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1. Summary. The assumptions appropriate to the application of analysis of
variance to specific examples, and the effects of these assumptions on the result-
ing interpretations, are today a matter of very active discussion. Formulas for
average values of mean squares play a central role in this problem, as do assump-
tions about interactions. This paper presents formulas for crossed (and, inci-
dentally, for nested and for non-interacting completely randomized) classifications,
based on a model of sufficient generality and flexibility that the necessary as-
sumptions concern only the selection of the levels of the factors and not the
behavior of what is being experimented upon. (This means, in particular, that
the average response is an arbitrary function of the factors.) These formulas are
not very complex, and specialize to the classical results for crossed and nested
classifications, when appropriate restrictions are made.

Complete randomization is only discussed for the elementary case of ‘“no
interactions with experimental units”’ and randomized blocks are not discussed.
In discussion and proof, we give most space to the two-way classification with
replication, basing our direct proof more closely on the proof independently ob-
tained by Cornfield [17], than on the earlier proof by Tukey [20]. We also treat
the three-way classification in detail. Results for the general factorial are also
stated and proved.

The relation of this paper to other recent work, published and unpublished, is
discussed in Section 4 (average values of mean squares) and in Section 11 (various
types of linear models).

INITIAL DIscussion

2. Introduction. During the last years of the last decade it was relatively easy
to believe that the analysis of variance was well understood. Eisenhart’s summary
article of 1947 [5], when combined with the work of Pitman [13] and Welch [15]
on the randomization approach (work published in 1937-1938, which ever since
has been far too much neglected), seemed to provide a simple, easily understand-
able account of the foundations. But as the years have passed, both statisticians
and users of analysis of variance have gradually become aware of a number of
areas in which we needed to deepen our understanding. One of these is the rela-
tion of formulas for average values of mean squares to assumptions. These are
of central importance, since the choice of an ‘“error term’’ as a basis for either
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significance tests or confidence statements must at least take into account average
values of mean squares. (It would be very desirable to consider, also, variances,
covariances, and distributions of mean squares, particularly if one is concerned
with the detailed validity of an F-test or a multiple-comparisons procedure. Aver-
age values, however, seem absolutely essential.) These average values should
apply when there are real effects and should not be confined to so called ‘“‘null”
hypotheses. To derive them we must make assumptions, but they should be as
weak as possible.

The present paper deals with one aspect of the problem of average mean
squares. After introducing this aspect, and describing the situation which we are
to treat, we shall relate both this aspect to other aspects of current interest and
our work to the work of others.

Difficulties in applying the analysis of variance to even a two-way model have
arisen in the so-called mixed model where rows are sampled and columns are
completely enumerated. Of two recent standard textbooks, one concludes that
the average value of both row and column mean squarés includes a component
of variance due to interaction [11]; the other finds such a component in column
sum of squares, but not in rows [1]. Both texts assume that observed values are
linear combinations of certain fixed and random variables, but differ in the na-
ture of the restrictions that are imposed upon these variables. Granting either
text its assumptions, its conclusions necessarily follow.

In analyzing the given body of data, the choice among such assumptions can
lead to quite different answers. The choice is thus an important one. But it is not
a simple choice. At one stage in the development of his ideas about two-way
classifications, one of the authors, who leans toward linear models, had 512
alternative sets of assumptions. If they had led to 512 sorts of analysis, the situa-
tion would obviously be quite impractical. The only effective way out of such 2
difficulty was to obtain a single flexible model which could be specialized to any
one of the 512 special possibilities. This was done in [20] (and independently in
[17] and in [21]).

The question of what assumptions to make seems, at first glance, to be a
purely empirical question, one that should be referred to the subject-matter
knowledge of the experimenter, who is the expert on such matters. Sometimes
this is helpful and sometimes not. But closer study shows that the choice of as-
sumptions depends on more than empirical questions about the behavior of the
experimental material. It depends on the nature of the sampling and randomiza-
tion involved in obtaining the data (as has been recognized by many statisti-
cians, and recently emphasized by Kempthorne and by Wilk). Moreover, it often
depends on the purpose of the analysis, as expressed by the situations or popula-
tions to which one wishes to make statistical inference. These dependences imply
diversity, and adequate treatment of diversity requires flexibility of as-
sumption.

After a general initial discussion (Sections 2-6), various descriptions of the
situations treated are given (Scctions 7-12). The results (Sections 13-19) come
next, and are followed by the proofs (Sections 20-28).
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3. A pigeonhole model. These requirements of flexibility are met by the system
of assumptions which we are about to describe, which specify an object appro-
priately called a pigeonhole model. Given the values of each of the factors
(variables), we are directed to a pigeonhole containing a finite or infinite popula-
tion. This population represents the possible results of experimentation with these
values of the factors. So far we have made no assumptions about how the factors
combine to produce the typical effect of each combination. (This typical effect
will often be taken as the arithmetic mean of the population of possible values in
the corresponding pigeonhole.) We have made the assumption that we can recog-
nize the different levels of each factor, and we shall shortly make assumptions as
to how we sample this array of pigeonholes. Neither of these is an assumption
about “how the world behaves’’; both are assumptions about the experimenter’s
behavior (and are consequently much easier to check).

We have emphasized the generality of our assumptions; we must also emphasize
their limitations. We are concerned with situations where the variability of ex-
perimental units (plots, reactors, epochs, mice, etc.) does not play such a pre-
dominant role as to require special attention in the design of the experiment.
We shall not attempt to treat such well-known situations as randomized blocks,
which have been recently studied by Kempthorne [8] and Wilk [16]. (See the
next section for a discussion of mutual relations and distinctions.)

Let us be specific about the case of the two-way classification. Let there be
RC pigeonholes arranged in R rows and C columns. Let there be at least = ele-
ments in the population in each pigeonhole. Let a sample of r rows be drawn
from the R potential rows. Let a sample of ¢ columns be drawn from the C
potential columns. The r¢ intersections of a selected row with a selected column
specify the rc pigeonholes which become the cells of the actual experiment. In
each of these rc cells, let a sample of n elements be drawn. The values of the
ren elements thus obtained are the numbers which are to be analyzed. Assume
that all the samplings—of rows, of columns, and within pigeonholes—are at random
and independent of one another. This is the only assumption we shall make. Note
that it is an assumption about the set-up of the experiment and not about the
behavior of those things on which the experiment is performed.

While the generality of this model is quite apparent, its flexibility may not be
completely evident. If we choose B = r and C = ¢, then rows and columns be-
come fixed, and we have a fixed model which generalizes Model I of Eisenhart
[5], since (i) neither normality or constant variance is assumed for the cells, and
(ii) no assumption is made about interactions.

If, at the other extreme, we take R and C both infinite, we have a “random”
model which generalizes Model II of Eisenhart, since (i) neither normality or
constant variance is assumed for the cells, (ii) normality is not assumed for the
row and column populations, and (iii) no assumption is made about interactions.

If we take C = c and R infinite, then we obtain a generalization of the conven-
tional mixed model.

Thus our model is flexible enough to cover all the classical cases, and many
others besides.
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Our model can be described from two apparently quite different points of
view, namely, as an example of urn sampling or in terms of a very general linear
model. (By urn sampling we shall mean what is usually referred to as sampling
without replacements from a finite population.) We shall give both descriptions,
striving to take as different points of view as we can about them. An understand-
ing of either description should suffice as a basis for the interpretation of the
results.

4. Relation to other problems and workers. Historically, the understanding
of the average mean squares, and of the formulas relating them to the underlying
models, has developed separately for the different relations which classifications
have to one another in the customary situations. The order of development has
usually been the same. First, average mean squares aré obtained under simplify-
ing assumptions, and then new formulas are obtained as these assumptions are
relaxed, usually successively. The initial assumptions, whose removal is often
very important, are typically of the following sorts:

(1) some classification does not interact with one or more others;
(2) the “errors’ are solely (or practically solely) due to the experimental
units used;
(3a) the levels of a certain variable are fized;
(3b) the levels of a certain variable are a random sample from an infinite
population.
When we remove these assumptions, we remove (1) or (2) entirely, and replace
(3a) or (3b) by
(3) the levels of a certain variable are a random sample from a population
of arbitrary size.
We shall describe assumption (2) as ‘“no free errors” and assumptions (3a) and
(3b) as “fixed—"" and “infinite sampled—"" respectively.

The foremost distinction between the different relations between classifica-
tions is the minimum number of classifications which can enter this relation.
Thus two (or more) classifications can be crossed or nested. Three (or more)
classifications are involved in randomized blocks, in a simple fractional factorial,
or in a Latin square. At least four classifications appear in a lattice, and so on.

First, let us discuss the relations which need involve only two classifications:

(1) Nested (or as some say, hierarchical) classifications. Here the general
situation was clarified first, and general formulas have been available for some
time. (The early clarification of this case may have been due to its intimate rela-
tion to the precision of multistage sampling.)

(2) Crossed classifications. The case of random interactions was treated early
(cf. [5], [8], etc.), and in varying degrees of generality, the most general being in
[14].

For the important case of arbitrary interactions, we know of nothing which
antedates Memorandum Report 18 [20], which stated a general rule for crossed
and nested cases. (However, informed understanding of the limiting cases of
“fixed’’ and ““infinitely sampled” cases seems to have been present among some
users hefore this time.) The rule for the limiting cases was stated by Kempthorne
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([8], p. 574). The general results for the two-way classification were obtained by
Cornfield [17] and by Wilk [21], independently of each other and of Memoran-
dum Report 18. All three approaches to this result were from somewhat different
points of view. Kempthorne ([19], pp. 204-220) has discussed the general two-way
situation, basing his treatment on [21]. Bennett and Franklin (2] have sketched a
proof for the two-way classification (without replication) (pp. 474-477), and have
stated the result for the three-way case (p. 394).

