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ON TRANSIENT MARKOV CHAINS WITH APPLICATION TO THE
UNIQUENESS PROBLEM FOR MARKOV PROCESSES!

By LeEo BrREIMAN
University of California, Berkeley

1. Summary. We focus our attention herein on a Markov chain z,, 2, -
with a countable number of states indexed by a subset I of the integers and with
stationary transition probabilities p;; , and explore the sets of states defined by:

A transient set of states C is said to be denumerably atomic if P(z, € Ci.0.) > 0
and if for every infinite set A < C we have z, € C i.0. implies z, € 4 i.0. with
probability one (a.s.).

Following Blackwell’s basic paper [1] which introduced the systematic use of
martingales into the study of Markov chains, we use the semi-martingale con-
vergence theorem [2] to characterize denumerably atomic sets in terms of the
bounded solutions of the inequality

(1) < D jer isd(h), iel.

For chains whose state space contains a denumerably atomic set a convergence
criterion for certain sums D_wwof(z) is then developed. The application of this
criterion to a restricted class of continuous parameter Markov processes gives
simple necessary and sufficient conditions for the existence of a unique process
satisfying given infinitesimal conditions. This last result illuminates the con-
nection between the necessary and sufficient conditions given by Feller [3] for
uniqueness and the simpler conditions for birth and death processes given
recently by Dobrusin [4], more recently by Karlin and McGregor (5], and by
Reuter and Lederman [6] (see also [7]).

2. Characterization theorem.
TuEOREM 1. The necessary and sufficient condition for a transient set of states C
such that P(z. € C 1.0.) > 0 to be denumerably atomic s that any bounded solution

#(2) of '
(A) ¢(0) S 2 jer Pisd(d)

satesfy im infi.c ¢(2) = lim sup;.c ¢(2).

Proor. Let C' be denumerably atomic and ¢(¢) any bounded solution of (A).
Then E(¢(Za) | Zn1, -+, To) 2 ¢(Ta) S0 that by the semi-martingale con-
vergence theorem ¢(z,) converges a.s. to a function f(w). Let 4, , A, be infinite
subsets of C such that for ¢ £ 4;, ¢(3) < a and for 7 £ A;,¢(2) > 8 > a. Then,
since almost every sample path which is in 4, i.0. is in A4, i.0. the limit of ¢(z,)
cannot exist.
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Conversely, let A be any infinite subject of C and take & to be the event that
Z, is never in 4. Let ¢(z) = P(8 | 20 = 1), then:

¢() = B(PE |20, 71) |20 = %) = D jer—a Pii#(G) S 2 ser Disd(h).

Since ¢(z) is zero on A, we have lim inf;.c ¢(¢) = 0 whence lim sup;.c ¢#(z) = 0.
This implies that for almost every sample path o, - -- which is in C i.0., ¢(zs)
converges to zero. But by the martingale convergence theorem, since
P& | za, -+, T) = ¢(x,), the indicator Ig(w) of the set & is zero for almost every
w € [z, € C 1.0.] and therefore almost every such w is in 4 i.o.

We note, for future use, that if C' is denumerably atomic and if ¢(7) is a solution
of (A) satisfying E | ¢(z.) | < K, the conclusion lim inf;.c ¢(z) = lim supi.c ¢(¢)
remains unaltered. ‘

It is interesting, as well as necessary, to know that any denumerably atomic set
C can be embedded in a set C' which is a maximal denumerably atomic set. That
this is so follows from Blackwell’s work [1] in the following sense: there is a set
0 o ¢ such that, C is denumerably atomic and z, & C i.0. implies z,, & C for all
sufficiently large n a.s.

3. Convergence criterion. The above characterization leads to a convergence
criterion reminiscent of the Three-Series theorem.

TueoREM 2. Let C be denumerably atomic and f(2) a finite nonnegative function on
I such that f is zero outside of C. Then the sum Ym0 f(2.) converges a.s. if and only
if D weo Ef(x.) converges and otherwise diverges with probability equal to
P(z, £ Ci.0.).

Proor. Let 8 = ) _mof(z.) and ¢(¢) = P(S < d | zo = 4). Then ¢(¢) satisfies
inequality (A4). Suppose lim inf;.c ¢(z) = O for every value of d, then lim sup;.c¢
¢(z) = 0, and ¢(x,) — O a.s. on the set [x, £ C i.0.]. Since

P(S <d|n, -, %) = ¢(Ta)

it follows that I{g<q(w) = 0 a.s. for w € [z, € C i.0.] and hence that S diverges
a.s. on this set.

From the above it follows that if S converges on some subset of [x, ¢ C i.0.] of
positive measure, there is a § > 0 and d; > 0 such that P(S < di|zo=1) 2 §
fori e C. Let Rn = ) _7—n f(x,) and define S,, as the set [R,, < di]. Writing

- f Rm+] = f [Rm - Rm+l] - f Rm+1,
3m+1 Sm sm-{-l’—sm
‘using the definition of S,
f f (xm) =a4,P (Sm+l - Sm) + f R, — j Rm+1,
Sm 8m 8m+l

and summing over all m results in

f fam) < 2dy.

m==0
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But,
fs f(@m) = Zcf(i)P(R,,. < di|Tm = 1) P(xm = 1)

= 2 J@P( < di|a = )P(en = 1) = 55f(zn)

which proves the theorem.
CoroLLARY 1. Under the conditions of the above theorem, a necessary and suf-
ficient condition for the a.s. convergence of Y meof(xn) 18 that the equation

(B) a@) = fG) + 2 e pisa(s)

have a bounded solution.

