fz,

and

)] log (a%) 02— v =m— p
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Then if (iii) is false, it must be that ¢ > v, which leads to thé follow-
ing absurdities: .

Cask I: o > 1. Upon adding equation (1) to —v™" times equation (2), it is
seen that 4’ is of the same sign as

@) A(o?,v)=(v+1)log<%2>+§2—l—v2+v.
But A(y, v) = 0, and 9/(3¢>) A(d%, v} = 1/4* (¢* — v)(I — o) < 0. Herice,
' < 0, a clear absurdity.

Cask II: ¢* < 1. Starting with the sum of equation (1) and —o° times equa-
tion (2), a similar argument reaches the absurdity m* < 0.

The same line of reasoning establishes the

CoroLLARY: For v < o°, Ix(1:2) = Iy(1:2) implies that Ix(2:1) > I¢(2:1).
Forv > o, Ix(2:1) = Iy(2:1) implies Ix(1:2) > Iy(1:2).

For a further analysis of the case of normal distributions, assume p and o*
fixed, ¢ > 1, and consider the (», m°) plane. The results of the remainder of
this section may be summarized by figure 1, where the h; are defined as follows:.

Y

Fia. 1

hi: () = v{log o + (W + 1)/0’} — vlog (v) — 1, and Ix(1:2) = I(1:2)
if and only if m® £ h(v);

ho: he(®) = 4* + ¢* — log &® + log v — v, and Ix(2:1) = Iy(2:1) if and only
if m* £ ha(v);

2
het ha®) = (@ — 1) {az‘j‘ : + log f}

v .
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And h; has two equivalent characterizations:

(i) Let £x be the maximum £ for which Rx(£) = £ and let £y be the maximum
& for which Ry(t) = ¢. Then

< <
ix { =} & if and only if m’{ =} hs(v), respectively.
> >

(i) Rx < Ryifand only ifv < o and m® £ hy(v).
Rx = Ryif and only if v = o® and m® = hs(v).

One of the more curious aspects of this is that no matter how great may be
the difference in the means, m and g, under H,, that random variable having
the smaller variance under H, cannot have a risk uniformly less than or equal
to that of the random variable having the larger variance.

That h@) < ha() for v < o* with equality only for » = o’, that h(v) >
ha(v) for v > o, and that hy(v) > 0 follow from Theorem 2.5 and Corollary.

Thus, by Theorem 2.2, a necessary condition for Rx < Ry is that m* < min
[m(v), h2()]; and for Rx = Ry, that m’ = max [l(), h(v)].

We now consider the risk functions, and for simplicity it will be assumed until
explicitly stated otherwise that v = 1 and o® = 1. The probability of the two
types of errors when using the Bayes procedure based on Y are:

(232) ar(®) =1 — Pr<|Y+v—{‘—1 < vT\/Zl‘/’””' w— 1)1ognzv|H1>,

and

<011'\/m2-|— (w—-1) logn’*vlfﬁ),

Br() = Pr<

m
Y+v—l

where it is to be understood that ay((!) = 1 and By(¥) = 0 whenever m +
(® — 1) log #'v < 0.

Thus, R+(8) = far(®) + (1 — & _s(§) = £ form’ + (v — 1) log 4’2 <0,
i.e., for small £ Furthermore, Ry(£) < & for £ such that log 7> —-m/—1)+
log v). This latter follows from d/df Ry(§) = ar(f) — Br(£), a fact quite gener-
ally true in statistical games with two states of nature, two actions, and a zero-
one loss function ([8], Sec. 6.3).

Together with the analogous results for Rx(), it is clear that a necessary
condition that Rx S Ry is that

[ 2> M
02__1+loga =v_1+logv,

or

(2.3.3) m? < hs(0) = (@ — 1) {;-2 ”_2 1 + log %2}
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It may be verified that

>0, 120 <
(2.3.4) h@) — h(®) <=0, v = o%
<0, v > ok

Hence, any pair (v, m®) with hy(v) < m* < l() and 1 £ » < ¢° provides an
example in which X is the more informative in the K-L sense but does not have
a uniformly smaller Bayes risk.

For 1 < v < o°, the most restrictive necessary condition that Rx < Ry thus
far obtained is that m® < hs(v). Omitting much of the tedious algebraic details,
we now show that this is also sufficient.

LemMma 2.3. For fived v > 1, Ry(£) is a nonincreasing function of m for each .

