ADMISSIBILITY FOR ESTIMATION WITH QUADRATIC LOSS!

By SamueL KarLiN

Stanford University

0. Introduction. In dealing with estimation of a single unknown parameter,
the criteria most commonly employed in evaluating the worth of given estimates
is to make comparisons of the expected square deviation of the estimates from
the true value. Suppose on the basis of an observation x (or series of observations)
on a distribution P(z, w) of the form [Z, p(¢, w) du(¢) depending on an unknown
parameter w it is desired to estimate some function h(w). The quantity p(z, w)
may be regarded as the density of P(x, w) with respect to the completely additive
measure g. A non-randomized estimate of h(w) is described by a function of the
observations a(z), and when the error of an estimate-is evaluated in terms of
quadratic loss, the expected risk for the estimate a(x) when the true parameter
value is w is calculated by means of the formula

M o0, @) = [ (a(e) — hw))p(a o) du(a).

The object is to select the estimate a which minimizes (1) in some sense. The fact
that the statistician may restrict attention only to non-randomized estimates is
due to the convexity property of the loss function ([1], p. 294; [2], p. 4.3). The
justification of the quadratic loss as a measure of the discrepancy of an estimate
derives from the following two characteristics: (i) in the case where the a(z)
represents an unbiased estimate of h(w), (1) may be interpreted as the variance
of a(z) and, of course, fluctuation as measured by variance is very traditional in
the domain of classical estimation; (ii) from a technical and mathematical view-
point square error lends itself most easily to manipulation and computations.

Principles used to determine a particular estimate which accomplishes appro-
priate optimizations are related to the minimax criteria, Bayes procedures,
unbiased uniformly minimum variance estimates, etc. However, one prerequisite
universally acceptable as desirable for statistical procedures is the property of
admissibility. An estimate a is said to be admissible if there exists no other esti-
mate a* such that p(w, a*) = p(w, a) with inequality for some w. In other words,
an estimating procedure is admissible if it cannot be uniformly improved upon
in terms of risk by any other procedure. Certainly, no estimate should be used
if we can do better by a different estimate—whatever the true state of nature.
It would, therefore, be of considerable interest to establish the admissibility of
some of the standard estimates employed in practice.

Received May 15, 1957.

! This work was sponsored by the Office of Naval Research under Contract Nonr-225(21)
(NR-042-993). Reproduction in whole or in part is permitted for any purpose of the United
States Government.

406

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&
The Annals of Mathematical Statistics. MIKOIRS ®

5 ()

v

o 22

WWw.jstor.org



ADMISSIBILITY FOR ESTIMATION 407

A more ambitious undertaking would be to try to characterize all possible ad-
missible estimates for the case of square error. This appears to be an almost in-
surmountable task. On the other hand, it is relatively easy to determine com-
plete classes of procedures for many parametric problems. In fact, whenever the
density p(z, w) possesses a monotone likelihood ratio, all possible monotone
functions a(x) constitute an essentially complete class of estimating procedures
[3]. Nevertheless, for any multi-action problem, which includes in particular
estimation, it is known that many of the members of a complete class need not
be admissible [3], [4]. Furthermore, we have found that admissibility is tied
very closely to the order of growth of the loss functions. Square error falls into
the category which admits many monotone inadmissible estimates. For absolute
error, in contrast, the likelihood that one of the usual estimates is admissible
seems to be greater.

Since the general question of resolving admissibility of all estimates measured
with respect to quadratic loss function is intrinsically difficult, it seems worth
while to concentrate on the investigation of whether some of the most commonly
employed classical estimates are admissible.

In this paper we study the problem of admissibility of the usual estimates for
three important classes of distributions.

Thefirst class of distributions comprises the exponential family where p(z, w) =
B(w)e™. The family a,(z) = vz is considered as possible estimators for k(w) =
=B _

B(w)
based on several observations coming from an exponential distribution. The
problem examined in general is whether vz is an admissible estimate of E,(z)
measured in terms of quadratic loss. The parameter w is taken to vary over its
natural range Q consisting of all w for which [ €™ du(z) < . It is well known
that the natural range Q is an interval which may be finite or infinite. In the case
where @ = (— ©, «), it has been shown that a;(z) = z is admissible (see [4]
and [5]). The method of proof in both references rests heavily upon the use of
the Cramér-Rao inequality and associated differential inequalities. The fact that
z is an unbiased estimate of E,(z) seems also to play a fundamental role in this
proof. It seems difficult to perceive the meaning behind the analysis and the
reasons why things work. In Section 1 we develop a direct proof of this fact.
Our methods yield the further interesting and possibly surprising result that
vz for any v satisfying 0 < vy < 1 is an admissible estimate of E,(z) whenever
1 possesses positive measure in the regions z = 0andz < 0and Q@ = (— », ©),
On the other hand, for any ¥ > 1, yx is not admissible. In view of the fact that
any contraction of z (yz, 0 < v = 1) is admissible it seems surprising that in
practice one always uses the extreme estimate of this kind. The criteria of un-
biasedness traditionally has dominated the choice of an estimate. Yet we find
in several types of estimation problems that this feature of biasing the estimate
by scaling it downward is necessary to achieve admissibility. We shall elaborate
later on this phenomenon.

E.(x) = B(w)f z™ du(z). Usually z represents a sufficient statistic
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If the natural range Q of w is not the full infinite interval, then the full deter-
mination of the problem of admissibility of vz appears to be complicated. For
the special case where

a_a—l —wzr
e

w2 0
p(xy w) = F(a) ’ ’
0, z <0,

v

x

for which @ = (0, «) we find that of all estimates of the form vz there exists a
single admissible member in this class, namely v = [a/(a + 1)], which is a

biased estimate of E.(z) = g (see [4]).

When w naturally ranges over a finite interval, the problem of admissibility is
even more difficult. The analysis seems to depend on the rate at which 8(w) tends
to zero as w approaches its boundary. For example, it is shown later that, if
p(z, w) = B(w)e™(e”'*'/2) for which @ = (—1, 1) ‘and B(w) = 1 — «’, then
all estimatesyz (0 < v =< %) are admissible estimatesof E,(z) while for any other
¥ > %,vz may be uniformly improved upon in terms of risk. In general, the
possible values of vy for which yx is admissible appears to be very sensitive to
the explicit measure du(z) of the exponential family and generally consists of a
subinterval of the unit interval.

The following general result concerning admissibility of vz is the assertion of
Theorem 1 of Section 1: if 7 (w) is not integrable in the neighborhood of both
boundaries of 2, then [1/(A 4+ 1)]z “is an admissible estimate of E.(x). This
includes as special cases all previously known results in this direction.

Admissibility is next investigated for the class of distributions where

_ Jq(w)r(z), 0=z = o,
p(:c,w)—{ 0, z>worz<0

r is a positive function of # and ¢(w) represents a normalizing constant. This
includes, in particular, extremal distributions arising from the uniform density;
eg, ri@) = nz" ", n =1, and q(w) = 1/w". We assume in what follows that
r(z) is such that the integral [y r(x) dr diverges. This requires that the normaliz-
ing factor q(w) approach zero as w increases to infinity. In dealing with the es-
timation problem it is convenient to consider estimates of 1/[¢%(w)], @ > O,
a strictly monotone increasing function of w. Again we limit attention to esti-
mates which are functions of a single observation z. This in fact is justifiable in
every sense whenever the observation z'summarizes a sufficient statistic. For
example, if x;, ---, z, represent independent observations from a uniform
density spread on the interval (0, w), then max;<,<.(2,) = y possesses a density
of the form described above, where 7(y) = ny" ™, and the justification of basing
estimates of w solely on y is manifestly clear.