Wilk and Kempthorne [24] have treated the case of the general two-way classi-
fication with general sampling of the two factors, with replication, and with
complete randomization of experimental units, but without free errors or inter-
actions with experimental units. They have also [23] dealt with the three-way
classification, with general proportional numbers in a cell, general sampling of all
factors, complete randomization of experimental units, free errors only restricted
to be of the same variance, but with no interaction with experimental units.
Wilk [25] has continued the analysis of the three-way classification, treating both
interaction with experimental units, and, separately, the analysis of cell means
for general disproportionate cell numbers. Like the earlier work at Ames, this
work was carried out independently of ours, in ignorance of the existence of
[20] and [17], and before the appearance of [2].

A short proof, using more special techniques, has been found for the two-way
classification by Hooke [18], who has been able to obtain variances and co-
variances as well as average values of mean squares.

(8) Free random allotment (complete randomization). The case of no interaction
with experimental units was treated in [14] (p. 73) and is discussed briefly in
Section 10 of the present paper. (Other cases appear in [21], [23], [24], and [25].)

The important case of arbitrary interaction was first discussed by Wilk [16],
who has treated a more complex case in [25].

Next come the relations involving a minimum of three classifications. The
fact that three classifications are necessarily involved does not always appear in
the corresponding analysis of variance. Thus in a randomized block experiment,
treatments, blocks, and plots must all appear, though there is no trace of plots in
the analysis of variance. The recent development of formulas for average mean
squares for such relations between classifications has been in the hands of Kemp-
thorne and Wilk, as the detailed summary will now show. The present authors
have done no work in this area.

(4) Randomized blocks. The case of no interaction with experimental units
(with plots) is classical, and formulas are well known.

The important case of interaction with experimental units was first treated,
under certain restrictions, by Neyman (with cooperation of Iwaskiewicz and
Kolodzieczyk) [12]. Some particular cases were followed up by McCarthy [10].
The case of arbitrary interaction (not distinguishing technical errors) was first
discussed in the book of Kempthorne ([8], Sec. 8.4). This treatment was extended
to the case where each treatment appears p > 1 times per block by Wilk [16].

(5) Randomized fractionation (asin the classical Latin square where rows and
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columns refer to experimental units). The cases where all interactions are assumed
zero are classical.

The case of a somewhat restricted interaction of treatments with experimental
units was approached by Neyman (with cooperation of Iwaskiewicz and Kolod-
zieczyk) [12]. We understand that this problem is treated in [23], which we have
not seen, and in ‘“‘complete generality’’ in further unpublished work of Wilk and
Kempthorne.

(6) Crossed fractionation (as in a simple fractional factorial without blocks).
Here the results for no interactions are classical. Nothing else seems available.

(7) Mized fractionation (as in a “Latin square’’ with two factors and one family
of blocks). As for (6).

The work on this class of relations has been restricted to randomized blocks
and Latin squares. Thus its importance depends very greatly on the field of ex-
perimentation considered.

In much of agriculture, and in many related fields, the thought of not having
blocks within which to randomize never occurs to the statistician. The errors
he faces are large, even in small blocks, and variability from experimental unit
to experimental unit may dominate all other sources of variation. Blocks are all
important, and confounding with blocks is common. He is almost, but not quite,
justified in refusing the adjective ‘“‘experimental’” to a situation without blocks
and in calling it ‘“‘sampling” instead. But there are areas of inquiry, in parts of
modern industrial technology, in the study of many measurement processes,
and in other areas (usually far from biology), where errors are relatively small
(compared to high-order interactions), blocks can be very large, and complete
randomization is the order of the day. In these latter areas, treatment of nesting,
crossing, and random allotment suffices. In the former areas, treatment of ran-
domized blocks comes first, though it needs to be supplemented with treatments
of the simpler relations. The problems selected for initial attack by the inde-
pendent groups working on average values of mean squares reflect their back-
grounds. .

We should come now to relations involving a minimum of four classifications
(for example, simple lattices). But no work seems to have been done beyond the
initial classical results for no interaction.

The present paper is concerned with the crossed classifications and, in the
statement of rules, with combinations of crossed, nested, and noninteracting
completely randomized classifications. In its general presentation and discussion
it undoubtedly makes use not only of ideas from the references and research
reports cited, but also of the valuable personal discussions which its authors have
had with almost all the persons mentioned above, with H. Fairfield Smith,
Franklin E. Satterthwaite, the late Charles P. Winsor, and others. It would be
impossible for us now to assign specific credit relating to specific ideas to spe-
cific persons. We owe a particular debt to Kempthorne and Wilk for illuminating
discussions.

6. The two spans of the bridge of inference. In almost any practical situation
where analytical statistics is applied, the inference from the observations to the
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real conclusion has two parts, only the first of which is statistical. A genetic
experiment on Drosophila will usually involve flies of a certain race of a certain
species. The statistically based conclusions cannot extend beyond this race, yet
the geneticist will usually, and often wisely, extend the conclusion to (a) the
whole species, (b) all Drosophila, or (c) a larger group of insects. This wider
extension may be implicit or explicit, but it is almost always present. If we take
the simile of the bridge crossing a river by way of an island, there is a statistical
span from the near bank to the island, and a subject-matter span from the island
to the far bank. Both are important.

By modifying the observation program and the corresponding analysis of
the data, the island may be moved nearer to or farther from the distant bank,
and the statistical span may be made stronger or weaker. In doing this it is
easy to forget the second span, which usually can only be strengthened by im-
proving the science or art on which it depends. Yet a balanced understanding of,
and choice among, the statistical possibilities requires constant attention to the
second span. It may often be worth while to move the island nearer to the distant
bank, at the cost of weakening the statistical span—particularly when the sub-
ject-matter span is weak.

In an experiment where a population of C columns was specified, and a sample
of ¢ columns was randomly selected, it is clearly possible to make analyses where

(1) the ¢ columns are regarded as a sample of ¢ out of C, or

(2) the c columns are regarded as fixed.
The question about these analyses is not their validity but their wisdom. Both
analyses will have the same mean, and will estimate the effects of rows iden-
tically. Both analyses will have the same mean squares, but will estimate the
accuracy of their estimated effects differently. The analyses will differ in the
length of their inferences; both will be equally strong statistically. Usually it
will be best to make analysis (1) where the inference is more general. Only if
this analysis is entirely unrevealing on one or more points of interest are we
likely to be wise in making analysis (2), whose limited inferences may be some-
what revealing.

But what if it is unreasonable to regard ¢ columns as any sort of a fair sample
from a population of C' columns with C > ¢. We can (at least formally and nu-
merically) carry out an analysis with, say, C = «. What is the logical position
of such an analysis? It would seem to be much as follows: We cannot point to a
specific population from which the ¢ columns were a random sample, yet the final
conclusion is certainly not to just these ¢ columns. We are likely to be better
off to move the island to the far side by introducing an unspecified population
of columns “like those observed” and making the inference to the mean of this
population. This will lengthen the statistical span at the price of leaving the loca-
tion of the far end vague. Unless there is a known, fixed, number of reasonably
possible columns, this lengthening and blurring is likely to be worth while.

This discussion follows the line of the classical discussion of ‘“selecting the
right error term,” as developed by Fisher and expounded by many statisticians,
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with two considerations rarely faced except in careful discussions of groups or
series of experiments (cf. Chapter 28 of [8] for references):
(1) We admit that more than a single analysis of given data may have
“correctness.”
(2) We have tried to state the uncertainties of the post-facto C = « choice
a little more specifically than usual.
In any case, however, this discussion illustrates one way in which the nature of
the appropriate analyses of variance depends on the purposes of the analysis.

6. The varied roles of randomization. Emphasis on randomization of arrange-
ment entered modern statistics with the analysis of variance—in the early work
of R. A. Fisher. The year 1935, in which Neyman (with cooperation of Iwaskie-
wicz and Kolodzieczyk) [12] discussed the problem of interaction with experi-
mental units, was marked by the appearance of The Design of Experiments, in
which Fisher stressed both the role of randomization as a guarantor of the valid-
ity of an experiment and the close correspondence, in certain examples, of tests
of significance based on randomization (assuming no interaction with experi-
mental units) with those based on an assumption of normality of distribution.

Two years later, in 1937, the first papers of Pitman’s series on randomization
appeared. Pitman was seeking tests of significance which would be independent
of the underlying distribution, naturally tried for randomization tests, and was
much surprised when the natural approximation to these tests turned out to be
the classical normal theory tests. This series of papers culminated in his ‘Bio-
metrika paper [13] which dealt with randomized blocks. In the meantime, Welch
[15], had applied similar methods to both randomized blocks and Latin squares.
In all of these papers, the assumption was made that there were no interactions
with experimental units. As clearly stated, the motivation of these papers was
to obtain tests which would apply to any distribution of errors, and randorniza-
tion was used to mediate this independence of distribution.

The treatment of Pitman and of Welch went far beyond the subject of the
present paper, the average values of mean squares. They dealt with a function
of the ratio of mean squares, and obtained a number of moments. For the cases
they treated, their results go farther than our knowledge for any other situations.
They treated randomized blocks and Latin squares explicitly: Implicitly their
results cover any less restrictive randomization; in particular, their results also
cover complete randomization. Their work was carried out for the case of one
classification of treatments. Implicitly, it applies to cases of two or more treat-
ment classifications, but only if these treatment classifications do not interact.

We have today no comparable basis for the analysis of factorial experiments
where interactibns may be present and where, hence, the main effects will usually
be compared with interaction. Our knowledge is limited to average values of
mean squares, except for the work of Hooke [18] on second moments in the two-
way case. To reach a situation comparable to the case of a single classification
of treatments will require an extension of Hooke’s work, both to higher moments
and to more-way classifications. The essential difficulty is the probable existence



AVERAGE VALUES OF MEAN SQUARES 915

and possible perversity of interactions. No assumptions about randomization
will allow us to avoid facing them. For the present, presumably, we shall con-
tinue to base our inferences on average values of mean squares, and try to com-
fort ourselves with distant and tenuous analogies with the single treatment
classification case where, if interactions with experimental units be absent,
Fisher, Pitman, and Welch have shown us that the situation is rather pleasant.

