where $x = \rho^2 [1 + a^2/(N+1)]^{-1}$ and $I_z(\frac{1}{2}(N+1), \frac{1}{2})$ is Karl Pearson's notation for the Incomplete Beta-Function as tabled in [2].

In the preceding discussion it has been assumed that the mean of the process (x_t) is known to be zero. If the mean must be estimated from the sample, the serial correlation coefficient will be

$$r' = \frac{\sum_{t=1}^{N} (x_t - \bar{x})(x_{t+1} - \bar{x})}{\sum_{t=1}^{N} (x_t - \bar{x})^2}, \qquad \bar{x} = \frac{\sum_{t=1}^{N} x_t}{N}.$$

All of the results concerning r also hold true for r' with N degrees of freedom rather than N+1.

REFERENCES

- (1) R. B. Leipnik, "Distribution of the serial correlation coefficient in a circularly correlated universe," Ann. Math. Stat., vol. 18 (1947).
- (2) K. Pearson, Tables of the Incomplete Beta-Function Cambridge, 1934.

GROUPS AND CONDITIONAL MONTE CARLO

By J. G. WENDEL

University of Michigan

Summary. The conditional Monte Carlo technique advanced by Tukey et al. [1, 2] has been explained in analytic terms by Hammersley [3]. This note offers an alternative explanation, wherein the group-theoretic aspect of the problem plays the dominant role. The method is illustrated on an example simpler than that treated in [1, 2].

The framework. Throughout this note X will be a random vector in euclidean n-space \mathfrak{X} , having distribution function G. F will denote a distribution function absolutely continuous with respect to G, with Radon-Nikodym derivative $dF/dG \equiv w$, so that

$$F(M) = \int_{M} w(x) \ dG(x)$$

for all Borel sets M, and

$$\int \varphi(x) \ dF(x) = \int \varphi(x) w(x) \ dG(x)$$

for Borel functions φ . It is standard in this situation to call w a weight and to say that X (drawn from G) with weight w(X) is a sample from F; thus for Borel φ we have

$$E_{\mathcal{G}}(\varphi(X)w(X)) = E_{\mathcal{F}}(\varphi(X))$$

Received January 28, 1957; revised April 12, 1957.

where the subscripts on the expectation operators specify the population from which X is sampled. From now on we assume without essential loss of generality that F and G come from densities f and g, so that w(x) = f(x)/g(x) or 0 according as $g(x) \neq 0$ or = 0.

The problem. A more interesting case arises when *conditional* expectations are desired. It is by no means apparent that it will in general be possible to find a weight-function w^* and an appropriate modification X^* of X so that

$$E_q(\varphi(X^*)w^*(X)) = E_f(\varphi(X) \mid \text{condition on } X)$$

identically in φ , but in fact the main theme of [1, 2] was that highly non-trivial instances do exist. Their problem can be put as follows:

 \mathfrak{X} : Euclidean n-space;

 \mathfrak{A} : a locally compact non-necessarily Abelian group of 1-1 differentiable transformations acting on \mathfrak{X} , such that the mapping $(\alpha, x) \rightarrow \alpha x (\alpha \in \mathfrak{A}, x \in \mathfrak{X})$ is measurable;

 $\partial(\alpha x)/\partial x$: the Jacobian of $\alpha \in \mathfrak{A}$ at $x \in \mathfrak{X}$;

 $dm(\alpha)$: a fixed right-invariant Haar measure over \mathfrak{A} ;

A: a left-homogeneous mapping defined on almost all of \mathfrak{X} onto \mathfrak{A} , so that $A(\alpha x) = \alpha A(x)$ for all α and all x in the domain of A;

 σ : the density function of A, assumed to exist; thus, for Borel sets $B \subset \mathfrak{A}$

$$\Pr \{A(X) \in B\} = \int_{B} \sigma(\alpha) \ dm(\alpha) = \int I_{B}(A(x))f(x) \ dx$$

where I_B is the indicator of B, and X of course has density f.

In [1, 2] the group \mathfrak{A} consisted of the multiplicative group of positive reals, acting as dilations on \mathfrak{X} ; then $dm(\alpha)$ can be taken to be $d\alpha/\alpha$, and the Jacobian is just α^n .

The problem is to express $E_f(\varphi(X) \mid A(X) = \alpha_0)$ as an unconditional expectation $E_g(\varphi(X^*)w^*(X))$, where X is sampled from density g, X^* is a suitable modification of X, and w^* is an appropriate weight. This is certainly natural in the Monte Carlo setting, for it would save us from having to waste most of our observations, namely those X for which A(X) is not reasonably close to α_0 .

Development of solution. (The formulae set down in this section are those of [1], but interpreted in the broader setting and subjected to formal proof.)

In view of the homogeneity of A the obvious choice of modification $X \to X^*$ is to force the condition $A(X^*) = \alpha_0$ to hold. This will be achieved if we take $X^* = \alpha_0 A(X)^{-1} X = \alpha X$, where α denotes $\alpha_0 A(X)^{-1}$ and is, like X, a random variable. Finding the appropriate weights will occupy the remainder of this section.

