PROBABILITY DISTRIBUTIONS OF RANDOM VARIABLES
ASSOCIATED WITH A STRUCTURE OF THE SAMPLE
SPACE OF SOCIOMETRIC INVESTIGATIONS!

By Leo Karz anp James H. PoweLL

Michigan State University and Western Michigan College

1. Summary. In this paper, we consider a disjoint decomposition, at three
levels, of the total sample space for n-person, one-dimensional sociometric in-
vestigations. This results in a structure particularly suited to determination of
the probability distributions of a large class of sociometric variables. Systematic
methods for obtaining these distributions are presented and illustrated by two
examples; while the first is trivial, the second produces a previously unknown
result.

It should be remarked that the methods developed here have application in
the theory of communication networks and, indeed, in the study of any network
situations which may be represented by either of the two models employed in

the paper.

2. Introduction. The simplest model for the organization of a group of indi-
viduals is one-dimensional, in the sense that organization for only one activity
of the group is considered. Connections between ordered pairs of individuals are
represented by non-reflexive binary relations. Although a binary model appears
superficially to be too barren to show adequately the richness of variability of
the response of one individual to another, it is by no means trivial and is pre-
cisely the model used in most sociometric investigations, where the relations are
lines of communication, authority, liking, etc.

In this model, a particular organization of n individuals has two isomorphic
representations, both of which have been used extensively in the literature for
descriptive purposes. The older of the two is the linear directed graph on =
points, P1, Py, --+, P,. A connection from man ¢ to man j is represented by
a directed line from P; to P;, P; — P; ; the absence of such a connection, by
no line from P; to P; . The equivalent matrix representation is an n X n matrix,
C = (ci;), where ¢;; = 1 if a connection exists from man ¢ to man j, and ¢;; =
0, otherwise. By convention, ¢;; = 0. Obviously, ¢;; = 1 (or 0) if and only if a
directed line exists (or doesn’t) from P; to P;. Hence, the two representations
are isomorphic.

To fix the netation, let r; = Y_; ¢;; be the ith row total of C and s; = D_; ¢sj
be the jth column total. In the graph, r; is the number of lines issuing from the
point P;, and s; is the number of lines terminating on the point P; . Moreover,
Z; Ty = Z ;8; = t, the total number of directed lines. Finally, let the vectors
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r and s, with elements r; and s; , respectively, be the two n-part, non-negative,
ordered partitions of ¢ which represent respectively, the marginal row and
column totals of C.

Unless otherwise noted in the sequel, all graphs will be on n points and lin-
early directed (n-graphs), and all matrices will be n X 7 hollow matrices of
1’s and 0’s. (A matrix is hollow if all principal diagonal elements vanish.)

3. Decomposition of the sample space. The sample space of the possible or-
ganizations of an n-member group is the space of all possible n-graphs or n X n
hollow matrices of 1’s and 0’s. In this section, we consider a decomposition of
the total sample space, Q, following lines which hold promise of utility for cer-
tain investigations. We define first-order disjoint subspaces, Q,,¢ = 0,1, ---,
[n(n — 1)], as the collections of n-graphs containing exactly ¢ lines. Obviously,

n(n-—1)

(1) Q= U Qg )

t=0

since the @, are mutually exclusive and exhaustive.
Continuing in the same vein, we define second-order subspaces, w(p), p =

(r1, 12, +++ , rs), as the collections of graphs with r; lines emanating from P;,
i=1,2 ---,n Since ) ;r; = t, we have

[}
(2a) 2 = U ¢y, w(o),

where (p); is a generic symbol for non-negative, integral, ordered, n-part parti-
tions of ¢ with all »; < n. In a completely dual manner, we might define alterna-
tive second-order subspaces, w(o) in terms of n-graphs with s; lines converging
on P;. In this case, we would have

(2b) 2 = U (),w(0).

Third-order subspaces are defined by w(p, ¢) = w(p)Nw(c), and are identified
with spaces of n-graphs with r; lines emanating from, and s; lines converging on,
P; . Once again, these sets are exclusive and exhaustive in the sense that

(33) w(p) =U (o)¢ w(p, 0')’
and
(3b) w(@) = U, wlp, 0).

We remark that double and triple disjoint decompositions of the larger spaces
may also be indicated.

It will be obvious to the reader that there exist isomorphisms among certain
of ‘these second and third-order subspaces. It will be less obvious, but important
for computations, that these isomorphisms involve simultaneous permutations
on the elements of the two vectors p and o. We shall not elaborate on this point
since it contributes little to the notions with which we are here concerned.

4. Random variables associated with the structure of the sample space. The
decomposition described in the previous section imposes a structure on the sample
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space. In most sociometric investigations, involving randomness in the existence
of connections between ordered pairs of individuals, it has been deemed appro-
priate to assign uniform probability to each of the points in a third-order sub-
space, at least. In more extreme cases (the vast majority) it is customary to
assume that every possible sample point is equally likely. Sometimes this has
been done without even specifying which sample points are possible under the
conditions of the experiment.

