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Proor. Say X has density p with respect to Lebesgue measure on the unit
interval. Then

Ui(\) = N d(ye(X), \D™")/d(yx(X), D),

where yi(s) = mD™* for mD™ < s < (m+1)D*, m=0,1,---,D" —1, and
d(a, h) = &7 [a* p(s) ds.
We must show that

M(yx(s), \D™)/d(ye(s), D7) =\

for almost all s (Lebesgue measure) for which p(s) > 0, and this will follow from

1 d(ya(s), \D™*) — p(s) a.e.
Now a basic theorem of real variable theory asserts that
@ d(s, k) — p(s) a.e.
ash— 0. Let aix(s) = (s — y(s))/AD™*
Then
d(ye(s), AD™*) = ax(s) d(s, ya(s) — ) + [1 — ax(s)] d(s, ya(s) + AD™" — 5)
)] = au(s)ld(s, ye(s) — s) — d(s, ya(s) + \D™" — 3)]

+ d(s, yul(s) + AD7* — ).

Since ax(s) is bounded, letting £ — o in (3) and using (2) yields (1), and the
proof is complete.
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A PROOF THAT THE SEQUENTIAL PROBABILITY RATIO TEST
(S.P.R.T.) OF THE GENERAL LINEAR HYPOTHESIS
TERMINATES WITH PROBABILITY UNITY

By W. D. Ray
British Coal Utilisation Research Association

1. Introduction. It can be shown [1] [2] that the S.P.R.T. of the general linear
hypothesis resolves itself into the following form of procedure: Continue sam-
pling at stage (n) if

8 e . %x‘"’G‘”’) 1-8. ..
(1) 1 — a < € M<a(n)) 'Y) 1 + G(n) < a b

otherwise accept or reject the null hypothesis depending upon whether the left-
hand or right-hand inequality is violated.
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522 W. D. RAY

A characterizes the alternative hypothesis, a(n) is half the sum of the degrees
of freedom of the numerator and denominator of the test criterion G = 8,/S,,
and v is half the degrees of freedom of S; .

a, (8 are the probabilities of error of the first and second kind respectively.

A" a(n) are each linear functions of n, the number of observations taken, y is
a fixed positive constant (where a(n) > v > 0), and

o T0) Mo 4 1)
= Il(@ T+’

Sampling is terminated whenever G < G or = G™, where @™, G™
are solutions of the equations
%)\(”)G(")

m)y __  —A(m)g2 2N M
(2) fn(G ) =€ M (a(n), 75 1 + G(n)

where A = /(1 — a),B = (1 — B8)/a.

2. Proof that the test terminates with probability unity. It will be sufficient to
prove that as n — «, @™ — G™ — Gy, say. Now

M(a, Y5 u) =

) = A, B respectively - - -,

7@ = 20t (a4 1,7+ 1, B ) B

"1+ G/ Q1+ Gy
and
3 (@) = 0t (o 2O

From a recurrence relation of the Confluent Hypergeometric Function
M(a, v; u) it can be shown that

M(a + 1,y + 1;w)

Y
- < (ORI <1 (for u > 0),

from which it follows that

W@ _ o o BAa/11(G) N
(4) m < fn(G) < —_(_IT(_})-T forallG > 0 .

Let gn(G) = log. fa(@). Then from (4) it follows that for G > 0,

I N«

1+ 6y 1+ a2y"

Since A — ® as n — w, this inequality shows that g, (¢) — = asn — o,
Further, since ¢g.(@) is a positive strictly increasing continuous function of @,
it follows that there can exist at most one value of G, say Go, where ¢g.(G) does
not become infinite as n — . Consequently g.(G) — — « for @ < G, and
gn(@) — + = for @ > Go. In terms of fu.(G), this implies that f,(G) — 0 for
G < Gy, and foa(@) — « for @ > G, . This in turn implies that G™ — @™ —
Gy, and sampling must therefore terminate.

< gn(@) <
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If there does not exist a finite Gy for which ¢.(G) does not become infinite,
then g,(G@) becomes infinite for all @ > 0. Thus ¢.(@) either becomes infinite for
all G > 0 or approaches zero for all @ > 0. In the first case, sampling will term-
inate because f.(G@) > B for sufficiently large » for all G > 0; and in the second
case 100, since f,(G) < A for sufficiently large n for all @ > 0.

3. Comments. It has been possible to obtain an upper bound for the limiting
value @G, but not to obtain its value uniquely. David and Kruskal [3] have pro-
vided a solution to the same problem for the sequential ¢-test.

4. Acknowledgement. I am most grateful to Dr. N. L. Johnson for his guid-
ance during research on this problem, to the referee for his comments, and to
the British Coal Utilisation Research Association for permission to publish this
paper.

REFERENCES

[1] N. L. JounsoN, ‘‘Some notes on the application of sequential methods in the analysis
of variance,” Ann. Math. Stat., Vol. 24, (1953), pp. 614-623.

[2] P. G. HoEL, “On a sequential test for the general linear hypothesis,”” Ann. Math. Stat.,
Vol. 26, (1955), pp. 136-139.

[3] H. T. Davip anp W. H. KrusgaL, “The WAGR Sequential ¢-Test reaches a decision
with probability one,” Ann. Math. Stat., Vol. 27, (1956), pp. 797-805.

—

ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Washington meeting of the Institute, March 7-9, 1967)

1. Synchronization of Trajectory Images of Ballistic Missiles and the Timing
Record of the Ground Telemetry Recording System, HArry P. HarT-
KEMEIER, Stanford University, (introduced by Paul R. Rider).

In order to compute the position, velocity, and acceleration of a missile, it is necessary
to synchronize the image pattern from ballistic camera plate records and the timing record
of the ground telemetry recording system. In the past this has been done by personal
inspection. This takes too much time; consequently, a method by which the two records
may be matched by high-speed electronic computers is required to speed up the work.

The missile is equipped with two strobe lights, one on each side, which are supposed to
flash simultaneously when scheduled to do so by a programmer. Inside the missile there is
a timing generator controlled by a tape punched according to a coding pattern. When the
timing generator sends a signal for the strobe lights to flash, it also sends a signal simul-
taneously to the telemetry transmitter. This signal reaches the ground recording telemetry
system through a radio link. A method of matching these two records by using correlation
technique and an electronic computer is presented. (Received November 6, 1956.)

2. Maximum Likelihood Estimates in a Simple Queue, A. BRUCE CLARKE,
University of Michigan, (By Title).

A simple stationary queueing process is a process having a Poisson input (with parameter
A), and a negative exponential service time (with mean 1/s, g > N\). Let » = the initial