Lemma. Suppose that X with weight w(X) is a sample from density f. Then for each $\alpha \in \mathfrak{A}$, αX with weight $w(\alpha, X)$ is a sample from f too, where

$$w(\alpha, x) = w(x) \{f(\alpha x)/f(x)\} | \partial(\alpha x)/\partial x |$$

PROOF. Write $Y = \alpha X$. We want to evaluate $\int \varphi(y) f(y) dy$ for Borel φ . But this is

$$\int \varphi(\alpha x) f(\alpha x) \ d(\alpha x) = \int \varphi(\alpha x) f(\alpha x) \ | \ \partial(\alpha x) / \partial x \ | \ dx$$

$$= \int \varphi(\alpha x) \{ f(x) / g(x) \} \{ f(\alpha x) / f(x) \} | \ \partial(\alpha x) / \partial x \ | \ g(x) \ dx$$

$$= \int \varphi(\alpha x) w(x) \{ f(\alpha x) / f(x) \} | \ \partial(\alpha x) / \partial x \ | \ g(x) \ dx$$

$$= \int \varphi(\alpha x) w(\alpha, x) g(x) \ dx$$

as was to be shown.

THEOREM. Let μ be an arbitrary density over \mathfrak{A} . For each $\alpha \in \mathfrak{A}$ suppose that αX with weight $w(\alpha, X)$ is a sample from density f. Then, with A(x) as above, $\alpha = \alpha_0 A(x)^{-1}$ (so that $A(\alpha x) = \alpha_0$) and $X^* = \alpha X$, we have X^* with weight w^* is a sample from f conditioned by $A(X^*) = \alpha_0$; the weight w^* is given by

$$w^*(x) = w^*(\alpha_0, x) = \sigma(\alpha_0)^{-1} \mu(\alpha_0 A(x)^{-1}) w(\alpha_0 A(x)^{-1}, x).$$

PROOF. For simplicity write Y in place of X^* . We want to evaluate $E_f(\varphi(Y) \mid A(Y) = \alpha_0) =_{\text{Def}} \psi(\alpha_0)$. ψ is characterized (up to almost-everywhere equivalence) by

(1)
$$\int_{B} \psi(\alpha) \sigma(\alpha) \ dm(\alpha) = \int_{\{A(y) \in B\}} \varphi(y) f(y) \ dy = \int \tilde{\varphi}(y) f(y) \ dy$$

where $\tilde{\varphi} = \varphi I_{A^{-1}B}$, B a Borel subset of \mathfrak{A} . By hypothesis we have for all Borel $\tilde{\varphi}$ and each $\beta \in \mathfrak{A}$,

(2)
$$\int \tilde{\varphi}(y)f(y) \ dy = \int \tilde{\varphi}(\beta x)w(\beta,x)g(x) \ dx.$$

Multiplying both sides of (2) by $\mu(\beta)$ and integrating over $\mathfrak A$ with respect to $dm(\beta)$ gives

(3)
$$\int \tilde{\varphi}(y)f(y) \ dy = \int_{\mathfrak{A}} \mu(\beta) \ dm(\beta) \int_{\mathfrak{X}} \tilde{\varphi}(\beta x)w(\beta, x)g(x) \ dx$$
$$= \int_{\mathfrak{X}} \int_{\mathfrak{A}} \mu(\beta)\tilde{\varphi}(\beta x)w(\beta, x) \ dm(\beta)g(x) \ dx$$

where the interchange of order of integration is justified by Fubini's theorem. Putting $\beta = \alpha A(x)^{-1}$ and invoking right invariance replaces the right side by (3) by

$$\int_{\mathfrak{X}} \int_{\mathfrak{X}} \mu(\alpha A(x)^{-1}) \tilde{\varphi}(\alpha A(x)^{-1}x) w(\alpha A(x)^{-1}, x) \ dm(\alpha) g(x) \ dx$$

$$= \int_{\mathfrak{X}} \int_{B} \mu(\alpha A(x)^{-1}) \varphi(\alpha A(x)^{-1} x) w(\alpha A(x)^{-1}, x) \ dm(\alpha) g(x) \ dx$$

$$= \int_{B} \sigma(\alpha) \ dm(\alpha) \int_{\mathfrak{X}} \sigma(\alpha)^{-1} \mu(\alpha A(x)^{-1}) \varphi(\alpha A(x)^{-1} x) w(\alpha A(x)^{-1}, x) g(x) \ dx$$

$$= \int_{B} \sigma(\alpha) \ dm(\alpha) \int_{\mathfrak{X}} w^{*}(x) \varphi(\alpha A(x)^{-1} x) g(x) \ dx$$

and the result now follows on comparison with the left member of (1).

