786 T. AUSTIN, R. FAGEN, T. LEHRER, AND W. PENNEY

it is known that E{[(Q' — EQ') / oe-]*} approaches u; , the kth moment of a
standard normal chance variable, for any positive integral k. From the discussion
above, one might expect the same to hold for E{[Q — EQ) / oo}, and a de-
tailed examination shows that this is so. It is also so for E{[(W — EW) / ow|‘},
since the terms in this not given by the corresponding terms with W replaced
by @ approach zero in the limit, due to the properties of v, defined above. This
completes the proof.

4. The asymptotic power of certain tests of fit. To test the hypothesis that
f(x) = 1for 0 < 2 < 1, the test that rejects when V(n) = C,(a) has been sug-
gested, where C,(a) is a constant depending on the sample size n and on the
desired level of significance . Denote (1/4/2x)[2¢“*® dt by ¢(v), and let k(<)
denote the value such that ¢(k(a)) = «. Then Theorem A shows that for large n,
Cn(a) is approximately equal to

WAL + 1) + M@VTE 1) = 0 F D D),

while if the true common density is f(z), then the large-sample power of the test
is approximately equal to

W) — VAT D) [ 7 de

/‘/[I‘(Zr +1) — 2,T%(r + 1)]folfl—2'(z) dr — [(r — Dr(r + l)folfl_'(x) de '
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THE DISTRIBUTION OF THE NUMBER OF LOCALLY MAXIMAL
ELEMENTS IN A RANDOM SAMPLE

By T. Avustin, R. Facen, T. LEHRER, AND W. PENNEY

Washington, D. C.

0. Summary. The distribution of the number of different locally maximal ele-
ments in a random sample is found, where the sampling is from a continuous
population of real numbers. This distribution has application in certain non-
parametric tests; the problem of finding the distribution may be regarded as
identical with the enumeration of permutations according to the number of dis-
tinct locally maximal elements.

1. Introduction. An ordered sample of n real numbers is drawn at random
from a population having a continuous distribution. For a given integer %, an
element of the sample is called locally maximal if it is the largest of some % con-
secutive elements of the sample. The distribution of the number of different
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locally maximal elements in a random sample is discussed in the following;
this distribution can be used as a basis for certain nonparametric tests in a
manner analogous to other order statistics.

Although the problem arose in just such a context, it can, as will be indicated
below, be treated as a purely combinatorial problem. The problem is then to
enumerate the permutations on n objects according to the number of different
locally maximal elements and so belongs to a class of problems similar to those
studied by Riordan [1], Sprague [2], Sade [3], e.g., classifications of permutations
according to various characteristics, such as rising sequences, falling sequences,
readings [cf. Riordan [1]], ete.

2. Locally maximal elements. Let Q@ be a population of real numbers with
continuous distribution function, and let 0, = (z1, 2, - -+, =) be an ordered
sample of size n drawn at random from Q. For a given k let

Y = maX(ClJi+1,.’l?;+2, e rxt'+k)7: = 0; 1727 N — k.
Let

1 if y; = z; for at least one ¢,
2 = J=12--,n
0 otherwise

If z; = 1, then z; will be called a k-maximal element, or for brevity, a mazximal
element. Note that the probability of a tie, i.e., the event x; = z,, for [ # m, is
zero, and therefore there is no essential ambiguity in the definition of z;. Clearly
2; is itself a random variable, being a function of a random sample. Thus the
sequence 21, 22, ' *+ , 2, 1S & sequence of random variables (which are neither
independent nor identically distributed) associated with the sample 0,. Now
let S, = > i1 2;.The problem is to find the distribution of the random variable
S., i.e., the set of numbers {p,},

(1) ps=P[S,.=s], s=0,1’2’...’n.

It is easily seen that the distribution of S, is independent of the underlying
distribution of €, and depends only on the order relationships among the numbers

Z1, -, Zn . It is convenient, therefore, to replace these numbers by the proper
permutation of the integers 1, 2, - - - | », i.e., that permutation having the same
order relationships as z;, 2, -+, .. By symmetry, all permutations of

1, 2, --+, n have an equal probability of occurrence, so the distribution of S,
may be obtained by finding the number fi(n, 7) of permutations of the first n
integers which have exactly ¢ different maximal elements.

3. Recurrence relationship and generating function for the numbers f,(n, 7).
A recurrence relation for the numbers {fi(n, 7)} can be found in the following
manner:

Consider all permutations of the first » 4 1 integers in which the largest ele-
ment is in the (m + 1)st position, i.e., those permutations of the form
A, 02, "y Qmy N F+ 1, Guia, -+, @ny1 . Certain of these have exactly 7 4+ 1
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different maximal elements. To enumerate such permutations, note that the
element (n + 1) is necessarily maximal so that the permutations (a1, az, -+ , @m)
and (@mi2 , @mas, - , Guy1) Must between them contribute ¢ different maximal
elements. The m integers a; , - - - , a» which appear to the left of (n 4+ 1) can be

selected in (Z) ways; for any of these choices there are f,(m, r) permutations

of a1, @, -+, am which have r maximal elements. Similarly, there are
fi(n — m, 1 — r) permutations of the remaining integers Gm+2, Gm+3, *** 5 At
which have ¢ — r different maximal elements. Thus the total number of permuta-
tions of the first n» + 1 integers which have the largest element in the (m 4 1)st
position and which have 7 4+ 1 distinet maximal elements is

r}:;61’,:(1)1, rfiln — m, 7 — r) <:Ln>

Summing on m, the total number, fi(n + 1,7 + 1), of permutations of the first
n + 1 integers with 7 + 1 different maximal numbers is given by

@) filn + 1,5+ 1) = mz=)0 ;Zofk(m, ) fuln — m, i — 1) (2)

with the following boundary conventions:
fe(n, 0) = nl; n <k,

3) filn, 0) =0;  nzk,
fe(n,2) = 0 t>0,n <k

Note that, with these conventions, (2) holds for all » whenever ¢ > 0 and for
values of n = & — 1 when ¢ = 0; (3) must be used to determine f(n, ¢) for other
values of n.

Using (2) and (3) the numbers fi(n, 7) can be calculated recursively, and thus
the desired distribution in (1) can be found for any fixed n since

4) P, = P[S, = g =fk(Z,! D) )

Another way of generating the distribution in (4) arises from considering
the generating function v(z, y) of the numbers fi(n, 7) / n!. Let

5 NEPEDIPHLLIEN
From (5), it is obvious that

a"vk _ S
(6) Frd ﬂ;ofk(n, B)yﬂ

Equation (6) thus gives the generating function for the numbers fi(n, ¢) for
fixed n, and hence the generating function for the entire distribution in (4)
is just
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1 a"vk
N! OT™ |pm0

Furthermore, it can be shown from (2), (3), and (5) that v (z, y) satisfies the
differential equation

7) %:yv2+(l—y)(1+2x+3xz+ coo (k= D).
Also, note that from (2), (0, ) = 1, and so

w| _

a.’E z=0

The generating function in (6) can therefore be found by repeated differentiation
of (7). As a check, it can be shown by induction, using (3) and (6) for y = 1,
that > _ao fi(n, 8) = nl, as is of course necessary. Similarly one may show that
for n = k the mean of S, is given by

_ S Bfi(n,B) _ 1 [a <a"vk>] on—k+1
These relations may also be derived, though less easily, by induction from (2)
and (3).

4. Numerical examples. As an example, the first few values of (8", / 92") | z=0
for k = 3, as found from (7), are given below:

@ = 1,
or =0
Y]
a_xa 2=0 N 2,
%
ﬁ z=0 - Gy,
' 2
A 1
Gl 2V 12
© 0 _ oay 4 129 + 24
"6?5 o - y + y + y 3
& =4082+2643+;84
0zt 2=0 4 v v
7
991 ="1008y" + 31204° + 816* + 96",
0" |z=0
8
37”8 = 2016y" + 18624y° + 17376y* + 2112y° + 192y°.
2e=0

\

The coefficients f(n, 8) of ¥* in Eq. (8) can also be computed directly from (2).
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PERCOLATION PROCESSES: LOWER BOUNDS FOR THE
CRITICAL PROBABILITY

By J. M. HAMMERSLEY
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1. Introduction. A percolation process is the spread of a fluid through a
medium under the influence of a random mechanism associated with the me-
dium. This contrasts with a diffusion process, where the random mechanism
is associated with the fluid. Broadbent and Hammersley [1] gave examples
illustrating the distinction.

Here we shall consider a medium consisting of an infinite set of atoms and
bonds. A bond is a path between two atoms: it may be undirected (in which
case it will allow passage from either atom to the other) or it may be directed
(in which case it will allow passage from one atom to the other but not vice
versa). Two atoms may be linked by several bonds, some directed and some
undirected. Broadbent and Hammersley [1] dealt with crystals, i.e., media in
which the atoms and bonds satisfied three postulates denoted by P1, P2, and
P3. Here, however we shall dispense with P1 and a part of P3; and our sur-
viving assumptions are:

P2. The number of bonds from (but not necessarily o) any atom is finite.

P3(a). Any finite subset of atoms contains an atom from which a bond leads

to some atom not in the subset.

With this medium we associate the following random mechanism: each bond
has an independent probability p of being undammed and ¢ = 1 — p of being
dammed. Fluid, supplied to the medium at a set of source atoms, spreads along
undammed bonds only (and in the permitted direction only for undammed
directed bonds) and thereby wets the atoms it reaches. Associated with each
atom A, there is a critical probability pis(4), defined as the supremum of all
values of p such that, when A is the only source atom, A wets only finitely
many atoms with probability one. We seek lower bounds for p; .

An n-stepped walk is an ordered connected path along n bonds, each step
being in a permitted direction along its bond and starting from the atom reached
by the previous step. Walks (as opposed to fluid) may traverse dammed bonds:
a walk is dammed or undammed according as it traverses at least one or no
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