1048 J. G. WENDEL

where z = p’[l + o’/(N + 1)]™ and I, (A(N + 1), ) is Karl Pearson’s notation
for the Incomplete Beta-Function as tabled in [2]. .

In the preceding discussion it has been assumed that the mean of the process
(z:) is known to be zero. If the mean must be estimated from the sample, the -
serial correlation coefficient will be

; (x; — x_)($t+1 — ) i Ty
= ~ , T = .
2 (z — &)’

t=1

All of the results concerning r also hold true for ' with N degrees of freedom
rather than N 4 1.

7’
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GROUPS AND CONDITIONAL MONTE CARLO

By J. G. WeNDEL
University of Michigan

Summary. The conditional Monte Carlo technique advanced by Tukey et al.
[1, 2] has been explained in analytic terms by Hammersley [3]. This note offers
an alternative explanation, wherein the group-theoretic aspect of the problem
plays the dominant role. The method is illustrated on an example simpler than
that treated in [1, 2].

The framework. Throughout this note X will be a random vector in euclidean
n-space %, having distribution function G. F will denote a distribution function
absolutely continuous with respect to G, with Radon-Nikodym derivative
dF/dG = w, so that

FOD = [ w) d6()
M
for all Borel sets M, and

[ @ aFr@ = [o@u a6

for Borel functions ¢. It is standard in this situation to call w a weight and to
say that X (drawn from G) with weight w(X) is a sample from F; thus for Borel
¢ we have

Eo(p(X)w(X)) = Er(e(X))
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CONDITIONAL MONTE CARLO 1049

where the subscripts on the expectation operators specify the population from
which X is sampled. From now on we assume without essential loss of generality
that F and G come from densities f and g, so that w(z) = f(x)/g(x) or O according
as g(x) # 0 or = 0.

The problem. A more interesting case arises when conditional expectations are
desired. It is by no means apparent that it will in general be possible to find a
weight-function w* and an appropriate modification X* of X so that

E,(o(X*)w*(X)) = Ef(e(X) | cqndition on X)

identically in ¢, but in fact the main theme of [1, 2] was that highly non-trivial
instances do exist. Their problem can be put as follows:

%: Euclidean n-space;

A: a locally compact non-necessarily Abelian group of 1-1 differentiable
transformations acting on %, such that the mapping (o, z) —
ax(a € U, z ¢ ¥) is measurable;

d(ax)/dxz: the Jacobian of « ¢ A at x ¢ ¥;
dm(a): a fixed right-invariant Haar measure over ¥;

A a left-homogeneous mapping defined on almost all of ¥ onto ¥, so that
A(ax) = a A(z) for all « and all z in the domain of 4;

o: the density function of A, assumed to exist; thus, for Borel sets B < 9

Pr {A(X) ¢ B} = ]; o(e) dm(a) = f I5(A@) @) da

where I is the indicator of B, and X of course has density f.

In [1, 2] the group U consisted of the multiplicative group of positive reals,
acting as dilations on ¥; then dm(a) can be taken to be de/«, and the Jacobian
is just a”.

The problem is to express E;(o(X) | A(X) = ao) as an unconditional expecta-
tion E,(o(X*)w*(X)), where X is sampled from density g, X* is a suitable mod-
ification of X, and w* is an appropriate weight. This is certainly natural in the
Monte Carlo setting, for it would save us from having to waste most of our obser-
vations, namely those X for which A4 (X) is not reasonably close to ay .

Development of solution. (The formulae set down in this section are those of
[1], but interpreted in the broader setting and subjected to formal proof.)

In view of the homogeneity of A the obvious choice of modification X — X*
is to force the condition 4(X*) = o to hold. This will be achieved if we take
X* = d(X)7'X = aX, where a denotes apA(X)™" and is, like X, a random
variable. Finding the appropriate weights will occupy the remainder of this
section.

Lemma. Suppose that X with weight w(X) is a sample from density f. Then for
each o ¢ N, aX with weight w(a, X) is a sample from f too, where

w(e, ) = w(@){f(ex)/f(x)} | 8(ax)/dz |.
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Proor. Write ¥ = oX. We want to evaluate [o(y)f(y) dy for Borel . But
this is
[ eleistea) dtea) = [ (enlf(ar) | otea) /o | do
= [ e (@)/0@) {f(aw) /1@)}] 0(e) /02 | 9(o)
= [ oleayute) tf(an) 5@} | o(as) /02 | g(a) da

= [ eleapu(a, 9@ do

as was to be shown.

TueorEM. Let 1 be an arbitrary density over A. For each a & Y suppose that
aX with weight w(a, X) is a sample from density f. Then, with A(x) as above,
a = ad(2)™ (so that A(ax) = ar) and X* = oX, we have X* with weight w* s a
sample from f conditioned by A(X*) = ay ; the weight w* is given by

w*(@) = w¥ao, x) = o(a0) u(owd (@) w(ad ()7, z).