Proor: From equation (2.3.2) it follows that, with

L=4//@—1)vVm+F (v — 1) log %,
A -] Lol 2
+ "'1\/‘; [: exp [—515 (t - v?-n-_vly] dt.

Letting asb denote that a and b are of the same sign,

a s LV | =Ly

[YRTENE TR, W AL, N

where the rather complicated expression denoted here by A can be shown to be
zero. Carrying out the indicated differentiation and integration in the second
term and effecting a similar reduction, we have

(3) 567;& Ry(®)s '-)—\/:-;}{exp [—%v <L + v—"_j_giy:l - exp[— 210 (L - —1%)—1—)2]} .

Since L = 0, 3 / (dm)Ry(¢) < 0, which completes the proof.

Now let ¢ be a nonnegative differentiable function of »(v > 1) with ¢(¢*) = 4’
Set m* = ¢(v) and consider Ry() as a function of ». From equation (1) in the
proof of Lemma 2.3,

@

2

i |

(2.3.5) f(R’(E) >= L p[——(t - vC)”]dt - n_[ ¢ gy,

where
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and

By a sequence of steps parallel to those of the proof of Lemma 2.3, we arrive
at the conclusion:

a3 acv—1 Lz-l-i)(;"2 ~LC _ GLC
2 mr(0s X0 o (LI e -

(2.3.6) 1 1
+ PRI [L (& — v’C* — v) exp [-—55 ¢ - vC')’] dt,

where

dc _ (v = 1)¢'(v) — 26(v)
@ 20— 1)V
Now take ¢ = ks, in equation (2.3.3); dC /dv = —(1 + »C®) / [20(v — 1)C].

For this choice, the right member of (2.3.6) is nonpositive for all L = 0. To
show this, consider the right member of (2.3.6) as a function, ¢, of L for L = 0.
Now, ¢(0) = ¢(+ ) = 0. Hence, it will suffice to show that there is an L* such
that /(L) < 0 for L < L* and /(L) 2 O for all L = L*. Differentiating ¢
and simplifying,

23.7) ¥V (L)se™ [L -1 ";,”Cd] +1+ 12X e,
Let the right member of (2.3.7) be denoted by ¥(L). Then
(23.8) ¥(L) = &*° [1 +2C (L -1 +C”C2>] +1
and

v'(L) = 4C%*°(L — vC)

Hence, v is concave on the interval (0, vC) and convex on (vC, + «). But
7(0) = 0, v(+®) = 4+, and 4’(0) < 0. Therefore, there exists an L* such
that v, and hence ¢/, is negative for L < L* and positive for L > L*. In this
way the proof is complete for

Lemma 2.4. For m* = bs(), v = 1, Rr(£) is a nondecreasing function of v for
each &.

Combining the last two lemmas with the fact that for 1 20 2 ,m < k()
is a necessary condition for Rx < Ry, while forv = o*, m* = hs(v) is a necessary
condition for Ry < Ry, gives

LEMMA 25.Forl1 £v £, Rx < Ry if and only if m* < hs(v), while for
v= o, Ry < szfandonlyzfm = hs(v.)

Smce this necessary and sufficient condition that Rx < Rrfor1 = v = o
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was obtained from consideration of the behavior of the risk curves for small £,
it was conjectured that their behavior for ¢ near 1 would yield conditions that
Rx ; RY .
LemMA 2.6. For v and o both greater than 1, a necessary condition for Ry < Rx
is that v = o°, and a necessary condition for Rx < Ry is that v < o°.
Proor.
limg.1 [Re(8)]/ (1 — §) = —limgy R7(§) = —limgy (ar(¥) — B(§)) = 1,
and the same relation holds for Rx(t). Then for
(1) D(ﬂ) = RY(E)I - Rx(f) ,
- ¢
D(n) > 0as g — +.
The method of proof is to show that for all sufficiently large 7,
D) <0 ifv <o,
o >0 ifo> az,
and hence that for £ sufficiently near 1,
<0 forv <o

R:(D) = B0 {> 0 forv>d.

"y _ 1 dt ’ ,
D'(p) = (T {1 — )[Ry (® — Rx(¥)] + Ry(¥) — Rx(d)}

(2) —ul(e=D+A - —m/(v—1)+L ] e
xe_'ldt—.[, " gy,

say(t) — ax(®) =

wiet—1—a V2 /o--L V2m

where
L=~v/@@—-1)vVm+F (v — 1) log 7% and
A=oc/@" = 1)Vt + (o* = 1) log n’o".

