THE UNIQUENESS OF THE TRIANGULAR ASSOCIATION
SCHEME

By W. S. Connor
National Bureau of Standards

1. Summary. Parameters for a class of partially balanced incomplete block
designs with two associate classes are immediately implied by the triangular
association scheme. This paper deals with the more difficult question of whether
or not these parameters imply the triangular association scheme.

2. Introduction. A partially balanced incomplete block design with two
associate classes [1] is said to be triangular [2], [3] if the number of treatments
v = n(n — 1)/2 and the association scheme is an array of n rows and n columns
with the following properties:

(a) The positions in the principal diagonal are blank.

(b) The n(n — 1)/2 positions above the principal diagonal are filled by the
numbers 1, 2, --- | n(n — 1)/2 corresponding to the treatments.

(c) The positions below the principal diagonal are filled so that the array is
symmetrical about the principal diagonal.

(d) For any treatment ¢ the first associates are exactly those treatments which
lie in the same row and the same column as <.

The following relations clearly hold:

(1) The number of first associates of any treatment is n; = 2n — 4.

(2) With respect to any two treatments 6; and 6, which are first associates,
the number of treatments which are first associates of both 6, and 6, is

p}l(al 5 02) =n — 2.

(3) With respect to any two treatments 6; and 6; which are second associates,
the number of treatments which are first associates of both 6; and 6, is
pu(bs, 6s) = 4.

We wish to examine the converse, i.e., whether or not relations (1), (2) and
(3) imply (a), (b), (c), and (d). We shall give a proof for n = 9 which shows
that the converse is true. The cases with n < 9 will not be considered, although
the author has found that it is true for several small values of n, and conjectures
that it is true for the rest.

As background for this problem, it is interesting to recall what has been found
for some other classes of partially balanced designs. In the analogous problem
for the group divisible designs it is easy to show that the converse is true [4].
For the latin square designs the converse is true for a sufficiently large number of
treatments, but is not always true, as has been shown by example [5].

The present problem is closely related to problems considered in [6] and [7].
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The arguments used here could be substituted for some of the arguments in
those papers.

3. A characterization of the triangular association scheme. The proof will
consist of showing that there exist sets of treatments which satisfy the following
theorem.

TrEOREM. The triangular association scheme for n(n — 1)/2 treatments exists
if and only if there exist scts of treatments S;, j = 1, --- , n, such that:

(i) Each S; consists of n — 1 treatments.
(ii) Any treatment is vn precisely two sets S; .

(iii) Any two distinct sets S; , S; have exactly one treatment in common.

Proof. Necessity follows from the observation that the n rows of treatments in
the triangular association scheme are the n sets S;.

Sufficiency follows from noting a correspondence between the rows and
columns of the association scheme and the sets S;. To display the correspond-
ence, we denote the unique element common to sets S; and S; by «(, 7) = «(j, 7).
Then the correspondence is as follows: We let set S; correspond to the 7th row
and column, and put element «(z, 7) in the 7th row and jth column of the asso-
ciation scheme. Because a(é1, j1) = (2, j») implies that 4, = 4, and j; = j,,
the element a(7, ) occurs only in the 7th row (column) and jth column (row).
This fills up the association scheme as described in (a), (b) and (c). Further, if
we let “belonging to the same set S;” correspond to ‘“being first associates”,
then (d) is satisfied.

4. The existence of sets S; which satisfy the Theorem. In this section we
shall show for n = 9 that there exist sets S; which satisfy the Theorem. The
proof makes conspicuous use of the condition (3) that p, = 4. In fact, in con-
structing the proof, the author was attracted to the singular. fact that this
parameter does not depend on n.

Throughout the proof, we shall employ certain conventions. In citing a reason
why something is or is not true, we often shall write “pi1,(6; , 62)”’ or “p}1(6; , 6s),”
whereby we mean to refer to particular treatments 6, , 6;, 6;, and 6, . Also, we
shall write “(6;, 62) = 1 (or 2),” meaning that treatments 6, and 6, are first
(or second) associates.

In developing the proof, the author used a matrix in which the ¢th row and
column correspond to the ith treatment, and the entry in the intersection of the
1th row and jth column is 1 or 2, depending on whether treatments 7 and j are
first or second associates. Though this matrix is not explicitly used below, it is
implicit, and it is believed that the reader will find the use of this matrix helpful
in following the proof.

We begin by proving a lemma which will be used repeatedly in the sequel.

Lemma 1. With respect to any two initial treatments 6, and 0; which are first
assoctates, the n — 3, (n = 9) treatments which are first assoctates of 8, and second
assoctates of 0 pairwise are first associates.

Proof. For simplicity we shall replace 6; by 1 and 6, by 2. From (1) and (2)
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it follows that there are n — 2 treatments which are first associates of both
treatments 1 and 2, and n — 3 treatments which are first associates of treatment
1 and second associates of treatment 2. We shall refer to the treatments of the
first set as treatments 3, --- , n; and to those of the second set as treatments
n+ 1, -+, 2n — 3. These sets will be denoted respectively by

T, = _[’1(3’...’n)

and Ty = To(n + 1, ---, 2n — 3).

We first show that any treatment « in 7', cannot have more than one second
associate in T, . We observe that p}i(2, @) = 4, of which one such treatment is
treatment 1. Thus, treatment o has at most three first associates in 7; . Because
pi(l, @) = n — 2, treatment « has at least n — 5 first associates in 7%, and
hence at most one second associate in 7'; .