If one is dealing with situations where the contributions of the experimental
units to variability is large or even dominant, it is easy to alter the role of ran-
domization somewhat. Instead of thinking of it as a mediator which assures the
validity of significance tests for any shape of error distribution, as Pitman did,
one. can think of it in itself. (If the effects of experimental units dominate all
other sources of variation, it is not only easy but necessary.) This point of view
was vigorously taken up by Kempthorne [8], [9], and has strongly motivated the
work of Wilk and Kempthorne [21], [22], [23], [24], [25], [26].

While we hold rather definite views, we do not feel that the issues involved
have been finally settled. We do feel, however, that a knowledge of what the
issues are is essential in understanding just how far average values of mean
squares take us and how our work is related to that of others.

DESCRIPTION OF SITUATIONS TREATED

7. A description from the point of view of urn sampling. We consider a finite
or infinite number of elements (possible measurement results on animals, plots,
batches, samples, ete.). These elements are classified into R rows (litters, days,
blocks, pressures, temperatures, times, etc.) and C columns (doses, operators,
treatments, temperatures, times, catalysts, etc.). Each of the RC pigeonholes.
thus formed contains N elements. In some circumstances it is natural to consider
the RCN elements as a population, in others it would be unnatural.

A sample of r rows is taken, each row having probability r/R of being selected.
Given that a particular row has been selected, the conditional probability that
any other given row will have been selected is (r — 1)/(R — 1).

Similarly a sample of ¢ columns is taken, each column having probability
¢/C of being selected. Given that a particular column is in the sample, the con-
ditional probability that any other given column will be in the sampleis (¢ — 1)/
C - 1.

Every pigeonhole located in a sampled row and a sampled column is thus a
cell included in the sample. The pattern of cells so obtained might well be called
a bisample, since it is defined by two samples, one of rows and one of columns.
In each such cell # elements are sampled, each element in the sampled cell having
probability n/N of being selected. Given that a particular element has been se-
lected from this cell, the conditional probability that any other element in the
cell has. also been selected is (n — 1)/(N — 1).

These are the only assumptions we shall need (for the situation with which we
are concerned). From the point of view of urn sampling, we have only to define
the variance components corresponding to such an array of RCN elements.
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Notice that our definitions of variance components apply to fixed models and
mixed models as well as to random ones. There has been a tendency to refer
to random models as variance components models, presumably because the
analysis associated with a fully random model is most likely to be' directed
toward the estimation of variance components. This choice of words has already
given rise to confusion in connection with mixed models, and its continued use
will undoubtedly cause other complications. We recommend that it be discarded.

Since we have to deal with two sets of rows, columns, and cells, one set in the
original array of RCN elements and one in the array of rcn elements we actually
have at hand, it is unusually important to make a clear distinction in our nota-
tion. We shall do this by using capital letters for all that has to do with the under-
lying array and lower case for all that has to do with the observed array. Thus

Zij = value of kth element in jth column in the ¢th row in the observed
array, )

Xpx = value of Kth element in the Jth column in the Ith row in the under-
lying array.

(This convention will be altered in Sections 23ff). We shall indicate an unweighted
mean over observed values by a dot in place of the subscript averaged over,
and over underlying values by a dash in place of the subscript averaged over.
Thus
zij. = mean value of all observed elements in the 7th row and jth column,
X1, = average value of all underlying elements in the pigeonhole in the Ith
row and Jth column.
We can now define the variance components of the underlying array by

0?2 = m ; (XI—— X———)2;
2 2
¢ = C—-—_l.rz-:l (X—J—- X——-—) )

R C

e . _ 2
Orc = (R 1)(0 1;11};{ (XIJ— XI——- X—-J— -+ X———) )

= g T o,

where
N

U?J = N—l_"i Z_:l (Xux - Xu—-)z-
These formulas reduce to the standard ones in all familiar special cases.

We observe that the variance components thus defined are exactly the mean
squares we would obtain if all the values in the entire pigeonhole model were
subjected to analysis of variance, except for factors of N, NR or NC.

The description we have just given is both less and more general than the
model of Section 3. It is less general because we assumed that all populations
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were of the same size. It is more general because we did not require that the
sampling be purely at random, but only that any pair of rows, columns, or ele-
ments was as likely to enter the sampling as any other. We shall now see that
these differences are nonessential.

We assumed a constant population size for the purely expository reason that
we had not introduced the subscripts when we mentioned population size. We
can now alter three sentences or clauses to read: “The IJth pigeonhole contains
Ni; elements,” “each element in the sampled cell having probability n/Ni,
of being selected,” ‘‘the conditional probability ---is (n — 1)/(Ny — 1).”
After this alteration the urn sampling model is at least as general as our initial
model (see Section 3).

In the initial model we assumed that all samplings were “at random.” Since
we are only concerned with averages of quadratic functions of the sampled
elements, it would be merely an application of a general principle to conclude
that if the results hold for sampling “at random,” they must also hold for
sampling “in which individuals and pairs have equal chances of being selected.”
We may, if we wish, consider that the initial model has been so generalized. The
initial model and the urn sampling model then became equivalent.

8. Linear models with “tied” interaction. For convenience in exposition, we
shall take » = 1 and drop the index k for most of this section. Under these con-
ditions, the conventional linear model of most texts would appear like this:

Zij =0+ &+ n; + wij,

where the £; are the row contributions (sometimes called “‘effects”), the #;
are the column contributions, and the w;; are error or discrepance contributions.
Various normalizing conditions may or may not be applied. The s, the ¢’s,
and the w’s will be variously assumed to be fixed or random samples from in-
finite (or perhaps finite) populations. But the key assumption will be that the
variation of the w’s is tndependent of what the &s and »’s may be. It is this
assumption of independence which has made the use of such linear models so
special and dangerous.

In particular, this model cannot accommodate the following situation easily
described in terms of four pigeonholes:

N(0,1) N(@©,1)

NE© 1) | N, 1)

where N (u, ¢°) stands for a normally distributed infinite population with average
value u and variance ¢*. The independence assumption is an assumption about
the behavior of the world, and not just about how we do experiments.

Although some have expressed doubts, there are real advantages to linear
models.
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It has therefore been worth while to learn how to generalize linear models to
apply without assumption.

Let us go, therefore, to a situation with R potential rows and C potential col-
umns, where I designates a potential row and J designates a potential column,
If f(Z, J) is an arbitrary function of I and J, we may choose to define

6 =fl——),

& =fI,—) = f(— ),

= f(—J) = f(—= ),

My = [, J) = f(I, =) = f(— J) +f(— —),

where replacement of an “I” by a “—’ implies averaging over all R potential
rows and replacement of a “J” by a “—” implies averaging over all C potential
columns. (Note that other definitions are possible.) "

We shall then have

f(I; J) =0+ &+ "IJ+)\IJ,
where ‘

A— = a constant = A_,

(and where indeed this constant is zero, and Y ¢ = 0 and ) 5, = 0, although
we shall not require any of these to vanish when we use this model).

Now if we pick r rows out of R and ¢ columns out of C, we may designate actual
rows and columns with #’s and j’s, and write I(z) for the potential row corre-
sponding to actual row %, and J(j) for the potential column corresponding to the
actual column j. If z;; is the value of f[I(z), J(5)], we have

Tij =04 &+ 9 + Nij,

where we have written §; for &y, n; for 75 , and \;; for Ay - We have
here an additive model for a bisample of rows and columns drawn from an ar-
bitrary B X C array of constants. How does this differ from the “independent”
model in which w;; is assumed independent of £ and n,? How is it to be de-
scribed?

It differs in that the \;; are “tied” to the corresponding £; and », . They are
“tied” in a very specific way, however. It need not be true that \;; is a well-
defined function of the values of £; and #; , for there may be, for example, vari-
ous pairs of values of I and J for which the corresponding £; and 5, have the
same values but the corresponding \;; are not equal. Thus );; is tied to & and
n; through the values of I(¢) and J(j) rather than through the values of &,
and 9;.

But what if the pigeonholes contain populations, and we sample one element
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from each actual cell. Can this be treated similarly? Quite easily. Let

f(I,J) = Xy = ]‘\'}—‘qux:
K

Wik = Ty — f(I, J).

Then, if the sampling in each cell is at random and independent, w;; is a random
sample of 1 from a population Dy s¢; Whose average value is zero, and

zi; = Xrooi.x = fI, J) + wij
0+ &+ 5; + Aij + wii,

where, although X\;; and w;; have the same indices, they represent quite different
sorts of quantities. The A’s are interactions tied to the £’s and the »’s, while the
«’s are independent fluctuations.

9. Main effects and main contributions. All those who use the analysis of
variance are familiar with.the words “main effect,”” but far fewer have any really
clear understanding of what they mean. Yet all specific analysis of variances
procedures imply very specific interpretations of what it is that concerns us.
Any practically satisfactory structure for the analysis of variance must bring
the essential definitions into the limelight.

Because there is likelihood of confusing the quantity in the model and its
estimate derived from the observations, we call the quantity in the model a
main contribution. This is its name, but what is it? Usually only a relative defi-
nition makes sense. We talk of main contributions, but we work with their dif-
ferences. What then does the difference ¢ — & mean in a situatiort modeled by

Zij =0+ &+ 0+ Nij + w5

with the two conditions
A~ = a constant = A_;,
ave {wr} = 0.
Let, again,
f(I, J) = average response in the IJ pigeonhole;

then ,

0+ &+ 0 + v = f, J),
and we eagily find that

b - & = S1,—) — §(K,—) = £ T ULT — K, ).

This states that the difference in main contributions between the Ith and Kth
rows is the average over all C potential columns of the average effect of changing
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from the Ith to the Kth row. The average is over all potential columns, and for
the present definition is equally weighted. What is most important in defining
row main contributions is our choice of what are the potential columns.

This is the heart of the problem of main contributions—it is our attitude to-
ward the other factors which affects the definition of a main contribution. A
change from considering rows as fixed to considering rows as a sample from a large
population need have no effect at all on the definition of row main contributions,
but it will substantially alter the definitions of the column main contributions.
It is only when we have relatively explicit definition that we can force ourselves
to recognize this fact.