A-Sﬂ—"+°°’

T (>1 forv <o’
@3) L /=1 )
A =1 <1 forv> o,

and both L and A — + . Hence, for v < ¢, L — A — 4 and for all suffi-
ciently large 7,

m ___711'__ _ 1 _ _ ]
@ (_v—l"L’ v—1+L)D( e 02—1+A>’

and it follows that D’(y) < 0. On the other hand, if » > ¢’, A — L — +;
and the same reasoning shows that for all sufficiently large 5, D'(y) > 0.
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It has, then, been completely determined, for » > 1 and o > 1, precisely
when Rx < Ry and precisely when Rx = Ry, namely,

TueoreM 2.6. For v > 1 and & > 1,

(i) Rx < Ryif and only if v < o* and m* < ksy(v), and

(i) Rx = Rrif and only if v = o" and m’* = hs(v).
~ The case v < 1 and o* < 1 may clearly be converted, by interchange of H;
H,, to the above case; whereas if » and o” lie on opposite sides of 1, neither
Rx < Ry nor Ry £ Rx can hold, since for v < 1, R¢(¥) = 1 — £ on an inter-
val (El ’ 1)'

2.4. Locally more informative experiments. The notion of being “locally
more informative” arises naturally from the example just analysed. We will say
that X is locally more informative than ¥ at £ if £ lies in an interval [£, &] such
that on [£, &) n [0, 1], Rx(¢) < Ry(£) with strict inequality at one end point.
The example of the normal distributions provides an instance in which a neces-
sary and sufficient condition that Rx < Ry is that X be locally more informa-
tive than Y at the two points 0 and 1.

For binomial distributions, the form of the risk curves makes it immediately
clear that locally more informative at 0 and 1 is equivalent to uniform inequality
of risks. Thus, if the parameters are given by

X Y
H, D1 Q1
H p @ (2 > ),

then, in terms of the parameters, Rx < Ry if and only if

322@21>1—q2>1—pz or Pyl—@, s 1-m

"G Tl—qg 1—p o 1l—aq _q1=1—p1'

Another instance in which locally more informative at 0 and 1 is equivalent
to uniform inequality of risks is the case of the T' distribution (equation 2.2.5).
From this it is easily found that if the parameters are given by

X Y
H 1 w1 01
H 2 w2 02 )

then Rx = Rylf and only'if wz/wl = 02/01 % 1or wz/wx § 02/01 é 1.

The conjecture that if all the distributions belong to the same exponential
family, then being locally more informative at zero and one is equivalent to uni-
form inequality of risks, may be shown to be false, however, by the example in
which dy(x) = % da.

3. Optimal designs for a binomial testing problem. If we now consider the
case in which a total of n experiments is to be carried out, the question arises
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as to how difficult it would be to obtain, for a specific case, the optimal sequential
designs. If they are practically obtainable, the interest in any other design cri-
teria which have some justification though not optimal is reduced to pure curios-
ity. It is found, however, that this is not the situation. For the case of binomial
distributions, the optimal designs for small n were found and are given below
for a few of the cases in order to illustrate the intrinsically complicated structure
of the optimal designs.

Suppose that X and Y have binomial distributions with parameters given by

X v
H p q
H, ¢ D,

that the observations are independent, that the total number of observations to
be taken, n, is fixed, and that the cost of observation is independent of the true
hypothesis, of the random variable observed, and of the outcome of the ob-
servation.

The complete form of the solution for the case n = 3 will now be exhibited.
The solutions are expressed in terms of [0, 1] on the 5 axis corresponding to sub-
intervals of [0, 1] on the { axis, which by symmetry may be extended to [0, 1]
on the ¢ axis. (I denotes indifference.) We only present here the best optimal
design of the first experiment for the case n = 3. The description of the optimal
designs for the remaining steps will be omitted.