Although an unbiased estimate of h(w) = 1/2¢(w) is a(z) = 1/q(z), the
only admissible estimate of the form v[1/2¢(x)], v a constant, is obtained for the
unique value ¥ = 4. Thus, the characteristic phenomenon appears once again

} and du(z) = dx.
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to the effect that admissible estimates are obtained provided the estimate is
biased by scaling downward. The same is true when treating the problem of
estimating the function hA(w) = [1/¢(w)]® with @ > 0. Analogous results are
also valid for the class of distributions

gw)r(x), T > o
p(xy w) = {
0, r < w,
of which
@ =0 oy
P, 0, z < w,

is a typical example.

A possible source of explanation for the excessive uses of the principle of un-
biasedness as a basis for selecting one estimate in preference to another may be
due to the following considerations: First, a familiar theorem due to Blackwell
states that within the collection of all unbiased estimates there exists a uniformly
minimum variance unbiased estimate [6]. [This is the case if the family of densi-
ties generated by the various parameters is large enough in the sense of forming
a ‘“‘complete family” ([2], p. 3.6.)] This certainly lends importance and some
cognizance to the consideration of unbiased estimates. Second, in considering
asymptotic or large sample theory, it is found that consistent estimators are,
for large sample size, nearly unbiased. For these two reasons, a tradition de-
manding an estimate be unbiased regardless of the sample size has become
acceptable practice. From the point of view of admissibility this is almost uni-
versally the wrong estimate to use. We find the desire and need to bias an esti-
mate to insure admissibility.

The third group of distributions studied from the point of view of estimation
is related to the important translation parameter problem. The underlying den-
sity is assumed known except for a location parameter; that is, p(z, w) = p(r — w)
and we wish to estimate w. In order for the problem to possess the proper in-
variance structure we further suppose that du(z) = dz, [ ¢p(¢) dt = 0, and
[ £p(£) di < «. Consequently, we readily observe that for the case of a single
observation, z is an unbiased estimate of w. In the present context the relevance
and justification of using the estimate rests primarily on its characteristics of
invariance with respect to translations and only incidentally on the property of
unbiasedness. With further slight conditions we establish that z is an admissible
estimate of w.

For the situation of several independent observations z;, xa, ---, z, the
minimum variance invariant estimate is the familiar Pitman estimate

[ o000 — .+ O)plas — 21+ 0)- - -plan -z + 6) ds

@2 a*@ =mn-
[17(0)20(962 — 21+ Oplzs — 21 + 6)---p(a, — 21+ 6) db
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which represents the multi-observation analogue of the estimate z [5]. If the
density p(£) is assumed to possess a sufficient number of moments, the expres-
sion for a*(z) is well-defined. Again, subject to sufficient smoothness require-
ments, we will show that a*(x) is an admissible estimate of w. A special case of
this result where the parameter and observation both traverse the set of integers
was discussed by Blackwell [7]. He demonstrated in this case that a*(z) is
admissible whenever p(¢) vanishes outside a finite interval. He also showed
that without some limitations on the nature of the density p the admissibility
of a*(x) is not generally valid. In connection with the translation parameter
problem, a notion of local admissibility is also examined; this notion may possess
a greater degree of applicability than indicated in the present context.

The method of analysis in all three cases revolves about an inversion process
which we proceed to explain in formal terms. Suppose it is desired to establish
that a(z) is an admissible estimate of h(w) with respect to the loss function
measured by square deviation. Assume the contrary that b(z) is an estimating
procedure which improves upon a(z). This states that the inequality

[ @ — Wp, o) du@) 5 [ 0@ — M) Pp(, ) du@)

must be true for all w. Therefore
(3) f b(2) — a(@)I'p(x, ) du(z) < 2 f la(x) — b@)][a(z) — h(w)]p(z, w) dulz)

also holds for all w. In order to demonstrate that a(zx) is admissible, it is enough
to show that the truth of (3) is only possible provided b(z) = a(z) almost every-
where with respect to x. Suppose it is possible to construct a monotone increasing
function F(w), not necessarily bounded, with the property that

[ 4p(z, @) dF @) = o) [ p@ ) dF.

Provided that all operations performed are legitimate, it follows that after in-
tegrating (3) with respect to dF and interchanging the order of integration

[ b - et [ [ 9@ dF<w>] du(a) < 0.

This implies, essentially, the desired result. Throughout what follows, we de-
velop sufficient machinery to justify this formalism. The method may be applied
to numerous other kinds of admissibility questions which are not studied in the
present paper.

This formalism can also be related to the concept of the optimal Bayes pro-
cedure. If F(w) represents a bona fide distribution and our objective is to obtain
the Bayes estimate of h(w) with respect to quadratic loss for F(w), then it is a
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known fact that the best estimate is given by the expression

[ Hep(s, ) aF ()

a(z) =

[ r@ @) dP ()

(see [1], p. 299).

Unfortunately, in all cases we are concerned with the relevant F(w) turns out
to be a non-finite measure. One could then alternatively try to approach F(w)
by a sequence of distributions such that the corresponding estimates converge to
the desired a(z). Such a method of analysis for admissibility was proposed and
exploited by Lehmann and Blyth ([2], Section 4.4; [8]). The present results might
be viewed as a refinement of this idea.

The extensions of these results and method to the analogous sequential estima-
tion problem will be published subsequently. ’

Finally, we wish to express our thanks to Mr. Rupert Miller for his help in the
writing of this manuscript.

1. Exponential family. In this section the random variable X will be assumed
to be distributed according to the probability density dF.(z) = B(w)e“” du(z).
u is a o-finite measure defined on the real line, and w, the unknown state of nature,
belongs to the set @ = {w | [Z0 e“” du(zr) < o} which is an interval of the real
line. Let @ and « be the upper and lower endpoints of Q, respectively. @ and w
may or may not belong to 2, and in some cases @ = + ©,w = — . The prob-
lem for consideration is the estimation of the quantity 8(w) = E.(z) = —8'(w) /
B8(w) from a single observation z on X. There is no loss of generality in restricting
our attention to the case of a single observation for, as is well-known, a sufficient
statistic for n observations from an exponential distribution is the sum of the
observations whose distribution is also a member of the exponential family
(11}, p. 221).

Admissible estimates of 8(w) will be derived for the different cases depending
on the structure of @. We shall consider only classical type estimates of the form
vz = a,(x) where v is a positive constant. The value y = 1 provides the unique
unbiased estimate of E.(z) within this family a,(x).

The only estimate ordinarily considered is a;(x) = « and this appears to be due
to the influence the concept of unbiasedness has had on statistical theory and
practice (see our discussion in the introduction). Square error as a measure of
the value of an estimate has been tacitly associated also with the principle of
unbiasedness. Nevertheless, we shall find that from the point of view of admis-
sibility it is frequently preferred to bias the estimate. Hodges and Lehmann [4]
demonstrated the admissibility of a;(x) = z for a few scattered examples. Gir-
shick and Savage [5] showed that provided @ = (— «, ®), z is admissible. Our
results cover a substantially larger subclass of the full exponential family for the
whole set of estimates a,(x).
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In view of the relations
2 wz — 2[6/(‘*’)]2 - B(w)ﬁ’,(w)
8w [ 2 dulz) = T
B'(w)
Blw)’

B(w) [ xe™ du(z) = —
we obtain that
8@ [ lve — 0@Ie™ duto)

L [AE — @) o BWF | B P
=7 [ ) ] oW )

For each w in @ the minimum of the quadratic expression in v is achieved uniquely

for the value
2
1 ( f e dp)

PO ) ) (f e a)([ e )