The solution. Combining the formulae of lemma and theorem shows that, for X drawn from G and weighted by

$$w^*(x) = w^*(\alpha_0, x)$$

= $\sigma(\alpha_0)^{-1}w(x)\{f(\alpha_0A(x)^{-1}x)/f(x)\} \mid \partial(\alpha_0A(x)^{-1}x)/\partial x \mid \mu(\alpha_0A(x)^{-1}),$

the average of $\varphi(X^*)w^*(X)$ yields the desired conditional expectation, where $X^* = \alpha X$, with α chosen so that $A(X^*) = A(\alpha X) = \alpha_0$. The arbitrariness of μ may seem peculiar, but its role may be clarified by the following simple example.

Example. Let X be a scalar random variable with density f. It is desired to find $E_f(\varphi(X) \mid X > 0)$ by sampling. To put this in the present framework let $\mathfrak{A} = \text{two-element}$ group of numbers +1, -1 acting multiplicatively on \mathfrak{X} , the reals. Let A(x) = + or -1 according as x > or < 0, with A(0) arbitrary. Then the homogeneity property is clearly satisfied, and the problem amounts to finding $E_f(\varphi(X) \mid A(X) = +1)$. The Haar measure $dm(\alpha)$ over \mathfrak{A} is defined by placing unit mass at each of +1, -1. The density σ is then

$$\sigma(+1) = p = \Pr \{A(X) = +1\} = \Pr \{X > 0\} = \int_0^\infty f(x) \, dx,$$

$$\sigma(-1) = 1 - p.$$

For $\mu(\alpha)$ we pick a number λ between zero and one inclusive and set $\mu(+1) = \lambda$, $\mu(-1) = 1 - \lambda$. The weight w(x) is identically one, as is the absolute value of the Jacobian. Substituting all this information into the formula for w^* we obtain

$$w^*(+1, x) = w^*(x) = (1/p)\{f(A(x)^{-1}x)/f(x)\}\mu(A(x)^{-1}x),$$
i.e.
$$w^*(x) = \begin{cases} \lambda/p & \text{if } x > 0, \\ (1/p)\{f(-x)/f(x)\}(1-\lambda) & \text{if } x < 0. \end{cases}$$

It is easy to verify directly now that $E_f(\varphi(X^*)w^*(X)) = E_f(\varphi(X) \mid X > 0)$; the Monte Carlo procedure will be: observe values $X = x_1, x_2, \dots, x_n$ from the density f; for each x_i compute $x_i^* = |x_i|$ and $w^*(x_i)$ the appropriate expression from above, and use $(1/n)\sum \varphi(|x_i|)w^*(x_i)$ as the desired estimate.

Naturally one would wish to choose λ so as to minimize the variance or—what

comes to the same thing in view of unbiassedness—some multiple of the mean square of the estimator. We find that

$$p^{2}E(\{\varphi w^{*}\}^{2}) = \lambda^{2} \int_{0}^{\infty} \varphi(y)^{2}f(y) dy + (1 - \lambda)^{2} \int_{0}^{\infty} \frac{f(y)}{f(-y)} \varphi(y)^{2}f(y) dy$$
$$= \lambda^{2}J_{1} + (1 - \lambda)^{2}J_{2},$$

say, which is minimized by setting

$$\lambda = J_2/(J_1 + J_2).$$

In case f is symmetric $J_1 = J_2$ and optimum $\lambda = 1/2$; here the naive procedure of rejecting negative x's corresponds to $\lambda = 1$ and maximizes the mean square! However, if f(-y) = 0 over a stretch in which f(y) > 0 then $J_2 = \infty$, and we must take $\lambda = 1$, adopt the naive solution, in order to obtain finite variance of estimate. Finally, in case $\varphi(y)$ and f(-y)/f(y) have large similar peaks near some $y_0 > 0$ then J_1 may be very much larger than J_2 and optimum λ very close to 0.

REFERENCES

- [1] H. F. TROTTER AND J. W. TUKEY, "Conditional Monte Carlo for normal samples." Symposium on Monte Carlo Methods, New York, 1956, pp 64-79.
- [2] H. J. Arnold, B. D. Bucher, H. F. Trotter, and J. W. Tukey, "Monte Carlo techniques in a complex problem about normal samples," Symposium on Monte Carlo Methods, New York, 1956, pp. 80-88.
- [3] J. M. Hammersley, "Conditional Monte Carlo," J. Assoc. Comp. Mach. Vol. 3 (1956), pp. 73-76.

TABLES FOR TYPE A CRITICAL REGIONS

By HARRY WEINGARTEN

Bureau of Ships

1. This note provides tables connected with work by Neyman [1] and Johnson [2] on testing hypotheses, expanding the table given in [2]. This table, as expanded provides solutions for the values of A satisfying,

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{A-Bu^2}^{\infty} e^{-\frac{1}{2}u^2 - \frac{1}{2}v^2} dv du = \alpha$$

for
$$\alpha = .01$$
, .05, and $B = 0(.1)5$, $5(1)10$, $10(10)100$.
When $\alpha = .05$ set $A = 3.8414588B + \rho_{.05}$, and when $\alpha = .01$ set $A = 6.6348966B + \rho_{.01}$

Received March 14, 1957.