$$\begin{split} \varphi_2(t) &= \frac{1}{\cosh 2t} + i \sqrt{2} \frac{\sinh t}{\cosh 2t}, \\ \varphi_3(t) &= \frac{1}{(\cosh 2t)^{\frac{1}{2}}} \quad \text{and} \quad \varphi_4(t) = \frac{e^{it}}{(\cosh 2t)^{\frac{1}{2}}}. \end{split}$$

If these functions φ are inverted (see [1], pp. 388–389, and [2], p. 30) and a change of variable made from $(4/\pi)$ log |X| to X, assuming X symmetric, then the corresponding density functions are

$$p_{1}(x) = \frac{\sqrt{2}}{\pi} \frac{x^{2}}{1 + x^{4}}, \qquad -\infty < x < +\infty,$$

$$p_{2}(x) = \frac{2}{\pi} \frac{x^{4}}{(1 + x^{2})(1 + x^{4})}, \qquad -\infty < x < +\infty,$$

$$p_{3}(x) = \frac{1}{2\pi^{2} \sqrt{2\pi} |x|} \left| \Gamma\left(\frac{1}{4} + \frac{i \log|x|}{\pi}\right) \right|^{2}, \qquad -\infty < x < +\infty,$$

and

$$p_4(x) = \frac{1}{2\pi^2 \sqrt{2\pi} |x|} \left| \Gamma \left(\frac{1-i}{4} + \frac{i \log |x|}{\pi} \right) \right|^2, \quad -\infty < x < +\infty.$$

Using $\theta(-t)$ instead of $\theta(t)$ provides additional densities $p^*(x) = p(1/x)/x^2$ (if p is the density function of X then p^* is the density function of 1/X). For example,

$$p_1^*(x) = \frac{\sqrt{2}}{\pi} \frac{1}{1+x^4}, \qquad -\infty < x < +\infty$$

and

$$p_2^*(x) = \frac{2}{\pi} \frac{1}{(1+x^2)(1+x^4)}, \quad -\infty < x < +\infty.$$

REFERENCES

- [1] J. D. BIERENS DE HAAN, Nouvelles tables d'Intégrals Définies, G. E. Stechert, 1939.
- [2] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER, AND F. G. TRICOMI, Tables of integral transforms, Vol. 1, McGraw-Hill, 1954.

ESTIMATION OF A REGRESSION LINE WITH BOTH VARIABLES SUBJECT TO ERROR UNDER AN UNUSUAL IDENTIFICATION CONDITION

By HERMAN RUBIN

University of Oregon

Suppose the random variables $w_j = (\xi_j, u_j, v_j)$ are independently and identically distributed with joint distribution F. Then if $\iiint e^{\alpha u + \beta v} dF(\xi, u, v)$ exists

Received December 13, 1956; revised February 10, 1958.

for all α , β in a neighborhood of 0 and $\iiint e^{t\xi} dF(\xi, u, v)$ does not exist for all t in any neighborhood of 0, Jeeves [1] has shown that the parameter θ in

(1)
$$x_{j} = \xi_{j} \cos \theta + u_{j},$$
$$y_{j} = \xi_{j} \sin \theta + v_{j},$$

is identified. We shall construct a consistent estimate of θ (mod π) if these conditions are satisfied.

First, let us consider a univariate distribution G with moment generating function g. Then $g(t) = \sum_{n} (\mu_n / n!) t^n$, μ_n the nth moment, and if the radius of convergence is r, it is well known that

(2)
$$\rho = \frac{1}{r} = \overline{\lim} \left(\frac{|\mu_n|}{n!} \right)^{1/n}$$

As easy application of Liapounoff's inequality and Stirling's formula shows that

$$\rho = \overline{\lim} \frac{(\mu_{2n})^{1/2ne}}{2n}$$

Therefore a natural procedure would seem to be to consider the sample moments $m_{2n}(\phi)$ of $x_j \sin \phi - y_j \cos \phi$ and to define $\hat{\theta}$ as that value of ϕ minimizing $\max_n (m_{2n}(\phi))^{1/2n}/n$. For fixed sample size, this maximum exists. We shall show that this estimate is indeed consistent, and even converges with probability one to θ .