(3.1) For p(1 — p)* > q(1 — ¢)* and p(1 — p)’ < q(1 — ¢)™:

optimal choice : I : X : I : X : I : Y
" 0 (_q_>3 (g)” dl—¢ ¢l—9 1—7p
D p/ pA—-p)pA—-p) 1—g¢

Forp (1 — p)* > q(1 — ¢)*and p(1 — p)’ > ¢(1 — ¢)*:

optimal choice : I ¢ X : I : X I : X
; 0 (g>3 <g>2 ¢ —p ¢l —¢q ¢ —o*
P p/ p1—p) p(l —p) p(l—p)

For p(1 — p)’ < q(1 — ¢)* and ¢*(L — ¢)’ < P’(1 — p)™:
optimal choice : I, : X : I : X N

IENCRCA S H =

For p(1 — p)* < ¢(1 — ¢)*and (1 — ¢)° > P’(1 — p)*:
optimal choice : I : X : I : Y : X : I

EERONONER =

—
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where
A= 1-PA-p—9—-gd0—-09
1-9*1—-p—9 —p(1-p)

4. A nontruncated design problem. In the preceding sections attention has
been fixed entirely on design problems in which the sample size was fixed and in
which we were interested in reducing the Bayes risk. In considering nontrun-
cated procedures, any design will, if only it calls for a sufficiently large number of
observations of relevant random variables, reduce the risks from the terminal
decision below any arbitrary level. What we do here is fix a risk, », and consider
certain designs with a view to minimizing the expected number of experiments
required to reduce the risk from the terminal decision to at most r. If the ex-
periments have equal cost, this is equivalent to reducing the risk to at most r
in the most economical way.

One idea in considering the nontruncated problem below was to create a
symmetric problem in the hope that more satisfactory results could be obtained.

Suppose, as in the previous section, that X and ¥ have binomial distributions
with parameters given by

X v
® H, Y4 q
1—-8&8 H ¢ P (®>0,p(1 —p) > q(l — @)

The problem can be stated as being that of minimizing the expected number
of observations required to move the a posteriori probability for H; to a position
in either [0, 7] or 1 — #, 1].

Three reasonable rules are considered and shown to be equivalent, and are
shown, by a more general theorem, to be better than always using either one of
the experiments.

Let £ = £ and let £; denote the a posteriori probability for H, after having
made the first j observations. It will be convenient to consider the problem in
terms of the variable y = log n = log ¢ / (1 — £). Then let

a=log§,
el L= P
b—logl_q,
and
A= —logl_r.

Let n denote the smallest value for which either ¢; < rorg; = 1 — r. It is
seen there are two random walks, both on the y-axis with boundaries at 4 and
—A, one of which is determined by the results of observations of X and the
other is determined by the results of observations of Y. After having made j
observations one finds that the walk has arrived at the point v; . Now the choice
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must be made as to whether it is better that v;,; should be determined by an
observation of X or of ¥, i.e., whether the next step should be taken in the
X-walk or in the Y-walk. A rule is desired prescribing for every situation which
walk should be taken in order to minimize the expected value of n.

If at the (j 4+ 1)th step X is observed, the expected movement in the walk is

(4.1) Exlyjn — vil = &Jx — Ix(2:1).

Since Jx is positive, Ex[y;s1 — ;] is an increasing function of v; and is positive
fory; > —y* = log [Ix(2:1)]/ Jx.
Similarly, if Y is observed, the expected movement is

(4.2) Evlyiyn — vil = &Jx — Ix(1:2),

which is again an increasing function of v; and is positive for v; > v*.

It can be verified that ¥* > 0 and hence, for v; > 0(¢; > 1), the X-walk
yields an expected step greater in magnitude than the Y-walk and in the “right”
direction, i.e., toward the nearest boundary, 4. For v; < 0, the Y-walk enjoys
the same advantages, — A being the nearest boundary.

These considerations lead to the conjecture that, at least for a small relative
to 4, the optimal design may be to take the X-walk on the (j + 1)th step if
v; > 0 and to take the Y-walk otherwise. (If p(1 — p) < ¢(1 — ¢), the same
results will hold with X and Y interchanged.)

Another reasonable rule would be to use X on the (j + 1)th step whenever,
starting from v;, observation of X consistently to termination of experimenta-
tion has a smaller expected number of observations than consistent observation
of Y. Let X denote the rule requiring X at every step, let E[n | X, , v, Hi
denote the expected number of steps in the X-walk with £ as the starting point
when H; is the true hypothesis, and let

En|X,,v] = ¢En| X, ,v, H] + (1 — En|X,, v, Hil.
Using Wald’s well-known approximations, we find that
Eln| Yu,v] — Eln | Xu, ]

_ Ix(1:2) — Ix(2:1) T e“"]
T TL(1:2)Ix(2:1) {5 [A 7= 2

(4.3)
—24 ALy

At —1 P A L
%('Y)=—'Y+A(2E“‘1)+2A'GTA"‘:T—2A{ i = 1 +e“—_—l :

¥(0) = ¥(4) = 0 and, at least for 4 = log $, ¥"(y) is positive and then nega-
tive as v increases from 0 to A. Hence, ¢(y) = 0 on [0, A] if ¢/(0) can be shown
to be positive. Now,

(4.4) V' (0)s4 + 4(4 — 2) + 24e* — 24e™ — ¢4 (4 + 2).