But (8'(»))’ — B(w)8"(w) = B (w)o2 > 0 (o2 = variance of z). so that 0 <
7o = 1. This inequality satisded by v. can also be deduced as a consequence of
the Schwarz inequality on inspection of the second formula for v, . It follows
for any v > 1, p(w, a,) = B(w)f lyx — 6(w)]’e™ du(x) is strictly increasing
in v for all w. Consequently, if 4" is chosen satisfying 1 < 9’ < v, then
p(w, a,(z)) < p(w, a,(z)) for all win @ and therefore a,(z) is not admissible. This
argument can be extended as follows: Suppose [(8'(w))’ — B(w)8”(w)l/(B'(w))?
ranges between L and L’ (L < L’) as w traverses the interval (v, @). Then v,
lies in the range (1/(1 + L'), 1/ (1 + L)) = I and for any vy >1/(1 + L)
the same reasoning shows that a,(z) is not admissible. Whenever @ is not the
full infinite interval for many circumstances 1/(1 + L) < 1 and z is therefore
not admissible. The converse implication is not valid. That is, if ¥ lies interior
to I, then it is not necessarily true that a,(z) is admissible. A counter-example
may be provided as follows: Suppose the measure p is such that it spreads its
entire mass throughout the interval 1 < 2z < 2. Then, 0(w) = E.(z) likewise
traverses the interval [1, 2] as w varies over the set @ = (— «, «). No estimate
of the form vz (0 < v < 1) can be admissible since this entails estimating 6(w)
as less than one with positive probability. Whenever the observed z < (1/v),
which occurs with positive probability, an immediate improvement of the
proposed estimate vz is obtained by estimating 6(w) as 1 in that range. This
emphasizes the fact that an estimate a,,(z), admissible with respect to all esti-
mates a,(z), geed not be universally admissible.

We direct attention to the question of admissibility for a,(z) where v is in I.
Suppose g(x) is an estimate which satisfies p(w, g) = p(w, a,) for all w. This in-

4)

(5) Yo =




ADMISSIBILITY FOR ESTIMATION 413

equality may be reduced to the form

[ ) - vafse due) < 2 [ e — o@llvas(e) + F@)e duto)

Let dF(w) = B(w) dw for constant X ¢ —1, and let a, b £ 2, a < b. Also define
T(w) = [-%lg(z) — ya]’B(w)e™ du(z). Then,

/ab B"(w) T(w) dw

I\

b ©
2 [ 8@ e~ o@lfrase) + §@e o)} o

B © ’ e p(a)e™
—2f_w[vx—g(m)]|: | ]du(x)

2 [ e — o) 1w — g o[ [ #e b |

Suppose v = 1/(A + 1). Then, the last term in (6) vanishes, and by a proper
application of Schwarz’s inequality, (6) becomes (for v = 1/(\ + 1))

f., " P )T () do

(6)

@)

S = VRO VTORO) + 7 V@) VI(@)p )

_)\—l-l )\—I—l

Let ¢ be an interior point of . Suppose [o () dw — + © as b — & and
[i 8 (w) dw — +  as a — w. Then it follows that (see Cases 1 and 2 below)
T(w) = 0, a.e. But this requires that g(z) = [1/(\ 4+ 1)lz, a.e.; that is, the esti-
mate /(A + 1) is an admissible estimate.

Cask 1.

lim g*(b) V/T(b) = A > 0.
b

Fix a and let H() = [2 8 (w)T(w) dw. By virtue of (7) we can find an appro-

priate constant C' > 0 such that for b sufficiently close to ,

H®) < CVB® VE D).

This yields by transposition and integration

c [_1_ _ L] > f " 5 ®) db
Hby) Hb)] ™ Vo !
where by, b, are chosen sothatb, < by, H(by) > 0. As b, — & the right-hand side

tends to +  and the left-hand side remains bounded—which is impossible.
Thus, Case 1 cannot occur.
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Cask 2.
lim 8'(%) V/T(b) =

brw

Let G(a) = [2 8"(w)T(w) dw. By (7) and the assumption of Case 2 it follows
that G(a) < [2/]\ + 1]1 /B a) V' —=G'(a). Suppose there exists an ao such that
G(as) > 0. Then

® (xf— 1)2 [G(lao sz [ @

where a; < ao. As a; — » the right-hand side tends to + « while the left-hand
side remains bounded. This is impossible so G(a) = 0, which implies T'(w) = 0,
a.e. We summarize the conclusions in the statement of a theorem.

THEOREM 1. Let p(x, w) = B(w)e”™ describe the denszty of the exponential family
with respect to a measure u. If

) f B Mw) dw — + o asb— &
and
(ii) fc B Mw) dw — + asa — w,

where ¢ 1s an inferior point of @ = (v, @), then [1/(\ + 1)]z s an admissible
estimate of 0(w) = E.().

This theorem subsumes as special consequences all previous known results in
this direction (see [4] and [5]). We record several specific applications of this
theorem of special interest.

I. If @ = (— o, o) and u possesses positive measure in each of the intervals
(0, ) and (— =, 0), then a,(x) = yz for each 0 <+ =< 1 is admissible. In
fact, the assumptions imply that

1
f €™ du(x)

converges to zero as | w | — «. Consequently (i) and (ii) hold for each A = 0.

II. If @ = (— o, x) and there exists positive probability of observing the
value zero, then a,(xr) = vz for each 0 <’y = 1 is admissible. The proof follows
readily from Theorem 1 since 8(w) is bounded above.

III. If @ = (— «, ) with no further conditions specified as to the nature of
u, then at least a;(x) = z is an admissible estimate of 6(w). This is so since the
hypotheses of Theorem 1 are satisfied for A = 0,

IV. If p(z,0) = (—w)

(@)
ranges over @ = (— «,0), then f{w) = (—w)” and 6(w) = —a/w. The unique

Blw) =

z°7 ¢ for z positive where & > 0is fixed and w
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value of N satisfying (i) and (ii) is equal to 1/a. Consequently, az/(a + 1) is
the only admissible estimate of —(a/w) of the form yz. In the case of n obser-
vations x,, s, -+, Z» with z; independently normally distributed, mean 0
and variance o, this result reduces to the well-known fact that

0(z) = [1/(n + 2)] D1 «}

is an admissible estimate of ¢°. The interval I in this case also reduces to a
unique point.

V. If du(x) = %€ then B(w) = 1 — o” and the hypotheses of Theorem 1
are satisfied with A = 1. It follows that a,(x) = vz is admissible for y < 1.
Also, in this case I = (0, %) so that no estimate of the form yz may be admissi-
ble for v > 1.

Further examples of similar type involving definite biasing can be cited. In
numerous examples calculated where @ has at least one finite boundary we
found that a;(z) = z is not admissible. We propose a stronger assertion which
includes this observation. We state in conjecture that the hypotheses of The-
orem 1 are also necessary conditions for the admissibility of the corresponding
estimate. This would imply in particular that whenever 8(w) approaches in-
finity exponentially as w tends to one of its boundaries no estimate of the form
vz can be admissible.

2. Extreme value densities. In this section we consider densities of the form

(q(w)r (), 0<z=u
p(x) O)) = i .
0, otherwise,
where r(z) is assumed to be a positive Lebesgue measurable function of z and
¢ Mw) = [or(@)de < o for win @ = (0, ©). We further assume that the
monotone decreasing function q(w) approaches zero as w — o, or equivalently
Jor(@)dz = .
The problem examined concerns estimating functions of the form [1/¢(w)]%,
a > 0. In determining proper estimators attention is directed only to estimates
also of the form ¥[1/¢(z)]* = a,(x) where ¥ is a positive constant. It is reason-
able and justifiable to consider only a single observation because of the fact
that z ordinarily represents a sufficient statistic.

Since r(z) = —¢'(z)/¢’(x) almost everywhere, we find
o) [ o T
o plw, ay) = g(w) fo [ ) q,,(w)] f(x) dz

_ 0% 2y 1

B [2a+ 1 a+1 + l:lqza(w)'

Hence, the minimum of the quadratic expression is achieved uniformly with
respect to w for the single choice ¥ = (2a 4+ 1)/(a + 1). For comparison pur-
poses we note that within the family of estimates considered the unbiased esti-
mate of 1/¢(w) is (e + 1)/¢%(x). The unbiased estimate can therefore be uni-
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formly improved upon in terms of expected risk by applying the bias factor
(2a + 1)/(a + 1)* < 1. We proceed to demonstrate the admissibility of the
estimator [(2a + 1)/(a + 1)1]/¢%(z) as an estimate of 1/¢%(w).