PROOF. Let D neo f(x.) converges a.s. to S(w) < . Then a(s) = E(S |z = 1)
is a solution of (B) and —a(z) is a solution of (A) with Ea(z.) = ES. If a(z) is
unbounded, then lim sup;.ca(?) = lim inf;.ca(¢) = «, which implies that
a(z,) — « on a set of positive measure and contradicts the boundedness of
Ea(z,). Conversely, if (B) has a bounded solution a(z), then the iteration of
(B) gives | a(z) — E(Q_n-of(xs) | Zo = %) | < supjer a(j) which implies the con-
vergence of ) a0 Ef(2).

We relate Theorem 2 to the uniqueness problem which involves global struc-
ture, by confining ourselves to chains with a fairly simple decomposition. The
following theorem is appropriate. Its proof follows immediately from the various
definitions.

TuroREM 3. Let the state space I of a Markov chain be completely decomposable
into the set Co of recurrent states, a set M of transient states such that
P(x, ¢ M i.0.) = 0, and a finite number of maximal denumerably atomic sets
Cy, -+, Cx. If f is a function on I and if fi is that function which equals f on
Cx and is zero elsewhere, then _mwo f(2n) diverges almost surely if and only if each
> oo fu(@n) diverges a.s. on the set [z, & Cy i.0.].

4. The uniqueness problem. The synthetic uniqueness problem for continuous
parameter Markov processes having states indexed by a subset I of the integers
begins with a set of nonnegative constants ¢., p;;, defined for ¢, j € I, and asks
concerning the existence of a unique process X(t), 0 £ ¢t < «, having a given
initial distribution and satisfying

i. P(X(¢) is constant in interval [s, s + 7] | X(s) = 2) = 1 — qir + o(7)

C)
( ii. P (First discontinuity of X (¢), ¢ = s, is a jump to j | X(s) = ¢) = pi;.

- Our remarks are restricted to the simple and common situation ¢;, p;; < =,
2 pii = L.

There is a general answer, [3], [6], and [8]: if no “explosions’ are possible, if an
infinite number of jumps cannot oceur in any finite time interval, then there is a
unique process satisfying (C) and having, in addition, all of the properties that
could reasonably be desired. This is the “minimal”’ solution. In the contrary case,
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there is in general no unique solution and the solutions that do éxist are an-
alytically or probabilistically pathological.

To be more exact; the traversal time of each path of infinite length (¢,, 72, - - )
is a sum Q;, + @i, + --- of independent random variables with distributions
P(Qi, > t) = exp (— g¢;,). There is a Markov measure P on the space of all
paths induced by the p;; and the given initial distribution. The minimal solution
exists if and only if the transversal time is a.s. infinite for each path in a set of P
measure one. Using the Three-Series criterion for the divergence of a sum of
independent random variables and writing x,, 1, - - - for the chain associated
with the measure P leads to an equivalent formulation.

Uniqueness criterion. A minimal solution exists if and only if Y ¢ 1/g., di-
verges a.s.

The applicability of Theorem 2 is now apparent. For instance, in the birth and
death process, the given constants are

ifi=1,q =N+ i, Diin = N/ (N + w3), Piviaa = pi/ i + pa), pi; =0
otherwise;

fi=0,¢.=0,p0 =1, ps; = 0 otherwise.

If return to the origin is uncertain, the positive integers form a maximal de-
numerably atomic set. The condition for the existence of a minimal solution, as
given by Corollary 1, is that the equation

i + pda@) = 1 + Na(@ + 1) + wa(@ — 1), 121

have no bounded solution. A little formal computation yields the condition as
stated in [4], [5], and [7].
Another interesting application is to the case

Pis = Pi~i, 0 < 2jujpi< @,
where we restrict the state space I to those states with a positive probability of
being entered. As pointed out to me by D. Blackwell, the basic theorem of re-
newal theory, Chung and Wolfowitz [9], provides the simplest proof that the
nonnegative integers I in I form a maximal denumerably atomic set. By this
theorem, the expression

E (number of entrances into j |z = 7) = ) pi}’
N0

approaches a positive limit as j — 4 o« through I, which implies that for any
infinite set A of positive integers in I, P(z, ¢ 4 i.0.) = 1. As the negative inte-
gers I in I have the property P(z. ¢ I i.0.) = 0, the necessary and sufficient
condition for the existence of the minimal solution is

1 (”)

n=0 jeIt Qj bij

= o0,
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Interchanging the order of summation, and applying the renewal theorem once
more gives the equivalent condition

1

—_—= 0,
jert @

A slight alteration of this discussion is sufficient to establish the same condition
when the negative integers are absorbing states, that is, if

pi; = Ppi—s U 7 = 0; ¢: =0 if ¢ <O.

If the state space of the chain zo, 2, , - - - cannot be decomposed as indicated
in Theorem 3, complications set in and Feller’s criterion, which necessitates a
close examination of every set of states A such that P(z, e 4 alln |xo e 4) > 0
must be referred to. Simple necessary and sufficient conditions for uniqueness
are possible only when some uniformity, such as denumerable atomicity, is

present.
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