In the context of the particular experiment, it is usually possible for the
experimenter to determine that his universe of discourse consists of @ or one of
the smaller subsets we have described. If, also, it happens that the random
variable under discussion assumes the same value over all the points of each of
certain smaller subspaces, the assumption of uniformity of probability within
these subspaces will produce the complete probability distribution of the vari-
able. In this section, we investigate these circumstances.

We say that a random variable defined over n-graphs or n X 7n hollow mat-
rices is associated with the sample space structure of the previous section if the
value of the variable is constant over all points in every w(p, o) contained in
the domain of definition of the variable. Every such variable has a probability
distribution which is completely specified as soon as we are able to count the
numbers of points in the,appropriate subspaces, assuming uniformity of prob-
ability on each point. In the next section, we shall present methods for carry-
ing out this enumeration. A variable associated with the structure in the sense
of the present definition is necessarily one whose value is somehow determined
by, i.e., is a function of, the r; and s;, 7,7 = 1, 2, --- | n, alone. Indeed, this
may be taken as an alternative definition.

To establish that the class of variables associated with the structure has some
real substance, we examine a few variables which have been the subjects of
sociometric investigations. Gross expansiveness, or average level of expansive-
ness, has been defined in terms of ¢ alone in the context of the space Q. Vari-
ability in expansiveness is defined as a function (usually a sum of squares) of
ther;, 72 = 1,2, .-+, n, sometimes in the context of € and sometimes in Q; .
A number of variables have been defined as functions of the s;,7 = 1,2, ---,
n, in various contexts ranging down to w(p). Examples are (1) the number of
isolates, i.e., the number of\s; = 0 and (2) the choice status of the most highly
chosen, i.e., max; s;. Both of these are usually studied in the context of some

w(p).

6. Enumeration of the points in various subspaces. In considering the prob-
- lems of enumeration, it will be more convenient to use the matrix representation
because of its more flexible notation. Thus, the total number of matrices (graphs)
in Q is the number of ways in which the n(n — 1) elements of C' may be specified
as either zero or one. By elementary considerations, the number of distinct ways
this can be done is

(4) 7 = 2n(n—l)
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The matrices in Q; have ¢ ones distributed over n(n — 1) positions; the num-
ber of ways this can be accomplished is the number of ways of specifying a

particular ¢ of the n(n — 1) positions. Therefore, the number of mat-
rices (graphs) in Q; is given by
_(n(n —1)
(5) Nt = ( ¢ >
where (g) , b = a, is the binomial coefficient a!/[b!(a — b)!]. As is well-known,

Tue3 (0 Y)-r

The enumeration of matrices in w(p) is accomplished by considering, for
each 7, r; ones distributed over (n — 1) positions. This can be done, independ-

ently, for each 4, in ways and thus the total number of

matrices (graphs) in w(p) is giv;n by

(6a) 7(p) = I:I <n ; 1)-

By a similar argument, the number of matrices in w(s) is given by
(6b) o =T1(" 7 1).

It is easily seen that,

2w () = 2w @) = me.

The only difficult counting problem arises when we attempt to compute the
number of points in w(p, ¢). This problem was solved by the authors [3] who
showed that this number is given by

THEOREM.
10,9 = 4{[ T+ 807 6,0}
p=
where the 8; are operators on the pair of vectors defined by 8(ry, -+ ,7i, *++, Tn
Sy, Si, e, sn) = (rl’ R 1’ e TRy 81,y 8 — 1’ ceey s")’

the symbol A{D_ aulpa, aa)} stands for D @aA(pa, 0a) and A(pa, o) is the
coefficient of the monomial symmetric function of order corresponding to oo in the
-expansion of the unitary (elementary) symmetric function of order corresponding
10 pa .

We note that the coefficients A(p., ¢.) are given in tables of David and
Kendall [1] for p, and o, partitions of ¢{ up to ¢ = 12. P. V. Sukhatme [5] gave
an algorithm for computing A (p. , o) for any weight and showed that A (p, o)
is the number of matrices of elements ¢;; = U or 1 with fixed row totals r; and
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column totals s; but without restrictions on the diagonal elements. We present
a very much abbreviated alternative to the proof previously given by the au-
thors in the paper cited above.? '

Proor. @, = [[7=1 (1 + =ziy;) generates the A(pa, 0a) as coefficients of
terms [ 21 27** [[7-1 y5'*, and we may write

62 = Too Alpe, ol IL
where the sum extends over all a such that
Oériaén—l) 0§sja§n—1’ Zfria=2j8ja,

This is most easily seen if each c;; in a matrix C of 0’s and 1’s is represented as
(zsy,)°*1. Then, each term in the formal expansion of G, represents one complete
configuration of all the ¢;;, simultaneously. Finally, in each individual term,
the total exponent of z;(y;) is the sum Y_; ¢;; = r:(2_:¢ci; = s;), and the coeffi-
cient A(pa, 0.) is the number of distinct configurations of the c;; with the in-
dicated row and column totals.