We stated that an alteration in the set of potential rows need not alter the defi-
nition of the row contributions. This is so because we have not required that
>~ & = 0. We have not made this requirement because it serves no useful pur-
pose. (Its imposition would make all the £; estimable from an experiment, but
there are two reasons why this would not be useful: (i) Because we are interested
in estimating .only the differences £; — §¢; anyway. (ii) Because, usually, only
some of the £; appear as §; = {1, and since the others can surely not be esti-
mated, what do we care about one more unestimable parameter? By making
one more parameter unestimable, we have gained inestimable freedom.)

It is in presenting explicit quantities which represent main contributions
that this linear model—the generalized, nonindependent linear model—has a
significant and specific role. It contains exactly the same definition of main
contributions, but how many readers recognized this as they read this section?
It is concealed in such urn formulas as

2 1 Z 2
Or = B =1 E Xr—— — X)) ’

- 1=

which implicitly state that what we shall ask the “row” line of the analysis of
variance to inform us about, are the X,._. The difference X, _ — Xg__ is
identical with ¢ — £x, but the linear model brings the situation out with
greater force and clarity.

10. Description by linear models. We now set out the general linear model
in the form
Tie = 0 + & + 05 + Ny + wis,

where 1 £ 1 =<¢,1=j=r,1 =k =n and the assumptions are as below,
where in dealing with simple finite populations, we shall always use the modern
definition of variance, dividing by one less than the number of elements involved.
Thus, for example, the variance of the population of potential columns is

N YT
n C_1J=1'17J 7’—-’
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where 7. is the average of 7, over the population of potential columns

1
_=52ﬂj.

In general, we shall use dashes for averages of population quantities, and dots
for means of sampled quantities.
With these preliminaries we can state the assumptions about 8, &, and the
n; which we wish to apply:
(1) There is a population of general contributions, of variance 02, and 6
is a random sample of 1 from this population.
(2) There is a population of row contributions of size R and variance o

and &, &, -+ -, & are a random sample of size r from this population.

(3) There is a population of column contributions of size C and variance
oo and 1, m, -+, n are a random sample of size ¢ from this popula-
tion.

(4) There is a two-way array of interactions A;; , one for each row contribu-
tion and column contribution in the corresponding populations, the
averages (over J) A are independent of I, the averages (over I) A\_s
are independent of J, and the interaction actually occurring in the ex-
pression for z;; is Ar(.s¢) ; that is to say, it is the interaction which cor-
responds to the column contribution and row contribution which occur
in the expression for x;; .

(5) The sampling in (1), (2), and (3) takes place independently.

We define, for reference,

0?20 = W— ZZ (7\1.1 - )\——)2

= EDE =T 2% 0~ N =y = A

(Note that we do nmot use (RC — 1) as a divisor.)
There remain the assumptions about the w;;: , where we still have much choice,
so long as we require that

ave {wryxk} = a constant independent of I and J.

The assumption which most exactly corresponds to the pigeonhole model is the
following:
(6’) For each of the RC combinations of a population row with a population
column there is a population of size N;,, average value p (the same
for all IJ), and variance o%;. The w;j are a sample of n from the I(z)
J(7)th population. Sampling is at random in each cell and independent,
both between cells and of the samplings in (1), (2), and (3).
With this choice, the generalized linear model corresponds exactly to the pigeon-
hole model, provided we place ¢5 = 0 and thus keep the general contribution
constant.
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The variance component for repetition (or “error”) o% , and the effective popu-
lation size N, are to be found from

ok ——ZZm

<1—N)2— EZ( N">“§"

We remarked that (6’) was not she only choice for a linear model. There are
many. We shall give detailed consideration to only one other, namely:
(6”) The cell contributions are

’ "
Wik = Wik + Wi,

where the w;; satisfy the conditions of (6’) while the w;; are the result
of independently randomizing a set of rc values of variance o’ among the
re actual cells.

We shall now need to set

2 2 1 n 2
(1-5) =+ BT (- 5)
(the last of which may lead to negative N’s).

Clearly (6”) is more complicated than (6’), which matched the pigeonhole
model. Why then do we wish to consider this added complexity? Because ex-
periments are often more complicated than the simple pigeonhole model makes
allowance for. For example, let us suppose that we wish to study a chemical
reaction at all combinations of 6 specific pressures and 7 specific temperatures.
The pigeonhole model would naturally have 6 rows and 7 columns, and in each
pigeonhole we would put an infinite population. The pattern of the averages of
these populations would represent the response of this process to pressure and
temperature. The variations within each of these populations would represent
fluctuations in process behavior and measurement. But we would be ill advised
to stop here. Every well-trained statistician would insist, especially if every
combination of pressure were to be tried once only, that the order in which the
experiments were performed should be randomized. He would do this:in fear
of systematic errors somehow. associated with time. In other words, in fear that
the wij of (6”) were not all zero. We need very great flexibility in our models to
deal with real situations such as this. (Notice that we do not attempt to discuss
the very real and important cases where randomized blocks, and related uses
of randomization are involved. We are here concerned with the flexibility re-
quired for the simple case of two crossed classifications, where experimental
units are not so important as to make complete randomization inadequate.)
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The flexibility of the linear model is not limited to (6”). It can easily accommo-

date any number of terms of each or all of the following kinds:

(a) Individual distributions of wysx for each IJ.

(b) Randomization of r¢ values w” over the rc cells.

(¢) Randomization of a sample of r¢ values w’/ drawn randomly from a

population of size M > rc over the rc cells.
(d) Randomization of RC values «’"’ over the RC pigeonholes.
(e) Randomization of RC values w'"’’ drawn randomly from a population
of size M > RC over the RC pigeonholes.

The ease with which such complete randomized contributions can be added to
linear models depends on a simple remark, which was apparently first made by
MecCarthy ([10], p. 358) in the case where all is normal and the variances are
constant and was later exploited ([14], p. 107) in the general case; namely, that
equal, completely symmetric correlations do not affect the average mean squares,
except for the mean square for the general mean (to be discussed in Section 14).
That this is true can be easily seen by the following argument. If the correlations
are equal and negative, add a varying general contribution with variance equal
to the correlations. This will exactly annul the correlations. If the correlations
are equal and positive, observe that they are exactly the correlations which
would result from such a fluctuating main effect. In either case, the desired result
follows immediately.

It may not be immediately appreciated why we need more than one term of a
given kind.. However, if, in the chemical reaction experimént just considered, we
plan to use a separate piece of equipment and a separate operator for each run,
we will wish to randomize all three variables—epoch, equipment, and operator.
Our model will require three terms of the «” kind. There will be three different
sorts of experimental units!

If we put down all the variables considered in a really complex experiment,
even the linear model begins to look complicated.

11. The development of the linear model. The classical linear model, as
described at the beginning of the previous section, had the following disadvan-
tages from our present point of view.

(1) It made assumptions about the way in which the response depended on
the two (or more) factors.

(2) It assumed that at most one term should appear for a given set of in-
dices. .

(3) It assumed special normalizations (like A, = 0) rather than more
general ones (like A\ independent of I).

(4) It assumed constant variance “within pigeonholes.”

(These have been listed in general order of importance.)

Models which avoided the first disadvantage were introduced (for randomized
blocks and Latin squares) by Neyman (with the cooperation of Iwaskiewicz
and Kolodzieczyk) [12] and were used by McCarthy [10], but, perhaps because
of the generally negative flavor of the papers, seem to have lain forgotten for
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many years. The results (for crossed classifications) of Memorandum Report
18 [21] were expounded in the terms used in the last section. Similarly models
were independently and extensively used (for various situations) in the book of
Kempthorne [8] and have been prominent in the recent work of Wilk and
Kempthorne. For all of this, the relationship of \;; to & and £&; when it is tied
through the values of I(z) and J(j) is not yet as widely familiar among statis-
ticians, as it seems to us that it should be.

The introduction of two or more terms with the same set of subscripts was
also due to Neyman (with the co-operation of Iwaskiewicz and Kolodzieczyk)
[12] who introduced first a single term and then separated it into two parts,
corresponding to “plot error” and “technical error.” In [14], the approach
was to start from the parts and then combine, rather than the reverse.

Both this difference, and the introduction of the weaker normalization in [14],
were related to two desires: a desire to weaken assumptions wherever possible,
and a desire to treat contributions more as things with independent existence
rather than as differences between certain averages. The general philosophy
ran along the lines that “if the effect is real and substantial, it should appear in
the model whether or not it can be estimated from the data.”

The assumption of constant variance “within pigeonholes” is a natural as-
sumption, and is important in connection with both higher moments of mean
squares and with the variances of contrasts and other linear combinations. As
pointed out in [14], however, it may be dropped without any effect on average
mean squares.

A more recent development in the case of linear models has been the introduc-
tion of a pair of closely related linear models, called “the population model”
and ‘“‘the statistical model” by Wilk [22] and their further use by Wilk and Kemp-
thorne [23], [24]. By introducing this distinction, the assumptions about the
response to the various classifications can be presented first, while the assump-
tion about the randomization involved in setting up the experiment can be
added later. This development formalizes and makes definite distinctions hinted
at in Kempthorne’s book [8].

12. The next consideration. The next step in generality, when we have com-
pletely randomized some contribution, to which we will attach the name “ex-
perimental units,” is to consider the possibility that these units can interact
with the other classifications. (Since the results are a function of both classifica-
tions jointly, the behavior resembles that of crossed classifications; yet, in any
particular experiment, one classification is nested in the other. For these reasons,
the term ‘““cross nested’” has been used informally to describe the situation.)

It is easiest. to make the situation clear when a one-way classification, say
temperature, is involved, and epochs are randomized. If we admit that the effect
of an epoch can be different for different temperatures, then we are led to a two-
way set of pigeonholes—pigeonholes labelled by temperature and epoch. If
each temperature is used once only, the actual experiment (if fully randomized)
could be described as picking a set of pigeonholes, one in each row and column,
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and picking a value from each of these selected pigeonholes. It is as if we had the
results of that part of a Latin square occupied by a single letter. Even though we
cannot estimate the temperature by epoch interaction variance component,
it is clear that it will enter into the average values of the mean squares which we
do obtain.