The method of proof follows the same general ideas as used in the preceding
section. Suppose g(z) is an estimate which satisfies the property that for all w
p(w, g) = P(wy a‘Y)’ Y = za_;‘__ 11

Consequently,

alw) = fo ) (g(x) = )> q(w)r(z) dz

=2 fow [q“(x) o(@) ] [qﬂ(x) e )] o(w)r(a) de.

In order to check admissibility for a,(z) it is enough to show that the only g
satisfying this system of inequalities is g(x) = a,(z), a.e. In view of the formal-
ism indicated in the introduction the aim is to integrate the formula of (10)
with respect to an appropriate monotone increasing function in order to cause
the right-hand side to vanish. This essentially implies admissibility. Accord-
ingly, we select dF(w) = | ¢'(w) | ¢’(w) dw where 8 = 2a — 1. Then,

B+2)/B+2—a)=7=Q2a+ 1)/(a+1).

By direct calculation we obtain

[ 64| ) do s

2 T{/ [ @ 9@ >][ @ e )]|q< )| ¢ @)r(@) dx}
- —E:%_—_a—{[o [q @) ]r(x)f“‘“( 7) [1 - Z—E’—))] dx}

= a{f 7 — o @0 [1 - L& ).

Since ¢(z) = ¢(r) for x = 7, we deduce with the aid of Schwarz’s inequality
that

(10)

(11)

v /@ |1 - L

= Va(@) (1) = ValDe) V@)
In a similar way the second integral of (11) has a bound equal to

Va(e)g’(e) Vq(e)-

By combining the relations of (11) and (12) and the last stated bound, we

dx

o [ 2 - ot

(12)
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obtain
/T a(w) | ') | f() do = &ii
w yon 0
VaDFOTEDT 4/ L2 + vapF@r@l 4/ L2 |
XI: a(r)g?(r) | ¢'(7) | |q’(7-)|+ a(e)(e) |’ (e) | |q'(e)|]
The analysis proceeds by examining two possible cases.
Case 1.
I e [T [0 Va7 = 4 > 0.

Fix ¢ and set H(r) = [7a(w)| ¢'(w)| ¢’(w) dw. There exists a constant C such
that for sufficiently large =

(14) H(r) < C\/H'(r) ,‘/ g%
We now show that this relation leads to an absurdity. Indeed, squaring the
expression of (14) and solving the differential inequality, we deduce that

1 1 q(8)
15 02[———]§10 2L,
15) 7B ~ H@J =% @
where 8 > « and o sufficiently large. As 3 — « the left-hand side of (15) re-
mains bounded while the right-hand side tends to — c which is impossible.

Thus, Case 1 cannot occur.
CaAsE 2.

lim
T— ©

Va(r) [ (1) ¢(r) Va@)/I ()] = 0.

Let 7 tend to + « along a sequence {r,} for which

lim Va(ra) [¢ () [ (ra) Vg(ra) /| ¢ (7a) | = 0.

Then, by (13)

16) 6O = [ o) | ¢ do < 2 VaD 7@ PO VTI/TE

Suppose G(e) > 0. Then G(e) = G(e) > 0 for ¢ < & . (16) can be written as

G(e) £ [2/(a + 1)V —G'(e)V q(e)/| ¢'(¢) | . Transposition of terms in this ex-
pression and integration over (e , €) yields

) 3 1)2 o - o) S 1L

As ¢ — 0 the left-hand side remains bounded but the right-hand side tends to
— o which is an absurdity. Thus the supposition that G(e) > 0 for some ¢ > 0
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is erroneous, and therefore G(¢) = 0. Consequently, a(w) = 0, a.e., which im-
plies g(z) = v/¢"(x), a.e.

We have thus established the truth of

TaEOREM 2. There exists a single admissible estimate of 1/q(w) of the form
v/q%(x), and this is given by v = (2a + 1)/(a + 1).

The following specific application might be of some interest. Let r(z) =
nz"'. Then [(2 + n)/(1 + n)]z is an admissible estimate of w. Furthermore,
this is the only admissible estimate which is a multiple of z.

This states that if x;, ., ---, 2, represents n independent observations
from a rectangular density spread on the interval (0, ), then

[(n + 2)/(n + 1)] max; z;

is an admissible estimate of w with respect to squared error.

To pinpoint the reasons for the validity of the preceding methodology it
seems worth emphasizing that although for any v it is possible to construct a
measure ¢’(w)| ¢'(w)| which formally gives

y /z i (W) () do
qa(x) /:o qﬂ-}-l(w)ql(w) dw

nevertheless, the reader will find that it is only possible to justify the formalism
for the special choices 8 = 2a — 1 andy = (2« + 1)/(a + 1) as we have done.
The estimate [(2a 4+ 1)/(a + 1)]/¢%(z) of 1/¢%(w), although uniquely admis-
sible with respect to square error, is still not altogether acceptable. It is dis-
turbing to note that the estimate [(2a + 1)/(a + 1)]/¢°(x) is very closely
tied to the measure of error described by quadratic loss. If the risk function is
given by

g(w) fow [6%5 — ﬁ]u r(z) dx

{2;: ("Wmir 1<2:c)}&“1—(w>

it can be shown that the minimum is achieved uniformly in w at a value 7,
which strictly varies with k. This implies that an admissible estimate with re-
spect to square error need not be admissible when considered for the error
function involving 4th powers. It is found that when a = 1 in the case of square
error the best estimate of the typey/q(z) is § 1/¢(z) while for the loss function
of fourth powers the best estimate is y*/q(x) where v* > 0 satisfies

' =3+ 4y -2 =0,

p(w, ay(2))

which is slightly larger than §.
We close this section with a brief discussion of the problem of admissibility
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for the density

%

o, @) = {qwr(z), x
0

w,
y wo§x<w,

where r(z) is a positive measurable function of z and ¢ '(w) = [Rr(x)dr < «
for win @ = (wy, ).

One important such example is furnished by taking r(z) = €7, q(w) = €°,
and @ = (— , ®). Another example is obtained by setting r(z) = 1/2°,6 > 1
and wp = 0. As before our problem is to estimate the quantity 1/¢”(w) by using
estimates of the form v/¢*(z). We assume in what follows that g(w) = 0 or
equivalently 5, 7(z) dz = .

Tueorem 3. If

v

q(w)r(z), z

w’
p(z, w) =
y w S 7 < w,
where ¢ '(w) = [ r(z) dz and q(w) = 0, then [(2a + 1)/(a + 1)]/¢%(z) is an
admsssible estimate of 1/q”(w) with respect to quadralic loss.
The proof of Theorem 3 parallels that of Theorem 2 subject to simple obvi-
ous modifications and will therefore be omitted.

3. Translation parameter problem: single observation. The random variable
X is distributed according to the probability density p(z, v) = p(x + w) where
w € Q is the unknown state of nature and p(¢) is a known, fixed density function
which satisfies [Z, £p(£) d¢ = 0. The analogous problem where X is an integer-
valued random variable and the parameter likewise ranges over the set of dis-
crete integers will be discussed later. The problem is to estimate the param-
eter —w. If z is the single observed value, then the usual (unbiased, invariant)
estimate of —w is 8(x) = z. The property of unbiasedness is easily verified and
for its relationship to invariance the reader is referred to [1]. The principal
goal of this section is to establish the admissibility of this estimate, 8(z) = =z,
subject to appropriate smoothness conditions.

This formulation of the translation parameter problem differs notationally
from the customary version. If w is substituted for —w, then the familiar form
of the problem will emerge. The difference in the formulation of the problem is
not significant in any way and on the other hand is helpful in that it leads to
a mare convenient form for applying theorems on Fourier transforms.