408 RUSSELL N. BRADT AND SAMUEL KARLIN

At A = 0, the right member of equation (4.4), together with its first three
derivatives with respect to A, is zero, while the fourth derivative is positive for
all A = 0. Therefore, ¢’(0) > 0 for A > 0, and it follows that

(4.5) En|Yy,v] — Eln| X,,v]1 >0 for v > 0;
and by the evident symmetry,
(4.6) En|Y,,vy] — Eln|X,,v] <0 for v <O.

Thus, the design which requires the use of X on the (j + 1)th step if v; > 0
and of Y if v; < 0 coincides with
(i) Choosing the random variable which has the largest expected movement
and that toward the nearest boundary, and
(ii) Choosing the random variable corresponding to the smaller of
E[n I Xoo ’ 71] and E[n ‘ Yeo ’ ‘Yi]*
It is easily seen that it also coincides with
(iii) Choosing the random variable corresponding to the larger of Ix(¢;) and
Iy(¢)).
Of course, in view of the fact that we have used the Wald approximations, the
description in (i) should be understood as being only approximately valid.

Let the design thus characterized in four ways be denoted by M. This section
concludes with a general result which shows that M is better than either X,
orY,.

By a stationary design we shall mean a design in which the choice at the
(7 + 1)th step is a function only of the a posteriori probability after the jth
Step, Ei .

TueoreM 4.1. Let X and Y have densities f; and g; , respectively, under hypothesis
H; such that both log f2/fi and log gs/g: assume positive and negative values with
posttive probability. Let Dy and D, be two stationary designs, and let D be that design
which requires, at the j + 1th step, the random variable corresponding to the smaller of
En| Dy, v, and Efn | Dy ,v;]. Then Bn | D,y < min {Eln | Dy, ), Eln | Dz, 7]}

Proor. Let T; = {y: for v; = v, D; requires X at the (j + 1)th step}. With

_ ) X0
O -gmra-onm 4 T =ler—7g,
14 E‘y[nlDirTx('Y)]) if'YSI‘,',
(1) E[nle’ 'Y] =41 + E'y[nlDi') TY(’Y)]) if‘YZI‘,',
0, if |y] > A.

By some simple probability considerations it is easily seen that for any sta-
tionary design D', E[n | D', v] is uniformly bounded in v.
Define the function H and the set © by
E[nlD1,'Y] fory eoO,

@ H(y) = min Eln | D;,v] = {En|D.,v] for v £,
: 0 for |y| > A.
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Then with ' = (I';n 0) u (I'; — 6) (which represents the region according
to the design D where D requires X ), we have

G(y) = H(y) — E(n|D,v)

3) E,(n|D:Tx(y)) — Eyln|D,Tx(v)], veT,
=<Ey(n|DjTy(y)) — Eyln|D, Ty(y)], veT,
0, vl > 4,

where D; and D} are the appropriate designs. It is also clear that D; calls for a
continuation of Tx(y) when v is in T, and a similar result is valid for D} . From
(2) and (3), we obtain that

EG(Tx(v)], veT,
(4) G(’Y) ; E‘Y[G(TY('Y)]’ vYEe P)
o, lv| > A.

It suffices to show G(y) = 0. Let v, denote a sequence of points where |y,| < 4
and such that inf, G(y) = lim, .. G(v.). It follows from (4) that either a sub-
sequence v.; + log fa(x) / fi(x) exists such that

f z(x)

ir;f Gly) = 1331 G(vn; + log o

with probability 1, or a subsequence v,, of v, exists such that

. T gz(x))

inf 6 = 1im & (1ms + log 20
with probability 1. As both likelihood ratios are less than one with positive
probability, there exists a choice A(A > 0) such that either lim; G(v,; — ) =
inf G(y) or lim; G(ym; — A) = inf G(y). Let us again denote the sequence which
fulfills this last requirement by & so that lim, G) = inf G(7v). Repeating
the argument a finite number of times, we arrive at a sequence v¥ < —4 and

lim, GwY) = 0 = inf, G(v), or Gy) = 0.
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