Complete randomization is a binary relation between -classifications, but,
especially when without replication, it is closely related to the ternary relation
of the Latin square. Again independent work has led to related results. Kemp-
thorne treated the Latin square with arbitrary interactions between rows and
columns, but with no interactions with treatments in his book ([8], pp. 190-191).
In particular he obtained the variance of a treatment mean. This last particular
result is also the variance of the general mean in the unreplicated case of com-
plete randomization with arbitrary interaction (with experimental units) which
was obtained independently by Cornfield and Evans, and reported, with a
modified proof, in Hansen, Hurwitz, and Madow ([6], pp. 262-265). So far as
complete randomization is concerned, more general results were obtained by
Wilk [16, 25].

It is clear, however, that there are a number of stages of sophistication, care,
or cynicism (as you please) about our treatment of such a factor as epoch. Some
of these are the following:

(1) In both design and analysis we neglect it altogether.
(2) We neglect it in design, and in analysis we use the additive model to
show ourselves that we should have randomized it after all.
(3) We randomize it in design, and in analysis we use the additive model
to show ourselves how well off we are.
(4) We randomize it in design, and in analysis we use the arbitrary-interac-
tion model to show ourselves that the situation is not quite perfect.
(5) We take it into the design of the experiment as a full-fledged factor.
Each of these attitudes is appropriate in its place. In every experiment there
are many variables which could enter, and one of the great skills of the experi-
menter lies in leaving out only inessential ones. What we have just observed
is that there are gradations between variables which are entirely out and those
which are entirely in.

It is generally understood that in the design of an experiment, there are three

classes of variables:
(i) those treated as factors,
(ii) those randomized, and
(iii) those neglected.
The additive model helps us to think about the choice between neglect and ran-
domization. The arbitrary-interaction model helps us to think about the choice
between randomization and recognition as a factor.

REsuLTS

13. Results for the two-way classification. The average mean squares for the
pigeonhole model are set forth for the general case and for three special cases
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generalizing the usual fixed, random, and mixed models in Table 1. The impor-
tant thing to notice in this table is the appearance of the factors

c
1-5,

r
1 — —
R’

n

1- 5

which serve to suppress certain terms completely in the fixed situation and to
reduce their effects on the average values of the mean squares when the popula-
tions are finite but larger than the samples.

TABLE 1
General results and special cases
Average value of mean squares
L:]rl’yi:isﬂ;? Special cases
al
variance 3
General case o ixed) | (Random) ¢,  finite | (Mixed) ¢ = C, r finite
N in'ﬁnite , C, R, infinite N, R infinite
n
Rows (1 — I_V.) 0% oy + nncc:, % + m},c . % + nnca},
+ nncog
¢ 2
+{1~— 5 )ns
c RC
+ nnco-;
n
Columns (1 - ﬁ) op ox + nroy | o + nope + nrel| o + noge + nroe
r 2
1—-=)ne
+ ( R) RC
+ nrcf,
. n
Interaction (1 - }'\;) o + ke | 9% + nokc | ok + noke oz + nogc
Error o o o o

Notice in particular how, when R = C = N = infinity, o% follows oxc
everywhere, just as the lamb followed Mary. This is the usual result for a ran-
dom model, and appears here in a situation of far greater generality.

The disappearance of oz from the average values of row and column mean
squares in the fixed case is also familiar.

In the mixed model the average mean square for rows does not involve the
interaction variance component (because all columns were observed!), while
the average mean square for column involves it with unit weight (because only
a small sample of rows were observed!). In each case the behavior of the other
variable (or, in general, the other variables) determines whether the interaction
appears or not.
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That the result for the mixed model is a consequence solely of the urn sampling
approach, and not of the special definitions of interaction and row components
of variance used, may be seen from the following simple example. Consider a
population composed of three rows and two columns, with one element per
cell, having the following numerical values:

0 100
100 0
50 50

Each of the three possible samples of two rows and two columns will yield a
row mean square of zero and an interaction mean square greater than zero.
Hence for this population the interaction mean square exceeds the row mean
square for each sample. Testing the row mean square against interaction would
be obviously incorrect.

These results are very general. We assumed only a symmetrical placing of RC
sets of numbers in RC pigeonholes and a well-defined method of extracting the
ren numbers entering the actual analysis of variance. Otherwise, the numbers
can be as arbitrary as we please.

14. The mean square for the general mean. While the central facts have
been pointed out from time to time (e.g., Cochran [3], Hendricks [7]), and while
a number of mathematical statisticians have made use of the fact in their lec-
tures, it does not seem to be widely recognized that it is almost always feasible
to complete the analysis of variance table by adding a line for the general mean,
and that when this has been done, both classical analysis of variance and sampling
from finite populations become special cases of a unified situation. We feel that
wider recognition and use of this fact would be valuable.

In the present situation we have only to introduce a reference origin M (which
is freely at our disposal) and define both the sum of squares for the general mean
and the mean square for the general mean (there is but one degree of freedom) as

ren (x... — M)’

(This is what is frequently known as the “correction term,” and is appropriate
to the use of M as a computing origin.) It is easy to show that we have the
following average value of the mean square for the mean

rcnag—}-cn(l —I—ré)afz—}-rn(l —Ec,>a2c‘+n<1 —%)(1—;)&0

+ (1 — %) or + ren(ave {x...} — M),

which like all average mean squares in a balanced analysis of variance decompose

into (F)[(G) + (H)] where
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(F) = number of units involved in each corresponding mean, (rcn in the
example),

(@) = variance (so far as differences are concerned) of the corresponding
mean,

a%+(;,1-+1-1§>a§+<§—%)&+G—%><-}—%)m

1/1 1\ .
+ - (7_1 ﬁ) oz in the example,
(H) = variance of corresponding contributions (usually measured among

themselves, but in this case necessarily measured from the arbi-

trary origin, M, since there is only one general mean and hence =
(ave {z...} — M)".

16. Results for the three-way classification. The pigeonhole model for the
three-way classification is the natural generalization of the two-way pigeonhole
model. There are RCS pigeonholes, one in each combination of R rows, C col-
umns, and S slices. In each pigeonhole there is a population. Random samples of
r rows from R, ¢ columns from C, and s slices from S are independently drawn.
The intersections of the drawn rows, columns, and slices determine rcs cells.
In each of these rcs cells n elements are drawn at random. All drawings, whether
of rows, columns, slices, or elements are independent.

The variance components are defined in a way similar to that for the two-way.
They differ from the (hypothetical) mean squares we would get, if we analyzed
the entire model, by simple factors such as r, ¢, s, ete.

The average values of the mean squares are given for the general case inr Table
2. Here, with obvious extensions of notation,

1

and
0% = variance of the general contribution.

(Except for the top line, these results will be found in Bennett and Franklin
(2], p. 394), while generalizations have been given by Kempthorne and Wilk
[23] and by Wilk [25]).

While the results for the three-way are not too complex, and are obviously
systematic and orderly, they do take up considerable space. If we are to set out
the corresponding results for factorial arrangements with more factors, there will
be a premium on more compactness.

16. Unreplicated factorials in general. We can obtain this compactness by
setting up some rules which will give the coefficient of any variance component
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TABLE 2
Average values of mean squares in the general (replicated) three-way classification
Item DF Average value of mean square
G 1 mean | 1 n r c 8
enera <1 - N)o’} + n(l - 'é) (l - 6) 1-— 3 g cs

+nr(1—£—,)<1—~s‘§>c’cs+nc 1-=
(el
+ ner 1—% o';+ncs<1—-é>c;

+ nrs l—g ot + ners oy

-L ners(ave {z} — M)

R (R -1 ’
OWS ( ) T (1 —"ﬁ)a;-i-n(l - ")( _3‘§> CRcs

8
+ ne l—g ops+ ns 1—%)6034-1&6863

Columns (C) |c—1 (1—%>a,+n(l——>(1 fg) TRCS
Slices (S) s—1 ( %),4.”(1——)(1

<
,Qla
w
Q
e

RC (r—=1(-1) ( %_) <1 - “)0‘303 + nsope
RS - Die—1

(r—1(s-1) ( 1%) 2+ ( )O’Rc,s + neogs

S = s —
c (e—D@-1) ( %) o+ n (1 — —)“ncs + nrofg
RCS (r—=1(—-1(-1) n
( ZT’) 0% + 0% os

Repetition res(n — 1) o

in the average value of any mean square
We begin with the case without replication and the almost obvious
Rule 1. Unless the indices of the variance component include all those of
the mean square, the coefficient vanishes.
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As a result of this rule, we can confine our attention to cases where the indices fall
into three categories:
(1) those appearing in both mean square and variance component,
(2) those appearing in variance component but not in mean square,
(3) those appearing in neither.
In these terms we can now state
Rule 2. Any coefficient which does not vanish because of Rule 1 is the
product of a small letter for each index which fails to appear in the ¥ariance
component and of a factor

_(small letter)
(capital letter)

for each index in the variance component which does not appear in the mean
square.

Let us discuss some examples. Consider the coefficient of o%5 in the mean square
for columns in an unreplicated three-way. Here the behavior of the indices is as
follows:

(1) C appears in both,
(2) S appears only in the variance component,

(3) R appears in neither.
s

The coefficient is, therefore,
and, when we recall that n = 1, we see that this checks the entry in Table 2.
Consider a seven-way classification with indices R, C, D, E, F, G, S and the
average value of the mean square for the RDG-interaction. What are the coef-
ficients of o%cogr and oxcpres ? Since G is not an index of ok cozr , its coefficient is
zero by rule 1. For the second variance component, the indices behave as follows:
(1) R, D, and G appear in both,
(2) C, E and S appear only in the variance component,
(3) F appears in neither.
By rule 2, the coefficient is

(-8 (-5 (-2)-

The rules are relatively easy to apply.
We can summarize the action of both rules in a 2 X 2 table to be applied once
for each subscript. This is done for a general subseript @ in Table 3.