To establish admissibility it is sufficient to show that the inequality

p(w, g) = P(wy 6))
or equivalently

(18) ‘[: [z = g@@)plx + w) dz < 2 [: [x — g@)][x + w]pz + w) dz,

implies g(z) = z, a.e.
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To accomplish this it is necessary to impose the following assumption.
AssumprioN I

f_wgp@ di < w, [_wfpz(s) dt < «, and /_:sp(s) dg = 0.

The meaning and relevance of the last condition was discussed above. The
first integrability requirement is indispensible in order that (18) define a mean-
ingful relationship. The second finiteness condition represents a slight further
restriction beyond that of the first integral. For instance, the second integra-
bility condition would be an immediate consequence of the first integrability
condition and boundedness of the density p(£).

We further assume initially that we deal only with alternative estimates
g(z) satisfying | g(z) — | £ M < . The nature of this restriction is con-
siderably milder than might appear at first glance. It will later be shown that
this constraint may be completely eliminated or, equivalently, we will show
the only estimates for which (18) is possible must satisfy this restraint.

Unless stated to the contrary we suppose hereafter that Assumption I and
the boundedness requirement on competing estimates are satisfied.

Lemma 1. If plw, 9) < plw, 8) for all w, then [2 (g(z) — z)* dz < .

Proor. Define ®(u) = [*., £p(£) d¢ Then

L[ - s+ o]

I

(19) éZ‘[:Ix—g(x)ldx [_:(x+w)p(x+w)dw

< 2M ‘[a |®(x + n) — ®(x — n)| dz < 4M [a (—®(w)) du

as —®(u) is positive. But,

“[:Ep(&)dg\g‘[:gp(g)dg asu — —®

and

w [Tepo de| = |u [ o0 | = [ epar wsu— +

80
| ud(u)) >0  as |u|— .

Hence, integration by parts yields

[[(~a) au = [ ep@ de < .

Allowing 7 to tend to infinity in (19) after interchanging the order of integra-
tion produces the desired result.



ADMISSIBILITY FOR ESTIMATION 421

TreEOREM 4. If p(w, g) < p(w, 8) for all w, then g(x) = 3(x), a.e.
Proor. By Lemma 1 6,(§) = ¢ — g(¢) ¢ L* so by Plancherel’s theorem its
Fourier transform ¢y(«) is defined and belongs to L.

1 ©
o) ~ = [ e ds

According to Assumption I 6,(f) = ¢p(§) € L so also its Fourier transform
e2(u) exists and

o) = 7= [ o) de

(since the integral exists). The function 8(w) = [Zs 6,(z)6:(x + w) dz, which is
essentially a convolution of 6; and 6, , also belongs to L’. It can be readily veri-
fied that its Fourier transform is o(u) = ¢1(—u)es(u)(eL?).

Since ¢1 and ¢, both belong to L?, by Schwara’s inequality

¢ = ei(—uwea(u) € L.

By the inversion theorem on Fourier transforms

@ [ - @)e+ pl + ) dr = [ e e~ weatw) du

for real w as both sides represent continuous functions, the first by virtue of the
fact that £&p(£) is in L' and the second since ¢y-¢3 is in L' as established. If both
sides of (20) are integrated from —n to n and the order of integration is re-
versed on the right-hand side (which is permissible for reasons indicated below)

[{ [ @~ o) +opi + o dx} do

(21) ]
=[ o1 (— u) @2 (u) [e—-inu _ einu] du.
© (277

To justify the interchange on the right-hand side we observe first that ¢,(0) = 0
while g2(u) = [i/V/ 271 % e™Ep(£) di is bounded independently of u. By the
mean value theorem ¢y(u)/u = ¢2(i%) where 0 < % < wu. Thus,

limu-o ‘PZ(u)/u < ®

and [£. po(u)/udu < o for ¢ > 0. This implies [¢1(—u):p2(u)]/u e L'. But the
Riemann-Lebesgue theorem asserts that for any ¢ ¢ L', [, e"“q(u) du — 0 as
w — . Therefore,

{ [: (z — g(@) @ + wplz + w) dx} do = 0,
and on account of (18) we may infer that
[: (9(z) — z)*dz =f_: (g(z) — x)’{f_: p(x + w) dw} dz <0,

which implies ¢g(z) = z, a.e.

lim

n
n-»>0 n
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As mentioned previously, there are two general cases in which the bounded-
ness assumption is satisfied by all ¢ which need be considered.

= (0, < a, b, — <a<b< w

p(®) { §<@i>0 = ’

Cask 1: >0, otherwise.

This type of density is fairly general and will occur, for instance, when any
distribution is truncated at finite endpoints.
Suppose z is the observed value. Then, because of the form of p(£)

2 —b —w=<z—a’

Any estimate which assumes values outside the interval [t — b, z — a] can be
improved upon by an estimate h(z) which satisfiesz — b < h(z) < z — a for
all z. Intuitively this is clear; a rigorous proof may be readily supplied by the
reader. Thus if p(w, g) < p(w, 6) for all w and § does not satisfy the bounded-
ness assumption, there exists another estimate h(z) such that

lh(z) —z| =]a|+]|b]

and p(w, h) £ p(w, g) = p(w, ) for all w. Since this implies h(z) = z, a.e., and
hence p(w, k) = p(w, 8), p(w, g) = p(w, ) which implies that é is admissible.
In addition, note that Assumption I is automatically satisfied in this case.
Cask 2: p(z, w) = p(z + w) has a monotone likelihood ratio.
LemMmA 2:If p(w, g) = p(w, 8) for all w, then there exists a constant C such that

[ (¢@) — 2 plx + @) dz < C

for all w (under Assumption I).
Proor. By Schwarz’s inequality

%[: (g@) — 2)*p(z + w) dz < [: (z — 9 (& + W)p(z + ) do

< [[: (gx) — 2)* plz + w) dx:r [j:: (z + w)’plz + w) dx]i.
It follows éasily that
f_: (gx) — 2)’ p(x + w) da < 4 _[Zzzp(s)dg =(C< w.

Without loss of generality it can be assumed that g is a monotone estimate
(ie., z1 < x; implies g(z;) < g(z,)). Since the monotone estimates constitute a
complete class (cf. [3]), any estimate which improves upon é and is not mono-
tone is in turn improved upon by a monotone estimate.

We add for the purposes of convenience the following assumption, which is
so exceptionally weak as not to constitute any real restriction.

AssumptioN II. There exist constants a; , az, b such that a; < az, a2 — a1 <
1,b > 0,and p(¢) 2 bfora, < £ < a,.



ADMISSIBILITY FOR ESTIMATION 423

Suppose there exists a sequence {z;} for which g(z:;) ~ z; > © as ¢ — o,
Then, there must exist for any n an index 7, such that g(z;,) — = n. Since
g is monotone, g(§) — ¢ =2 n — 1 forz;, < ¢ < =i, + 1. Let

&= (m + @)/2 — (xi, + 3)-

%

n

Then,
(22) blas — a))(n — 1)* < f_: (g(z) — 2)’ plx + @) dz.

But by Lemma 2 the integral is bounded by C' < «. Since n is arbitrary, this
leads to a contradiction.
A similar argument applies if there exists a subsequence {x,} such that

gx:) — i —> —

as ¢ — . Thus, g(r) — z must remain bounded and the admissibility of
o(z) =

then follows according to Theorem 4 in the case where p(z + «) has a mono-
tone likelihood ratio.

The preceding argument also shows that in order for | g(z) — x| to be un-
bounded and consistent with the result of Lemma 2 it must peak up
very sparsely for durations of increasingly shorter lengths. Such pathologies
are not excluded readily by means of our methods except for the two cases dis-
cussed. It seems unreasonable to admit such estimates for consideration.