Proor. For simplicity write Y in place of X* We want to evaluate
Ei(e(Y) | A(Y) = o) =pet ¥(a0). ¢ is characterized (up to almost-everywhere
equivalence) by

W [v@e@an@ = [ w00 ay = [ 2656

where @ = ¢l4-15, B a Borel subset of %. By hypothesis we have for all Borel
@ and each 8 ¢ ¥,

2) [ @it dy = [ s6r)ui6, 29() do.

Multiplying both sides of (2) by x(8) and integrating over ¥ with respect to
dm(B) gives

[ 2016 dy = [ we) amGs) [ 560005, 2960) i

3
= _L ];I p(B)@(B)w(B, x) dm(B)g(x) dx

where the interchange of order of integration is justified by Fubini’s theorem.
Putting 8 = a4 (2)™ and invoking right invariance replaces the right side by

(3) by

L [ MA@ p(A @ Du(A @), 2) dm(alg(e) de
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= L fB wed (@) ™e(ad (z) " z)w(ad (), z) dm(a)g(z) dx
= [, (@) dn(@ [ o uad @ elad @ Duad @), 2)g@) de

= L o(a) dm(a) /x w*(@)p(ad (z) "x)g(x) da

and the result now follows on comparison with the left member of (1).

The solution. Combining the formulae of lemma and theorem shows that, for
X drawn from G and weighted by

w*(z) = w*aw , x)
= o(a0) " w() {f(ed () "2)/f(x)} | 9w (2) %) /32 | w(ewd (2)7),

the average of o(X*)w*(X) yields the desired conditional expectation, where
X* = oX, with a chosen so that A(X*) = A(aX) = ao. The arbitrariness of
u may seem peculiar, but its role may be clarified by the following simple example.

ExamMpLE. Let X be a scalar random variable with density f. It is desired to
find E;(¢(X) | X > 0) by sampling. To put this in the present framework let
A = two-element group of numbers 41, —1 acting multiplicatively on %, the
reals. Let A(x) = + or —1 according as x > or < 0, with A(0) arbitrary. Then
the homogeneity property is clearly satisfied, and the problem amounts to finding
E;(¢(X) | A(X) = +1). The Haar measure dm(a) over ¥ is defined by placing
unit mass at each of 41, — 1. The density ¢ is then

o(+1) = p = Pr{A(K) = + 1} = Pr (X > 0} = [ f@) da,

o(—=1) =1 — P.

For u(a) we pick a number \ between zero and one inclusive and set u(+1) = A,
p(—1) = 1 — . The weight w(z) is identically one, as is the absolute value of
the Jacobian. Substituting all this information into the formula for w* we obtain

wH(+1, 2) = w*(@z) = 1/p){f(A@)7)/f(@)}u(d () ),
NP if x>0,
A/p{f(—2)/f(@)} (1 — N) if z <0,

It is easy to verify directly now that E;(o(X*)w*(X)) = E;(¢(X) | X > 0); the
Monte Carlo procedure will be: observe values X = 1, 3, -+ -, 2, from the
density f; for each z; compute zf = | z; | and w*(x;) the appropriate expression
from above, and use (1/n) 2_o( | 2; | Jw*(z;) as the desired estimate.

Naturally one would wish to choose A so as to minimize the variance or—what

ie. w¥(x) = {
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comes to the same thing in view of unbiassedness—some multiple of the mean
square of the estimator. We find that

2 *12) _ 12 © 2 2 [7 f(y) 2
PE(ew)) = 3 | ofw) dy + (1 = | s e dy

= NJ1 + (1 =),
say, which is minimized by setting
A= Jz/(Jl + Jz)

In case f is symmetric J, = J;and optimum A = 1/2; here the naive procedure of
rejecting negative z’s corresponds to A = 1 and maximizes the mean square!
However, if f(—y) = 0 over a stretch in which f(y) > 0 then J; = o, and we
must take A = 1, adopt the naive solution, in order to obtain finite variance of
estimate. Finally, in case ¢(y) and f(—y)/f(y) have large similar peaks near some
Yo > 0 then J; may be very much larger than J; and optimum X very close to 0.
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TABLES FOR TYPE A CRITICAL REGIONS

By Harry WEINGARTEN

Bureau of Ships

1. This note provides tables connected with work by Neyman [1] and Johnson
[2] on testing hypotheses, expanding the table given in [2]. This table, as expanded
provides solutions for the values of A satisfying,

1 f f M ddu = a
21 oo Ja—Bu?

for = 01, 05 and B = 0(.1)5, 5(1)10, 10(10)100.
When o« = .05 set A = 3.8414588B + p.s, and when
a= .01 set A = 6.63489668 + p.n1
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