17. More general designs. Two remarks will conspire to lead us to more gen-
eral expressions of the rules. First, we note a remarkable similarity between
these coefficients, and those which arise when one classification is nested within
another. Second, we notice that there is a useful sense in which a replicated fac-
torial is not purely factorial in structure—in the pigeonhole model we allowed a
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TABLE 3

2 X 2 table giving the factor in the coefficient due to any one subscript, and 'thus
expressing both rules for factorials

Subscripts of variance component
Subscripts of mean square .
Q present Q absent
Qpresent................. 1 0
Qabsent................. 1 - é q

population to nest in each pigeonhole. We are impelled to seek some general
rules which apply when classifications are crossed (as in a factorial) or nested
in any way. (We shall find that noninteracting completely randomized contribu-
tions are more or less automatically included.)

These relations are not the only important relations between categories. We
have mentioned randomized blocks above. There are also, for example, the rela-
tions involved in balanced and unbalanced incomplete blocks, to which our rules
will not apply. But crossing and nesting are the simplest, and a treatment for
any combination of them will be well worthwhile.

The scope of such a treatment will be broader than just the arrangements so
far mentioned. It is quite possible, for example, to have a one-way array of small
pigeonholes nested in each of a two-way array of large pigeonholes and a popula-
tion nested in each of the small pigeonholes. This will occur in the example of a
chemical reaction where temperature and pressure define the large pigeonholes,
for instance, if we repeat the reaction several times for each pressure and tem-
perature combination and analyze several portions of each result. Here “sampling
and analysis” requires a population nested in ‘“‘batch,” while a one-way array of
“batches’ is nested in every ‘““temperature-pressure’ pigeonhole.

The general rules are based on a system of indices such that a mean square or
variance component referring to something of smaller scope must have all the
indices of the quantity of larger scope, and one or more in addition. A possible
set of indices for the modified chemical reaction example just described might be

T = temperature,
P = pressure,
PT = their interactions,
BPT = batches (within PT combinations).
EBPT = sampling and analysis (within batches).

In this example it makes no sense to define a B main contribution across tempera-
ture or pressure, and hence we should not in this notation try to define a B mean
square or a B variance component. Indeed we should also not try to use BT- or
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BP- quantities of any sort. In order to inquire, for example, how many batches
to use to obtain a given accuracy, we should be concerned with “batches within a
temperature and pressure combination’” and in this notation this is a BPT ef-
fect. (It would perhaps be clearer to use B(PT) or B € PT, but we shall not do
this here.)

Any set of indices has certain indices (there may be none) toward which it
behaves like an interaction. This means that if we sum the corresponding contri-
butions over such an index (covering the pigeonhole model) the total (and hence
the mean) is a constant. In the example just discussed

Set of Interactionlike
indices indices
T T
P P
PT T, P
BPT B
EBPT F

The appearance of B and E as interactionlike indices merely means that the
average contributions for “batches” and “sampling and analysis” are defined to
be zero. The absence of T in the last two cases reflects the fact that summing over
one batch at each temperature, or summing over one sample and analysis at
each temperature, will not ensure the disappearance of the mean batch contribu-
tion or the mean sampling and analysis contribution.

We continue to use capital letters for the dimensions of the pigeonhole model,
and small letters for the corresponding dimensions of the experiment. We can
now state a single unified rule (covering crossed and nested relations, and classifi-
cations completely randomized upon them) as follows:

Rule: Divide the indices into five groups as follows:

(1) those which appear in the mean square but not in the variance compo-

nent;

(2) those which appear in the variance component and not in the mean

square and are interactionlike for the set of indices defining the variance

component;

(3) those which appear in the variance component but not in the mean

square, and are not interactionlike;

(4) those which appear in both;

(5) those which appear in neither.
The coefficient with which the variance component appears in the average value
of the mean square is the product of a factor for each index, the factors being as
follows:

(a) for group (1) each factor is zero,

(b) for group (2) each factor is

<1 __ (small letter) )
(capital letter)/ ’
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(c) for groups (3) and (4) each factor is unity,
(d) for group (5) each factor is the corresponding small letter.
This rule applies so long as all categories are related by crossing or nesting.
In this form, this rule includes the rules of the previous section, and can also
be expressed in a simple table, as in Table 4.

TABLE 4

Factor due to any subscript, Q, in the coefficient of any variance component in any
average mean square for any combination of crossing and nesting

Subscripts of variance component
Subscripts of mean square ) 1 0
present an present, not
interactionlike interactionlike Q absent
Qpresent................ 1 1 0
q
Qabsent................. 1- Z? 1 q

18. Reasons for the general rules. As indicated by the discussion of Section
23, below, the basic reasons for the general rules are two:
(1) Mean squares are ordinarily expressed on a per-element basis, so the
number of elements associated with specific values of the indices of a mean
square arises as a factor.
(2) Where an index is interactionlike we are dealing with variances of
sample means, so that factors of

1 . 1
(small letter) ainus (capital letter)

arise from the formula for the variance of a mean from a finite population.
These reasons are equally compelling for crossing and nesting.

19. Non-interacting, completely randomized terms in linear models. We
discussed briefly, at the end of Section 10, some five kinds of added terms which
might be added to the linear model for the two-way classification. We summarize
in Table 5 the coefficients with which the corresponding variances or mean
variances will appear. These results are easily obtained by the usual way of
dealing with independent linear models. Observe that if we square the model,
the average value of all cross-terms will cancel out (except in the mean square for
the general mean) and hence that average mean squares can be evaluated sepa-
rately for the original contributions and those of these kinds.

It was emphasized (at the end of Section 10) that the easy addition of such
terms was a consequence of a general principle. Several such terms can be added.
If the modified chemical reaction example discussed in the last section involved
two raw materials, we might have completely randomized packages of one over
batches, and have made up one solution of the other for each pressure-tempera-
ture combination, randomizing the allotment of solutions. If, in addition, some
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TABLE 5

Kind o s e value General Meaa
(a) 1- 1% 1= I,T:
() 1 0
© L -5

@ 1 - %o
() 1 1- 4

other relevant item were completely randomized over individual samples, we
should have a model made up of at least four parts:

(1). dependence of yield on pressure and temperature combined with routine

fluctuations and errors,

(2) effects of first raw material,

(3) effects of second raw material,

(4) effects of other relevant factors.
If we can properly assume an absence of interaction between these four parts,
then we will obtain four sets of (partial) variance components as follows

(1) appears in EBPT, BPT, PT, P and T,

(2) appears in BPT, PT, P and T,

(3) appears in PT, P and T,

(4) appears in EBPT, BPT, PT, P and T.
Because of the no-interaction-across-parts assumption, the four sets will behave
entirely independently, and the rules of the last section will apply to each sepa-
rately.

It will only be necessary to remember that (so long as we are not concerned
with the general mean) no index is interactionlike for contributions which are
completely randomized. This same principle will apply to other examples where
absence of interaction between completely randomized parts is appropriately
assumed.

PRrooOFs

20. The nature of the various proofs. A number of apparently quite different
ways have been developed to carry out the proofs of the formulas for average
values of meah squares (see Section 4 for references). They fall quite neatly
into two categories:

(1) Proofs using special machinery or indirect methods (e.g., symmetry
arguments and equating of coefficients for special assumptions as in
[18] and [20}]).
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(2) Proofs using relatively straightforward algebra (e.g., as in [17], [16],
and [21]).
While we feel that the first sort of proof offers the real hope for dealing with the
more difficult problems which lie ahead, we recognize the usefulness of having
examples of the straightforward proofs on record, and have endeavored to keep
our proofs direct and to hold the use of special techniques to a minimum.

In the two-way pigeonhole model three samplings take place independently, a
sampling of rows, a sampling of columns, and a sampling within cells. The sepa-
rateness and independence of these samplings is very important in reaching a
moderately simple direct proof, as is the possibility of considering the separate
samplings as occurring in any order, and then using quantities defined by some
array intermediate between the underlying array and the observed array. It is
only by combining such a choice with a well-chosen notation and order of pro-
cedure that we can keep the algebra from becoming quite heavy.

The original proof [20], was carried through explicitly for the two-way case
without replication in the cell (n = 1, N = ), made explicit use of linear
models, and depended on two comparisons of three situations:

(1) rows fixed, columns fixed, within cells sampled,
(2) rows fixed, columns sampled, within cells sampled,
(3) rows sampled, columns sampled, within cells sampled.

The next proof [17], found without knowledge of the first result, made explicit
use of urn sampling and was carried through explicitly for the two-way case with
o3, = constant, and rested most conveniently on the intermediate situation
where the within-cell sampling had been completed in each of the RC cells, but
the r rows and ¢ columns of the observed array had not yet been been fixed. (Note
that this requires thinking about, and calculating with, the cell means for the
RC — rc cells which will not be observed.) The material in Section 18 is modelled
after this proof.

To obtain the average value of the error mean square it is most convenient to
think of the sampling as occurring in exactly the reverse order. Here it is most
convenient to rest on the intermediate situation where the » rows and ¢ columns
have been fixed, but the n individuals to be selected from H in each of these rc
cells are still unspecified.

21. The error mean square. The error mean square can be written in various
forms, in particular as
]

2 1
rc(n -1 ?.;i ; 1; (i = 3. = Tc“z: ;[

So long as we think of the r rows and ¢ columns as fixed, we have the mean of rc

terms of the form

E(z:k—xu ’

'n—l
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and the average value of this term is well known from the theory of finite sampling
to be o3sj - Thus the average value of the error mean square is
1 R C . 9

Even though this is clear, we shall give a formal proof as an introduction to the
use of a significant technique.

22. Indicator variables. The direct evaluation of the average values of mean
squares is greatly facilitated by the use of a simple device [4]. We introduce a
set of indicator variables a;, a2, --- , ag, one for each row in the underlying
array. The value of these variables depends on the particular sample of rows
which has been selected for the actual array, and is given by:

1, if the I'ta row is in the sample of rows,
ar = .
0, otherwise.