First let us show that $\max_n m_{2n}(\theta)^{1/2n}/n$ is bounded as a function of the sample size N with probability one. Let

$$\psi(t) = E(\cosh[t(u_j \sin \theta - v_j \cos \theta)]) = \sum \frac{\mu_{2n} t^{2n}}{(2n)!},$$

where μ_{2n} is the 2nth moment of $u_j \sin \theta - v_j \cos \theta$. Then [2], for $|t| \leq s < r$, $\psi_N(t) = \sum_{n} m_{2n} t^{2n} / (2n)!$ converges to $\psi(t)$ uniformly with probability one. Thus $\psi_N(t)$ is bounded with probability one, and since $m_{2n}^{-1/2n} / n \leq (K/t) [\psi_N(t)]^{1/2n}$, $\max_n m_{2n}(\theta)^{1/2n} / n$ is bounded with probability one. Hence with probability greater than $1 - \epsilon/3$, H_{ϵ} can be used for the bound. Similarly,

$$\max_{n,\phi} \frac{\left(\frac{1}{N}\sum (u_j \sin \phi - v_j \cos \phi)^{2n}\right)^{1/2n}}{n} < K_{\epsilon}$$

for all N with probability greater than $1 - \epsilon/3$. Let δ be given, $0 < \delta < \pi$, and let γ_n be the nth moment of ξ_j . Since $(\gamma_{2n})^{1/2n}/n$ can be made arbitrarily large by selecting n large enough, select n so that

$$\frac{(\gamma_{2n})^{1/2n}}{n} > \frac{H_{\epsilon} + K_{\epsilon}}{\sin \delta}.$$

Then with probability greater than $1 - \epsilon/3$,

$$\frac{(1/N\sum_{i}\xi_{i}^{2n})^{1/2n}}{n}>\frac{H_{\epsilon}+K_{\epsilon}}{\sin\delta}$$

for all N sufficiently large. By Minkowski's inequality

$$m_{2n}(\phi)^{1/2n} \geq |\sin (\phi - \theta)| \left(\frac{1}{N} \sum \xi_j^{2n}\right)^{1/2n} - \left(\frac{1}{N} \sum (u_j \sin \phi - v_j \cos \phi)^{2n}\right)^{1/2n}$$

Therefore with probability greater than $1 - \epsilon$,

$$\frac{\max_n (m_{2n}(\phi))^{1/2n}}{n} > \frac{\max_n (m_{2n}(\theta))^{1/2n}}{n}$$

for all N sufficiently large for all ϕ not in the interval $(\theta - \delta, \theta + \delta) \pmod{\pi}$.

REFERENCES

- [1] T. A. Jeeves, "Identifiability and almost sure estimability of linear structure in n-dimensions," University of California, 1952, unpublished paper.
- [2] HERMAN RUBIN, "Uniform convergence of random functions with applications to statistics," Ann. Math. Stat., vol. 27 (1956), pp.200-203.

ON THE DECOMPOSITION OF CERTAIN x2 VARIABLES

By Robert V. Hogg and Allen T. Craig

University of Iowa

It is well known that if the sum, say $Q = Q_1 + Q_2$, of two stochastically independent variables is χ^2 with r d.f., and if Q_1 is also χ^2 with r_1 d.f., then Q_2 is likewise χ^2 with $r_2 = r - r_1$ d.f. If the hypothesis of stochastic independence is removed, little can be said about Q_2 . It seems to us quite interesting that if the variables under consideration are real symmetric quadratic forms in either central or non-central, stochastically independent or dependent normal variables, and if the hypothesis of stochastic independence of Q_1 and Q_2 is replaced by the weaker hypothesis $Q_2 \ge 0$, then Q_1 and Q_2 are stochastically independent so that Q_2 is itself a χ^2 variable with $r_2 = r - r_1$ d.f.

Before we state our theorem, we recall [1] that the real symmetric quadratic form Y'BY in n mutually stochastically independent normal variables $Y' = (y_1, y_2, \dots, y_n)$ with unit variances and means $U' = (u_1, u_2, \dots, u_n)$ has a non-central χ^2 distribution whose characteristic function is

$$\varphi(t) = \exp\left[\frac{it\theta}{1 - 2it}\right] / (1 - 2it)^{r/2}$$

if and only if $B^2 = B$. Here, $\theta = U'BU$ and r is the rank of B.

Theorem. Let $Q = Q_1 + \cdots + Q_{k-1} + Q_k$, where Q = X'AX and $Q_j = X'A_jX$, $j = 1, 2, \cdots$, k, are real symmetric quadratic forms in n normally distributed variables $X' = (x_1, x_2, \cdots, x_n)$ with means $M' = (m_1, m_2, \cdots, m_n)$ and real symmetric definite positive variance-covariance matrix V. Let Q, Q_1, \cdots ,

Received February 25, 1957; revised November 27, 1957.