We now shall show that even this one second associate is impossible. Con-
sider any two treatments « and 8 in 7%, and assume that (o, 8) = 2. We have
established that treatment 1 and the m — 5 treatments other than « and 8
in T, are first associates of both « and 8. But for n = 9 the condition that
ph(e, B) = 4 is violated, which shows that (a, 8) = 1. This completes the
proof of Lemma 1.

Our next lemma shows the existence of sets S; which satisfy (i) and (ii) of
the theorem.

LemMA 2. For n 2 9, any inatial treatment 6 is an element. of exactly two sets
of treatmenis Sy and S, which are such that a set contains n — 1 treatments, the
ireatments in a set pairwise are first associates, and 0 is the unique element common
to Sy and S, .

Proof. We begin by showing that Lemma 1 implies that there are n — 4
treatments in 7 which pairwise are first associates. For this purpose, it is con-

venient to define sets T; = T{(3, cv+, n—2) and
Ty = Toln + 2, --- 20 — 3).

From Lemma 1 and the condition that pi(1, @) = n — 2 for every treat-
ment « in Ty, it follows that every treatment in T, has two first associates and
n — 4 second associates in T . Without essential loss of generality, let treatment
n 4+ 1 be a second associate of every treatment in Ty,andlet (n — 1,n + 1) =
(n, n + 1) = 1. Then by Lemma 1, letting 6, = 1 and 6, = n + 1, the treat-
ments.in T; pairwise are first associates.

We still have to determine how treatments n — 1 and = intersect the treat-
ments in 75, T and each other. We shall show that (n — 1, n) = 2 and either
we have Case 1: (n — 1, @) = 1, (n, @) = 2 for all treatments « in Ty and

(n — 1,8) = 2, (n, B) = 1 for all treatments 8 in T} ; or we have Case 2:
(n —1,a) =2,(n,a) = 1forallain Ty and (n — 1,8) = 1, (n, B) = 2 for
all 8in T; .

Suppose that treatment n — 1 is a second associate of some treatment in T ,
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say treatment 8. We shall show that we have Case 1. From Lemma 1 and p1,(1, 8)
it follows that treatment 8 has two first associates and n — 4 second associates
among the treatments of T; and treatments n — 1 and 7. Therefore, treatment
B has at least n — 6 second associates in T'; . Without essential loss of generality,
let these be treatments 3, - -+ , n — 4. Applying Lemma 1 with 6; = 1 and 6; =
B, it follows that these treatments are first associates of treatment n — 1.

Suppose that (n — 3, n — 1) = 2. Then it would be necessary that
ph(n — 3, n — 1) = 4. However, treatments 1, - - - , n — 4 are first associates
of both treatments n — 3 and n — 1, violating phi(n — 3, n — 1) = 4forn =
9. Similarly, treatment n — 2 cannot be a second associate of treatment n — 1.

We have shown that if treatment n — 1 has a second associate in 7' , thenit is
a first associate of every treatment in T . Further, the treatments in 7 and
treatments 2 and n 4+ 1 satisfy the condition that ph(l, n — 1) = n — 2,
implying that treatment n — 1 is a second associate of treatment n and the treat-
ments in T’ .

By applying Lemuma 1 with 6; = 1 and 6, = n — 1, it follows that (n,8) = 1
for all 8 in T . Because treatment 2 and the treatments in 7, satisfy pii(1, n),
it follows that (n, @) = 2 for all a in T1 . This demonstrates Case 1.

If (m — 1, B) = 2 for any 8 in T;, then (n — 1, 8) = 1 forall 8in T3 . But
treatment 2 and the treatments in 7T satisfy pi,(1, n — 1), and it follows that
(n —1,a) = 2forall ain T and that (n — 1,n) = 2. We now apply Lemma 1
with 6, = 1 and 6, = n — 1 to show that (n, ) = 1 for all « in T: . Because
treatments 2, -+, n — 2, n + 1 satisfy pu(l, n) = n — 2, it follows that
A{n, B) = 2 for all B in T . This establishes Case 2.

We now observe a set S; which contains treatments 1, 2, the treatments in
T1 and either treatment (n — 1) or n. Also, a set S; which contains treatments 1,
the treatments in T, and the one of treatments n — 1 and » which is not in
Si. These sets are such that their elements pairwise are first associates. They
are the sets of Lemma 2.

To show that there are no other such sets, we shall consider the way in which
the treatments in 7T are associated with the treatments in T;. Consider any
treatment « in T , and the condition pii(1, @) = n — 2. Treatment 2, the re-
maining (n — 5) treatments in T, , and either treatment n — 1 or n are n — 3
treatments which satisfy this condition. Hence there is exactly one more such
treatment in 7'y . Similarly, any treatment 8 in T has exactly one first associate
in T; . It follows that no other set of n — 1 treatments exists such that its treat-
ments pairwise are first associates. This completes the proof of Lemma 2.

The sets found in Lemma 2 obey (i) and (ii) of the Theorem. To find the num-
ber 's of sets and to prove (iii), we observe that each of s sets contains n — 1 ele-
ments, so that there are s(n — 1) (not necessarily distinct) elements in the_s sets.
But every treatment occurs in exactly two sets, so that s(n — 1) = 2v = n(n — 1)
or s = n. Thus the number of pairs of sets is n(n — 1)/2 = v, and because every
treatment occurs in exactly two sets, we have (iii).
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