From our assumptions about the sampling,

ave {a;} = ave {a}} =

r r—1 r(r — 1)
ave{a;a,}=R-R_1=R(R_1),

where we write “ave’” for the average over all possible samples (we could have
written “E” for expectation, but we preferred the more perspicuous notation).
Similarly, we introduce indicator variables b, , by, - - - , be for columns, by

1, if the Jth column is in the sample of columns,
bJ = .
0, otherwise.

As an illustration of the use of these variables, consider the averaging over all
samplings of rows and columns of

1 1

- Z Z U?(i),J(i) = - 2 Z aleo'i.r
rc i g rc r J

with which we closed the last section. The average value is to be found by replac-

ing ar by /R and b; by ¢/C, and we have the result announced above.

23. Fundamentals of bisampling. We now consider (i) an arbitrary population
of R-by-C arrays {yrs:I = 1,2, --- ,R; J =1,2, ---, C}; (il) the operation
of randomly sampling r rows and ¢ columns; (iii) the resulting r-by-c arrays; and
(iv) the row, column, and grand means for these r-by-c arrays. It is our purpose to
calculate averages of certain symmetric quadratic expressions in the yr;, both
certain symmetric combinations of variances and covariances of these elements
and means, and the averages of certain differences of squares. In the next section
knowledge of these combinations will immediately lead us to the formulas for
average values of mean squares in a (replicated) two-way classification.
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We write, and thus change our convention about capital letters,

Y, = ave {yu};

1
YI=6;Y”’

1
yr = - 2. byyus,
[
ZJ=lZYIJ
R T ’
1
2:=~Za1yn,
roI
Y =

and note that
ave {y:} = Y, ave {z,;} = Z;, ave {y} =Y.

We shall find these notations convenient, although we could have written ¥;_
for Yy, Y_,for Z; and Y__ for Y. If we had done this, there would have been no
convenient parallel notation for the quantities denoted by small letters, since y;
is defined, and will be used, whether or not row I appears in a particular sample
of rows, and hence in a particular r-by-c array.

We shall want our results expressed simply. They will have to involve both the
average values, Y, , and the variances and covariances, of the y;; . By intuition;
or by working out the answer, we can see that they will involve only a few rather
symmetric combinations of these moments, namely the three variance compo-
nents corresponding to the Y, :

2 1 2 27 _ 1 _ 2
"“"'”R"‘_—l[z,: Y? RY]_.R——-—_IEI_‘,(YI_ Y_),

= (S —CY = L (v, - Y,
1'% =15

¢ =

2 _ 1 s . ) 2

am_(R—l)(C—l)[;‘\:“‘Y” C 2 Yi—R2.Z;+ CRY']
: 2
=(E——1)Z_C~——1);;(Yn— Yo —Y_, + Y__),

and certain mean variances and covariances, namely,

1
pL = RC ; ; var {yn}:
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P2 = RC(C — 1) Z ZZ cov ?lu ’ y”‘.})

ps = R(R ¢ 2.2 2 ooV (s yei},

I%K

ps = RER = l)lC(C —) 22 ZZ cov {yrs, yxi}.

T%K

We begin by writing y,yx out as

1
Yiyx = 3 [Z byryxs + Zszbbyuyn]
J JHAL

and using the independence of the b’s and the #’s in

clc —

C(C 1) [Yu Yeo + ?OV {ves, yxe}l

ave {bybLyrsYxL} =

to find

ave {y:yx} = El(-}{Z Yi,Yes + é : iZZ Yi, Yrul

[E cov {Yrs , Yxs} + ZZ cov {yrs, yxe}l.

Now if we use
Yi¥e = 2 Vi Ve + o 20 Yoy Ve,
C? 7 C? T4L

and ave {y:} = Y, ave {yx} = Yk, and reduce, we have

cov {yr ,yx} = ((1: - (—],;> 6—1:"'1 [Z Yi;Ye, — CY, Yx’

1)
[Z cov {Yrs , Yxs} + ZZ cov {yus ,yn}]-

This is the key result.
If we sum this over I and K with I ¢ K and reduce, using

EZ Y Ve, + Z Y: = RZ},

we find

2;; cov {91, yx}

=..(!_6) [EX VL - CcX Y- B Y 2+ CRY

c
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@) [ZZ 77‘, cov{yrs , Yxs} + —1 PH> EZ cov {yu,yn.}]

I#K J %

- _(g - b‘) [(R — Dok — R(B — 1)ok]

+ R(R _ 1) P:;+ (C - l)pl'
c
If we go back to (1), and put K = I, we have

varfl = (2= ) gy Z v - ovl

(4
[Z var {y.,} + — 1 ZJ;Z cov yu,yu}],

and summing over I, we find

Svartul = (1- ) s E T ey

3)

1
4 " za[ ! ]
= (1 - 1) [(R — 1o + Ro%y] + RPT €~ Up
c C P

= R[(g— é—,)(l — %)U?nt'i‘(% - —1(’;)0301 +1(p1+ (c — l)Pz)]'

When we recall that the relation of y to y; and ¥, is entirely analogous to that
of yr to y1y and Yy, , we see that we can paraphrase (3) to give

var [y} = (l - 1%) zﬁ [ vi - RY']

r

+%[§; var (g} + 5— IZZ cov {yr, yx} ]

_ (1 _ 1y 1 1 l B 2 .
= (= @)t - ) - vty et
+rot = De
() ¢

r—1/1 1 2 .
- E—_—.I (E - 5) [(R - 1>(7int - R(R - 1)0001]

r— _ pz + (c — 1)94]
R -1 b c
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=(3-%)e L 1) 1_1\(1_1).
= (;— R) Orow + <C C) Ocol + (7’ R> <Z '(7) Cint

+ rlc[m +—Dpp+ (r— Dps+ (r — 1)(c — l)m].
We shall also be interested in the combination,

1 _ _(1_1) , r—1(1_ 1Y s
(6) Ezvar{yz}——var{y}— (,. R)"'"‘"' r (c C)“"“

r—1
re

+ [or — ps + (¢ — D)oz — po)],

which becomes, on adding

%ZI: (ave {y:})* — (ave {y})’ = % [X v7 - RY] = RI; L

on corresponding sides,
ave {%3 IR yz}
= (1 - l) [afow + <1 - l) et o= o+ 6= Do — p4)]:|,
r c C c

When we observe that the expression for D, var {Z,} follows from that for
>_rvar {Y;} by symmetry (interchanging ¢ with r, C with R, and “rows” with
“col’’), we see that we can easily evaluate another combination

; ; var {yr;} — C ; var {y;} — R ; var {z;} + RC var {y}

o {09090~ -H
+(1 —%)(1 —%)[px—pz— P3+P4]:|,
which becomes, on adding

ZI: ;: (ave {y1s})* = C ; (ave {y:}) — R EJ: (ave {2,])* + RC(ave {y})’

@

=;ZJ:Y§,—CZI:Y§—R§;,Z§+RCY2=(R—l)(C—l)a?,,,

to corresponding sides,
ave{;;ygx— C;yf— R;zf—i-RCyz}

© =RC<1—-:-><1—-cl->[a?nc+m—m—l’s+i’4]-
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These formulas will provide us with the desired results. For our limited purposes,
they are the fundamentals of bisampling.

24. The replicated two-way classification. In order to develop the formulas
for the remaining average mean squares, we shall find it convenient to think
of the sampling of n from N as taking place first, and taking place within each
of the RC cells of the underlying array, and of the sampling of r rows from R
and ¢ columns from C as taking place later. Taking this attitude, we can work
with the means determined for each of the BC underlying cells after the sampling
within cells and before the sampling of rows and columns. We take Y as the
mean for the IJth cell. We then have

ave {yn} = YIJ = XIJ-,

I 1
var {yn} = (7_L - ﬁ) a?,,,

cov {yll ) yKL} = 0, if (19 J) #= (K) L)-

and

U'row = Z (XI—— —-—) = UR,

o= g S - X =

Uiznt = W ZI: ; (XIJ— X - X-—J-— + X-——--.)2 = U?,
(- DR (- 5)
= RC 5" \n" N)F

pz=ps = ps = 0.

The row mean square can be written in various forms, including

ne 2 ne 2 ner 2
Lieee ™ Xaa) = o e o
r-—lg(' ) r—14% F—1i?

I

r

= I’ic 1 [; aly? bl Tyz]-

If we use first the independence of a; from y; and then (7) of the last section, the
average value of this last form becomes

~————ave{ 2 i - ry} "crl(l ""717>|:¢7?z +<%— la-)ai
+%<}z— %)«i] = neok + n(l - -é-,)«:? + (1 - %)aé
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as we wished to show. The average value of the columns mean square follows by
svmmetry.

The interaction mean square can also be written in many forms, some of which
are

5y 2 2 (@i = 2o = 2y o)
[Z Z g — e 2 ot — v 2 2% + rer’)

(r— 1)(6

_ (_—T(c—__
Z_W— [Z Z arbsyis — ¢ 21: ayl—r JZ b2 + rey].

If again we use the independence of a; and b, from each other and the other
quantities, and then (9) of the last section, the average value of the last form is
seen to be

n rc 2 rc 2_7‘_6 2 2
FoDE= DL S SRRV G R a4 ]

== (1= (- DA+ G- 3]

== na? + (1 —_ A%)o"fw

as we wished to show. Thus we have the average values of the mean squares for
the two-way pigeonhole model with replication.

26. The unreplicated three-way classification. To deal with the three-way
pigeonhole model, where r rows from R, ¢ columns from C, and s slices from S
are independently sampled, we start out to calculate the average mean squares
for rows, columns, and their interaction just as for the replicated two-way.
Differences will first appear when we come to calculate p; , p2, ps , and py , which
is most simply done in an indirect way.