A third case for which Theorem 4 is valid without the assumption of bounded-
ness being necessary corresponds to the situation where p(¢) tends to zero ex-
ceptionally fast. More precisely, we assume that

(23) ‘ f_w (® d‘f\ <cC.
p(u)

For example this is satisfied by the standard normal distribution. The bounded-
ness assumption was only used to prove Lemma 1 which on closer inspection
is also valid whenever we can show that the expressions

[ | glx) —z|[— &= + n)ldz = A(n)
and

[:|g(x) —z|[—®(@ — n)]dx = B(n)

are uniformly bounded. We study only the case of A(n), the argument being
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similar for B(n). Invoking Schwarz’s inequality, we obtain

AR = /‘/f[g(x) — P (= 8 + n)) do 4/[(— B(w)) du

3
< C{f[g(x) — 2P p(z + n) dx} <,

where the last inequality is valid because of Lemma, 2.

What we have shown for the general problem is that §(z) = z is admissible
within the class of all estimates g satisfying | g(z) — z| < M for all z where
M is any finite constant. This means that z is admissible with respect to all
estimates which do not differ too wildly from it. An appropriate formulation of
the conclusions may be made in terms of a concept of local admissibility.

We close this section with a brief discussion of the case where the observation
is integer-valued and the parameter w also traverses the set of all integers. The
analysis is considerably simpler. ’

In this case we can deduce immediately from the analog of Lemma 2 and
equation (22) that if p(w, g) < p(w, 8) for all integral w then | g(z) — z | is uni-
formly bounded.

Assumption I may be slightly weakened and now takes the form:

(24) 222 p() < o and dzplx) =0.

The role of Fourier transforms in the analysis is now replaced by Fourier series
and the general line of the arguménts carries over to the discrete case mutatis
mutandis. Summing up we get:

THEOREM 5. Suppose  and w are discrete and integer-valued, and the conditions
(24) are satisfied. If p(w, g) < p(w, 8) where 6(x) = =z, then g(x) = z, a.e.

4. Translation parameter problem for the loss function L(a, ») = (¢ + w)™
with one observation. In the preceding section 6(xz) = x was seen to be an ad-
missible estimate of —w in the translation parameter problem when the loss
function is L(a, ) = (a + ). Under suitable assumptions which are analogous
to Assumption I and the boundedness restriction it will now be shown that
8(z) = x is also admissible for the loss function L(a, w) = (¢ + w)*. Note that
consideration is still restricted to the case of a single observation.

The assumptions imposed are the following:

AssumprioN III. p(£) is symmetric, i.e., p(¢) = p(—¥).

Because of this assumption the odd moments of p(¢) vanish. This property
is used in a crucial way.

If h(z) is an estimate which presumably 'improves on é(z), then we shall as-
sume

AssumptioN IV. There exists a constant M > 1 such that |h(z) — z| £ M
for all z.

Several remarks will be appended pertaining to this assumption after the
completion of the theorem. For suitable general classes of densities p we will
find as before that Assumption IV is unnecessary.
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AssuMpTION V. [, BV p() dE < o, [Z £V " () dE < .
It is readily verified that the analogue of equation (18) is the following:

N

> (gﬁ) f_: ( — h@)* @z + o)™ p(x + w) dx

k=1

(25)

=3 (%) [ = ha™ @+ o ple )

The proofs of this section are completely analogous to those of the preceding
section. Consequently, the detailed proofs will be shortened appropriately.
Lemma 3. If p(w, h) < p(w, 8) for all w, then [Zo|z — h(z)|*dx < o for
a = 2, (under Assumptions 111, IV, and V).
Proor. By (25), Fubini’s theorem, and Assumption IV

}N: (gkN> f_: (x — h(z))™ { " ( + o)™ plx + w) dw} dx

k=1 I—n

L= 2N ) ®
< vt < [
= k=zo 2k + 1 w

where ®(u) = [“o £ " 'p(¢) dt. By Assumptions III and V it follows that
&, (u) ¢ L'. Thus

K@) < MY <2k2f_ 1) [ [1a@+n)de

k=0

&, (z +n) — &, (x — n) |dr = K(n),

+f |¢k(x—n)|dx]<0< w,

where C is a constant independent n. Therefore,

0s Z (N[ [Le o0 a|[ [ @ -nora]<c.

TaeoreM 6. Let Assumptions II1, IV, and V be satisfied. p(w, k) = p(w, 8)
for all w tmplies that h(z) = 8(x), a.e.

Proor. The proof is obtained by adapting appropriately the methods em-
ployed in the discussion of Theorem 4. The details are omitted.

A few remarks promised earlier concerning Assumption IV will now be given.
As in Section 3 for the case

® =9 £<a,t§>b,—0 <a<b< o,
p =0, otherwise,

the only type of estimate which need be considered is an estimate h(z) satisfy-
ing Assumption IV. The proof is the same as before. The argument for the
second case in which p(z, w) = p(z + w) has a monotone likelihood ratio is
almost the same. It depends on Lemma 4 which may be derived with the aid
of the Holder inequality.
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Lemma 4. If p(w, k) £ p(w, 8) for all w, then there exists a constant C such that
[ &= e+ dzsC

for all w (under Assumption V).

6. Translation parameter problem: n observations. The problem studied in
this section is the multi-observation analogue of the problem treated in Section
3. Let z1, -+, =, be n independent observations on the random variable X
where X is distributed according to the density function p(z, w) = p(xr + w),
w & (— o, o), with p(£) a known prescribed density. Alternatively, X is allowed
to be an integer-valued random variable with w likewise assuming only integer
values. P{X = 7| w} = p(¢ + ) where the probabilities p(j), j = 0, £1, £2,

-, are assumed known. As previously the location parameter —w is to be
estimated. .

Define y; = ©; — #1,¢ = 2, -+-, n. An appealing estimate for the param-
eter —w which was proposed by Pitman and has the property of being invariant
with respect to translations of the observations z; is

(26) 5*(901,752,“',%)=x1"T(y2,"',yn),

where

fw &p(8) ﬁ py: + §) dg
(27) T(?/z R yn) = —: ;-2 .
fw p(® 1,12 p(y: + &) dt

Invariance of 6* means that
6*(xl+c>x2+c’ te ,.’IJ,;+C) =c+ 6*(271,]22, ce ,.’IJ,.)

for each constant ¢, an obviously desirable property when dealing with an un-
known location parameter. It is well-known that &* is an invariant minimax
estimator of —w (cf. [5]).

Girshick and Savage [5] in discussing estimating procedures associated with
quadratic loss conjectured that the estimator (26) is unique minimax. Since
the risk of the estimate 6* is identically constant it follows that in order to
substantiate this conjecture it is enough to show that 6* is admissible. This has
been verified by Blackwell for the special case where both X and w are essen-
tially integer-valued and where p(¢) vanished except for at most a finite number
of 7 [7]. He also constructed an example in which X traversed a discrete set and
the range of w was also discrete with values incommensurate with the possible
X values, and he showed that 6* need not be admissible in this case. This is
not at all surprising in view of the fact that the usual demands corresponding
to invariance in essence necessitate that the possible values of X and the w
values should comprise the same group structure. This characteristic was vio-
lated in the example of Blackwell.
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We shall establish the admissibility of é* as an estimate of —w in three sepa-
rate cases which include most of the common distributions. In two of the cases
we deal with densities of a continuous real variable for which w traverses the
real line. The third case examined is the general discrete problem where X and
o range over the integers. Blackwell’s result for discrete densities with bounded
domain emerges as a special case.

The convolution character of the location parameter problem suggests a
representation of the problem in terms of Fourier integrals. It is therefore nat-
ural for our arguments to appeal to the powerful developed techniques
of Fourier analysis which we, in fact, use abundantly. Our methods conse-
quently apply to a considerably wider class of distributions which includes
most of the common situations. The sequence of lemmas established follows
principally the line of reasoning of the analogous single observation case and
may be considered an extension thereof.