Minor modification of the same reasoning serves to establish that

n
H,= I 0+ 2y
o
is a generating function for the n(pa , 0a).
Next, we observe that
Hn = [III (1 + xt'yt')_l] Gn-

In this equation, the coefficient of (I].zi II;y;?) in the left-hand member is
a(p, o) and, in the right-hand member, is D, D a; * ** Doap (—)* A0 — a,
o — a), where the o; range over all non-negative integers. Equating these co-
efficients gives the expanded form of the statement of the theorem.

We note that the last sum in the proof-above may be written in finite terms,
since, as soon as any «; > min (r;, $;), the corresponding A(p — @, ¢ — @) =
0, by the definition of Sukhatme as a number of certain matrices of 0’s and
1’s.

6. Probability distributions of associated random variables. It is now clear
that we have laid down a program for computing, exactly, the probability dis-
tributions for any and all random variables associated with this structure of
the sample space. In particular instances, it may be possible to effect certain

" economies in the computations by exploiting the isomorphisms among subsets
so as to avoid duplication.

When the variable in question has constant values on sub-spaces no larger
than an w(p, o), the camputations are always formidable, though never impos-
sible..In such circumstances, it would seem desirable to devélop approximate

1 This alternative proof follows lines of a suggestion by J. S. Frame
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distributions for these variables, treating the exact methods as procedures for
testing the validity of the approximations over the ranges of group size, etc.,
to be covered. For very small groups, it will usually be feasible to carry out the
exact computations.

7. Examples. We shall give two examples of random variables associated with
the sample space structure. In each, we consider the null case in which each
graph in the appropriate sample space is equally likely, i.e., a uniform probability
distribution over the sample space.

ExampLE 1. One measure of gross expansiveness, equal to the total number
of choices made by group divided by size of group, is given by Loomis and
Proctor [4] in a contribution to Research Methods in Social Relations. In our
notation, this index is E = ¢/n.

The distribution problem, in the null case, is easily solved. Clearly, the ap-
propriate sample space is @ and our random variable, the number of distinct
n-graphs with ¢ lines, is constant over the first-order subspaces, Q. , in the dis-
joint and exhaustive decomposition of Q. Thus, our random variable is asso-
ciated with the sample space structure and according to Section 4 and the
enumeration formulas of Section 5, the required probabilities are given by

- - (n(nk— 1)).
n

- 9n(n—1)

ExaMpPLE 2. An 7solate is an individual represented in the graph by a point,
P, with no terminating lines and in the matrix by a column of zeros, i.e., s; |
0 in the vector ¢. The exact probability distribution of the number 6f isolates
for the case r; = d(7 = 1, 2, - - - , n) was obtained from first principles by Katz
[2], in 1950.

Using the methods already developed, we can now easily extend this result
to the general case where the 7th individual has r; outgoing connections, the r;
being not necessarily equal.

The most common setting for this problem is in the sample space w(p). In
the null case, we desire the number of n-graphs having a specified number of
points with no terminating lines, i.e., a specified number of zeros in the vector
o. Our random variable, X, the number of zero s,’s, is constant over the third
order subspaces w(p, ¢) in the decomposition of w(p); thus, it is associated with
the sample space structure. Hence, according to Section 4 and the enumeration
formulas of Section 5, the probability of exactly k isolates is given by

. (%: Li(a)n(p, o)
P (X = k" P) = —;G;)'—_
® % a4 {TL 0 + 8076, )

neny)
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where A4, is the union of w(p, ¢) such that the vectors ¢ have exactly £ vanishing
components, and I, is the indicator function for the set A.

We remark that in some contexts the appropriate sample space might be
the larger space Q,. However, our enumeration methods will still give us the
required probabilities necessary to construct the distribution. In this case, the
probability of exactly % isolates is given by

2 2 Ly(o)n(p, o)

PX =k l {) = ()¢ (9)¢
Ne

(9) > = La@a{ITa+ a0 )

— (e (9
n(n — 1) ’
t

where the notations are the same as before.

Thus, the probability distribution can be constructed for any index (pro-
posed for the study of group structure) which depends only on the number of
isolates in the group. Another such index, equal to the reciprocal of the num-
ber of isolates, is given by Loomis and Proctor [4] as a measure of ‘“group in-
tegration.”

Finally, we note that neither of the distributions (8) and (9) have been given
correctly in the literature.

REFERENCES

[1] F. Davip anp M. G. KenpaLwn, “Tables of symmetric functions. Parts II and III,”
Biometrika, Vol, 38 (1951), pp. 435-462.

[2] L. Katz, “The distribution of the number of isolates in a social group,” Ann. Math.
Stat., Vol. 23 (1951), pp. 271-276.

[3] L. Katz anp J. PoweLL, ‘“The number of locally restricted directed graphs,” Proc.
Amer. Math. Soc., Vol. 5 (1954), pp. 621-626.

[4] C. Loowmrs aNp C. ProcTor, “Analysis of Sociometric Data,” Research Methods in Social
Relations, Part 2, Chap. 17, The Dryden Press, New York, 1951.

[5] P. V. SukHATME, “On bipartitional functions,” Philos. Trans. Roy. Soc. London, Ser. 4,
Vol. 237 (1938), pp. 375-409.