We remark that, now, we have

1 8
g == Z Lok =
S k=1

s
Z CkZX1yK

K=1

ol —

‘

1
ave {yry} = Y = gme,
K

where {cx} are a new set of indicator variables which specify the sampling of s
slices from S. Now

1
var {(yu} = (—- - %) S_}jl [}; ik — Sz7,-)

S
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since we have a sample mean of s from S, so that
1 1 1
RCo = 2 2 var {yu} = (— - —) XX —- 82 X )
T 7 S S)S—-1"T7FT % T 7
Moreover

var (e} = (2= 1) g2 [ (S aune)® = 8 200
1 1
- (% - 3) g [c? ; xix — C*Sz3__].
Since Z, Y1s 1s the mean of a sample of s from the S values E; Zrsx , and hence
RCps + RC(C — 1)p, = EI var {; Y}
1 1\ ¢ ;
(- 9)s S TR - s T

By symmetry, then
RCp1 + R(R - I)Cpa = <§ - ’“> [Z Z 2k — S Z :IJ._J—]

and, indeed,
RCp + RC(C — 1)p2 + R(R — 1)Cps + R(R — 1)C(C — 1)ps

v (£ S = (2 1) 2 5 S - S T
_ (l > CE [Tt s — SX2_].

s S—1

We now have the basis for evaluating the p’s.
We introduce the additional variance components for the three-way classifica~
tion by

R [Zatx— 8],

R S

2 = E-DE=T [Z Z zix—R Z 22 _x =8 Z z7_ + RSz __).

ons 1)(S

0'2(,:3 = (C——WS——“‘ [Z Z Teyg — C E Tr——_x — S Z Ly + CS:C___],

and finally,

G'ics= (R*l)(C-l-l)(S—l) [;;;xm—h’;;ﬁm— C;;ag—x

— 82 X +RCYE 2 x+RS 2+ 08Xl — RCS2:__].
I J K J I
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In terms of these quantities we can now calculate the values of the p’s. We can
conveniently use

41‘: ; zix— S }; i _ = (R — 1)(S — ogs + R[Zx: 22 g — Sz2__]
= (B — 1)(S — Dors + R(S — 1) 03,
and, by symmetry,
E Z xi./x -8 Z xi.l— = (C — 1)(S - 1)0313 + C(S - 1)0'3 )
J K J
and, by a similar though longer calculation,
; AJV: ZK: x?JK -8 ; JZ x?./— = (R — (¢ — 1)(S — I)U?ws

+ R(C — 1)(S — Dots + (R — 1)C(S — 1)oks + RC(S — 1)o2.

Substituting these into the earlier formulas, and removing factors where con-
venient, yields

O R P
m+(0—1>p2=(§1—§)0[<1—-é> §s+a§],
N |

o1+ (C = Dpr+ (B — Do+ (€ — DR — Dpy = (; - g) RCa.

From these we could compute all the p’s, but it is simpler to find the combina-
tions which will be of most use to us. These are

1
pL— p3 = <§ - S)[(l - -é,) s + U?es] ’
1 1
P2 — ps = <'§ - S)[(l - é) 12eca + G’?zs:l ’
whence

o=t = 06— o) = (1 - g)[(l — &) hen + ),

1 1
pL— p2— pst+ ps = (g - S) [U?rcs]-

We are now ready to return to the evaluations of Section 23, where we found
the average mean squares for rows to be

neal 4 n<1 _ 5) o + nloy — g+ (¢ — 1)or — po)].
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We have now to write s in place of n, ox¢ in place of o7, and to substitute in the
value we have just found for quantity in brackets. We obtain, then, for the
average value of a row mean square in a pigeonhole three-way

csoy + s<l — é—) ore + c(l — g) afw + (1 - —é)(l - —§> trfws.
The average values of column and slice mean squares now follow by symmetry.
We had obtained
not + nlor — p2 — ps — pi

for the average value of the interaction mean square. Making the necessary
changes, the average value of the RC-interaction mean square for the three-way
pigeonhole becomes

soke + (1 - g) Tras .
and the average values for RS and CS8 interactions follow by symmetry. There
remains the triple interaction.

26. The triple interaction. To get a simple hold on the triple interaction, we
will find it convenient to introduce some differencing operators with the follow-
ing definitions:

suo s, 1) = 75 (s B) = 16,5, ),
A S0, 0, K) = s (01, J, K) = 10, , )

and similarly for other indices. The usefulness of these operators stems from the
following chain of representations for interaction sums of squares:

Z xl - 2 1 Z Z (6”' 5. )2

ZZ"LU - Z..j- —szz —I—TC.’IJ rtzz]zz(a;;’a::’x;,

IDIPIETEPIPIFIELDID I T TP ID I PN
1 7
4wzﬁfmz¢_m;%zzzz;;w%me
: : IPIPIPIPIP:

and so on.
To establish these representations we have only to prove (as we may by direct
expansion), that

Sul ==L ()
m nr n
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and apply induction, writing, for example, the second interaction in the forms

; [Z z3. — ray] — c[; z.. — rat..]
- S twnr] - o[ 2T Gwany]

J

= z: ; 1; [; (8ssr 245.)" — c(Basr ﬁh)zl
1 1 2
= Z z: ; [; ; P (85 Bss» @45.) :l,

where we have used the identity twice and the fact that the mean value of
51;,"11}.','. overj is 5,',5158.'.. itself.

These representations lead at once to average value formulas. Thus, in the
one-way case

ave {E‘ xf b sz} = ave {} E Z] (8,'," x,-)z} = ave {; Z Z] a,ap(A": :1:1)2}

_1 r(r — s _(r—1
Z E RE = 1) A zr)” = ( ) Z Z (Arr 1)

_r—1 2 p2
= F= 1% Bl

where we have used the fact that a;ay equals r(r — 1)/R(R — 1) except when
I = I', and the fact that we can neglect I = I’ because d:r: vanishes for
I = I'. Similarly, in a two-way case

ave {Z Z ah—r Z i —c Z 2k + rex..)’}
4 Fi 7 1

1
ave {— Z Z Z Z (8is7 8jje x,-,-)”}

rc s ¢ 3 3
—! ave {Z Z Z Z arar by bJ'(AII' Asp xu)2}
re r g J

It

_1rr—=1) clc—1)
rc R(R — ]_) C(C — 1) Z Z Z Z (AII’ IANZZ 171.7)

(r—1D—-1) 2 2 2 2
= EoDC =1 [ZI: ;x,, - R;x_J - Czl:xz_+ RCz%_]
and so on. The next case, for the three-way case, shows us that the average value
of the RCS-interaction is exactly o%cs as we wished to prove.

Clearly the extensions of this argument to the four-way, five-way, etc., classi-
fications will always give a similar answer for the lowest interaction (the one
involving all the indices!) for any factorial.
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27. Further generalization. It is just a matter of moderately stiff algebra
to carry on an inductive proof of similar results for more classifications. If
ave {yux} = Yux,and if ¢q({y:}) is a quadratic in the observed y;; , then

ave {g({yin}) = ave {g({YVin})}
+ (a linear form in variances and covariances of the (¥:)

Now the capital ¥’s correspond to an analysis without replication, so that, for
the q({Y;i}) we are interested in, the averages on the right can. be calculated
from the results of the last section. Because of symmetry, the linear form in
variances and covariances will be a linear combination of 8 quantities, the mean
variance, and seven mean covariances. Working these expressions out, and then
calculating the values of these mean variance and covariances in special cases, we
-can obtain the average values of mean squares for the replicated three-way and
unreplicated four-way designs.

After this we are ready for another step of the induction, and so on.

Clearly systematic algebra can take us deep into the forest of notation. But
the detailed manipulation will, sooner or later, blot out any understanding we
may have started with. If there is a way of seeing some aspects of the final result
more directly, then it will be worth while to seize it.

There are a number of such ways involving special tools or devices of varying
complexity. Since we have tried to keep the approach of this paper reasonably
pedestrian (although indicator variables and the d;;» and A;» may be regarded as
the equivalent of roller skates!), we shall try to use the least special way that we
know.

28. More direct insight. Let us ask about the coefficient with which

2
ORCDEFGS

appears in the average value of the mean square of the RCDE-interaction in an
11-way design with factors labelled R, C, D, E, F, G, H, J, K, L, S. More spe-
cifically, let us ask how the coefficient depends on the values of s and S. It will
appear that we can answer this rather directly.

There will exist some formulas which make up the fundamentals of deci-
sampling. Apply them to the 10-way classification involving R, C, D, E, F, G, H,
J, K, L—involving all the classifications but S. They will give the average value
of the RCDE-interaction in terms of ¢*’s whose indices do not include S and of a
mean variance and 2'° — 1 = 1023 mean covariances. The latter 1024 quantities
will be expressable in terms of the ¢’s which involve S by a process entirely similar
(though more complicated in detail) than that used in Section 15, each of the
1024 formulas for a linear combination of mean variance and covariances will

involve a factor
63
s S)°

since, in every case, we shall be sampling s out of S. Hence, when all the algebraic
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dust has quieted down, the coefficient of o cpergs Will include the same factor, and
will depend in no other way on S. It will depend on s in a further way, since find-
ing the row, column, D-variable, and E-variable will still leave us with fghjkls
different cells. Thus a factor of this value will appear in the mean square for
RCDE when that mean square is written out in terms of means (not totals). Thus
the complete dependence on s and S will be

1 1 s
S(E'—'S>—1_;§.

With this result, and the result, obtained incidentally, that A and H will enter
only through a factor h, we are essentially finished.

By symmetry, we see that the term in the mean-value of the RCDE-interac-
tion with which we are concerned is

(constant)( - %,)(1 — g) Rkl (1 - S?)aicmas

If we simplify matters by choosing h = H =j=J =k=K=[1=L =1,
the whole 11-way classification condenses to a 7-way classification and if, more-
over, we revert to Model II (everything independent and normal), we obtain

(constant) ok cprras

as a term in the average value of the RCDE-mean square, and it is well known
that the constant must now be unity.
This provides a not-too-indirect proof for the rules set forth in Section 11.
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