The three cases require separate analysis because of the different regularity
assumptions needed for each. To establish the admissibility of §*(z, 2, - -+ , ¥a)
we must show that if the inequality

plw, g) = f---f[g(ac,yz,---,y,.)+w]2
Xplz+ o)pz+ow+y) - plz + o+ yn) dadys - - - dya
["'f[ﬁ*(x,yz,"‘ ,y»)+w]2

Xp@+ wplz+w+y) - plr+ o+ ya) dedy, - - dyn
P(wy o) =c¢

(28)

A

is valid for each w then g = &*, a.e. For the discrete case (i.e., X and v are in
teger-valued) the integral is to be replaced by the appropriate summation. The
inequality (29) below is equivalent to (28).

f"'f[g(x’y2, te )yn) - 5*(937?/2, ,yn)]2
(29) X p(z + w)'llp(x+ © + yi) dzdys - - - dy,

é2f---f[6* - y][6*+w]p(x+w).llp(x+w+yf) dzdys - - - dya.

Cask 1.
z 0, —°°<G_S_E_S_b<°°»
p(®) ,
=0, tE<ab<t
Only estimators g(z;, y2, -+, ¥n) of —w which satisfy

[ 6%(x1, 42, = s Un) — @@, %2, -, y)| S M
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for some constant M < « need be considered. The argument is analogous to
that given for the one-dimensional case in Section 3. The underlying reason is
that the boundedness of the spectrum determines for each set of observations
Z1, T3, ***, Tn, an interval within which the true value of —w must lie and
any estimator which produces a value outside this interval can be improved
upon. Thus any estimate which differs from &* and which improves in terms of
risk on &* must only differ by a fixed constant from &*, regardless of the observed
values of x. The single regularity assumption required in this case is that for
all§,0 = p()) = C < =,
LeMMA 5. If p(w, g) = p(w,0%) for all w, then

[: [: [6*@1, 2, -+, yn) — 9(@1, Y2, - )]
(30) ) »
X U_w PEpy2 + 8 - plya + L;')dé] didys - -+ dys < .

Proor. By the fundamental inequality (29)
.[: f_: .[: [8* @1, y2s -+, 4m) — g(@1, 42, -+, w)[*
X plar + @) -+ plya + 21 + @) day -+ dya do
=2 [:[: .[: (%1, y2s -+ 5 yn) — (@1, 92, -+ 5 Ym)]

(31)
X [5*(271, Yo, -, yn) + W]P(xl + w) - p(yn + Z1 + w) dxldyz e dyndw

gzM/ [ | @@ + 0, y2, -+, Yn)

- @(2}1 — N, Y2, v )yn) ! dxldy2 e dyn)

where
Q(u’ Y2, -, yn) = .[oo [E - T(y2 y Ty yn)]p(é)p(?h + E) ¢ p(yn + E) dE

By direct calculation we observe that
(32) q)(wyy2)"')yn)=q)(—°°7y27""yﬂ)=0'

If we can show that [Zo--- [Zo|®(z1) ¥2, -+, Yn)|drdys -+ dys < o,
then it follows that the expression of (31) is uniformly bounded with respect to
n which clearly implies the sought-for conclision. The remainder of the proof
consists in verifying the finiteness of this integral.

Note that ®(z1, y2, -+, ya) = 0 for all 71, ¥, -+-, ¥n, and for fixed ¥,
.-+, Ua there exists a constant N such that | z; | = N implies

<I>(x1,y2,-~,y,.) = 0.
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Integration by parts with respect to z; yields

0 —[ "'f q:‘(xlr Z/2,“‘,Z/n) dxldy2”'dyn

IIA

= L L wifer — T(ye, -+, ya)lp(@1) -+« plyn + 21) day - - dya.

But the last integral converges absolutely since p(£) vanishes outside a finite
interval and | T(y2, -+, ya)| S |a| + | b].

TrEOREM 7. If p(w, g) = p(w, %) for all w, then g = &*, a.e.

Proor. Let

G(xl, Yz, ° " :yn) = [Zx - T(y27 et ,yn) - g(xly Y2, " ’yn)]
© 1/2
<[ [Co® -+ pn+ o a]

© i —1/2
H(u) Y2, " 7y») = [u - T(yh ce ’yn)] I:pr(i) "'p(yn+ E)dE]

X [pply: + u) --- plya + w)].

By Lemma 5, G(z1, Y2, *** , Yn) ¢ L?, and by direct calculation we see that
H(u, y2, -+, Yn) ¢ L2, Therefore, the Fourier transforms G(4, --- , ¢.) and
H(@,, ---,t.) of G and H, respectively, are well-defined and belong to L*. Con-
sider the expression

[: [:[xl_ T(ys, -+, yn) — 9(@1, Y2, =+ 5 Yo)]

X[Il 4o — Ty + w2, -+ ,4n + “’n)]
X plxy + w1) -+ pYn + wn + 21 + w1) dzidys - - - dyn

(33)

where for our purposes we shall need to evaluate this expression only for the
values wp = -+ = w, = 0. (33) is essentially a convolution of G and H so its

Fourier transform exists and is equal to
G(—=ti, —ts, -+, —ta)H, ba, -+, ta) e L\

By the inversion property of Fourier transforms we obtain

.[ [oo o ./.w [xl— T(y2y"")yn) - g(xl’yz)'“ ’y“)]
X[xl+w1'—T(y2,"'7yn)]
Xp(x1+w1)---p(yn+x1+wl)d$1“'dyndw1

_ -/‘an.” wa(_tly ) '_'tn)H(th 7tn) [e—ihﬂ __e“l“]dtl e dt”

’Ltl

(34)
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which is defined everywhere since G-H belongs to L'. The last integral is an
absolutely convergent integral. To substantiate this assertion we note that
20,t, - ,t) =0, and

9 =~
'-a-t;H(t]_, e ytn)
pa— i ‘[eo P .[w exp [’i(tlxl + o +t”x“)]x1[x1 - T(yh ey yﬂ)]

® —1/2
X [.[oo p(f) e p(yn + E) d£:| p(xl)p(y2 + xl) eee p(y” + xl) dry - dy”

is bounded independently of ¢, ---, f,. Hence, by the mean value theorem
G(—ty, -+, =t )H{, -, ta)/t as a function of 4 is integrable in a neigh-
borhood about the origin for all 4, --- , £, . Therefore,

G(—t, -, —t)H, -, ta)/tre L".

By virtue of the Riemann-Lebesgue lemma and Lebesgue’s theorem of domi-
nated convergence we see that the expression in (34) tends to zero as n — .
Hence, on comparison of (29) and (34), we deduce

‘[w... [w [xl — T(yz, e Un) — g(xl’gh’ y”)]z

X [L’p(xx+w) ---p(y,.+x1+w)dw:|dx1---dy,.éO,

which establishes the theorem.
Cask 2. Discrete case.

X={01:{:1y:t2)"'}) Q={0yﬂ:1’i2y"'}!
and
Plz = i|w} = p(i + w),

where p(j) = 0, 3 7w p(j) = L.

We impose the following regularity assumption.

AssumeTioN VL. 200 o i%/p() < .

Unfortunately, we do not know whether this assumption' may be relaxed to
the obviously weaker and more natural condition )= j°p(j) < «. The weaker
requirement was indeed sufficient for the case of a single observation whenever
> 2w jp(j) = 0. [See Section 3.]

LemMma 6. If p(w, g) = p(w, 8*) for all w, then there exists a constant C such that

vz Tt Z [6*(371’?/2, e :yn) - g(xl,y% tee yyn)]2
n z1

Xp@ 4+ w) - plys + 21+ w) = C

for all w (under Assumption VI).
The proof is analogous to that of Lemma 2 of Section 3 so it is omitted.



ADMISSIBILITY FOR ESTIMATION 431

Lemma 7. If p(w, g) S p(w, 8*) for all w, then
Z T Z [6*(1'1, Y2, ***  Yn) — g(xl, Y2y 00, yn)]2
Yn z1

X[;p(x1+w) Y + 1+ W)] < oo

Proor. As a consequence of Lemma 6,
01/2
5 Yn) I =
Vo@+ ) - p(Ya + 7 + 0)

le - T(y2; et )yﬂ) - g(xl, Y2, *

for all w. Since w is arbitrary,
ma,x]:vl - T(yz, s yyn) - g(xl, Y2,y ° - :yn)l
1

Cl/2
S .
- max Vo@)pwr + ) - plya + J)

Define for integers u,

u

B, Y2, v yyn) = 20 [5— Tlye, -,y lp@DpWs +3) -+ plyn + 7).

J=—00

By the fundamental inequality (29)
Z Z e Z[xl - T(y2: e 1yn) - g(xlyy% Tt yﬂ)]2

w=—n Yp %

XpEi+ @ - plyn + 21 + )
(35) 01/2

s2X - X

Un 71 m?,x \/p(j)p(yz +75) - pya + )

xlq)(xl—*'n,y?)"')yn) —Q(xl—nyy% "',yn)l-

It is easily checked that ®(u, y2, -+, y») < O for all u, y5, -++, ¥n, and as
|u|— o |u®(u, y2, -+, ys)| = 0 by Assumption VI with the aid of the fact
that ®(w, 3, -++, y») = 0. Summation by parts with respect to z; yields

'—E"' (I’(xl,yh"'yyn)
Yn z1 m’(_&X \/p(])P(?ﬂ +.7) te p(yn + J)

=2 .- Exl[xl - T(y;’ Ly )Py + 2) - plya + z1)

max Vp()p(y: +7) - pys + )
(36) '

2
2> ... r1p(@)pye + 1) -+ plyn + 1)
”Z" ; max Vp()p@y: + ) -+ Py + J)

A

2
9 SV ... g 21p(z) ---p(yn+x1)’
%: le V@) - pya + )

IIA
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where Z,',,_ e Z;, denotes summation over all z;, --- , y, for which
PE)P@: + @) « -+ p(ya + z1) > 0.

But by Assumption VI

(37) Lo XAV - p. T a) < .

Hence, (35), (36), and (37) in conjunction yield the desired result.
THEOREM 8. If p(w, 9) = p(w, *) for all w, then

g(x12y2:°°':yn) = 5*(171,:1/2,“',3/“)

Jor all ya, -+, ya such that 22; p(7)p(ys + ) -+ plyn + §) > 0.
Proor. Let

G@ryyay v s yn) = [&1 — T, ==+, yn) — g@1, 42, ==+, Yn)]
X [; p() -+ plys + NI,

Hw, 92, - 1 yn) = [u — Tya, »+ , ya)] [Zj:p(j)p(yz +3) oo plyn + DT

X [pw)plys 4+ ) -+ ply. + w)].
Since 3y, *+* Dz G*(@1, 2, ++ ,¥n) < ® by Lemma 7,
2 exp [ilha + oo 4 tay)]Gm, Y2, e, Yn)
Yn z)
converges in quadratic mean to a function G(4, --- , ¢,) € L*(—m, =). Also, by
Assumption VI Z,,,, coe D | H(z, ye y *** 5 Yn)] < . Indeed, inspection of

the series shows that its convergence would be a consequence of the conver-
gence of the related series

|ulp(W)pu + yo) -« p(u + ya) _
w2 \/ZE: pOpE + y2) -+ pE + yn)

This follows in view of the inequality of Schwarz, the uniform boundedness of

pwp(u + y2) -+ plu + y.)
252 p@®PE + y2) - pE + ya)

and Assumption VI. Hence,

Z L Zexp [Z(tlxl + -+ tnyn)]H(xly Yo, - ,yn)
Yn z1

converges uniformly and absolutely to a function H(#, ---, #,) e L*(—m=, ).
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The expression

I(wl) s ’wn) = E et Z[xl— T(y2’ "')yn) - g(xl)y2’°"’yn)]
Yn z1

X [xl+wl - T(y2+w2y "',yn +wn)]
X p@y 4+ @) - p(Yn + wn + 21 +w1),
where in actuality ws = -+ = w, = 0, is essentially a convolution of G and
H so its Fourier series converges absolutely to a function I(ti, ---, ), and
I(tl y Ty tn) = G(—tl y "y _tn)H(tl, cety tn), a.e. Since
I(w,0,---,0) = l/(21r)"[ [ exp (—ite) -+ t2) dty -+ dt
and 2", e = [ — ¢ Y/(1 — 7, it follows that

i I(w,0, ---,0) =Z§:T)7‘-[: '[:I'(tl;---,tn)

stin —it) (n+1)
e —e
X [—1—:7-—:1‘—] diy- - d.

(38)

The interchange of summation and integration signs on the right-hand side of
(38) is valid since by virtue of Assumption VI

lim‘l"o i(tl ] tn)/(l - e—“l) <

and I(t1, - -+, t.) € L'(—m, m). But by the Riemann-Lebesgue lemma the right-
hand side of (38) converges to zero as n — «. By the fundamental inequality

; IZ[xx— Tz, -y yn) — (@1, Y2, ---,y,.>12[;p<j> coplya+ ] =0

from which the desired result follows.

Cask 3. General density functions.

This case will include all density functions which satisfy the following regu-
larity conditions:

Assumprion VII:

0=p@) =C, [:fx/p(s) di < .

AssumpTiOoN VIII:

POPy2+ 8 --- plyn + &
) <C forallg,ys,  * yYn.
[ p@)p(ys + 6) -+ p(y. + 6) do orall £,y. Y

Assumption VIII asserts that the conditional density of 1 given Yz, -+, Yn
must remain bounded for all ;, %2, - -+ , ¥a . This assumption is a bit stronger
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than necessary; it could be replaced by an assumption of finiteness of a number
of definite integrals involving the conditional density. However, there seems to
be no gain involved in such a generalization. The class of densities which satisfy
Assumptions VII and VIII includes as two of its important members the nor-
mal and negative exponential distributions as well as any density which asymp-
totically dies off like a power.

It will be shown by Theorem 9 below that 6* is admissible with respect to
the class of all estimators g(z1, y2, - -+, ¥») Which satisfy the following addi-
tional requirement:

AssumprioN IX. There exists a constant M < « such that forallz;, yz, - -,
Yn [ 0% (21, 92, <o+, Yn) — g1, Y2, --+, Ya)| S M.

This will establish a suitably broad form of the concept of “local”’ admissi-
bility for the estimator 8*. This concept of “local” admissibility was introduced
earlier in Section 3. As yet suitable supplementary conditions on the form of
p(¢) for the relaxation of this assumption have not been obtained.

Lemma 8. If p(w, g) = p(w, 8*) for all w, and g satisfies Assumption IX, then

‘[ f [6*(x1;y27°°°:yn)_g(xl,y27°'°)yﬂ)]2

X [ L pBply:+ 8 - plyn + §) dE:I dzidys -+ dy. < .

Proor. The proof is analogous to that of Lemma 5. It is sufficient to prove
that

-[ .‘.‘[ IQ(x17y27'°'7yn)ldxldy2 °"dy7. < oo,

where & is defined as in Lemma 5. ®(21, y2, -+, ¥a) = 0, and as |u | — o,
l‘u@(u’!yZ) "";yn)l'—"O.A.S’u—-) — 0

0 §’u‘1’(u’y2, e yyn)

s [ Ep@pait D - pla +9 dk

(39) )
+1 T, ) | [0 @pGa+8 - pln+ )

Both integrals in (39) vanish as ¥ — — «' by Assumption VII. A similar analy-
sig is valid as 4 — o since

[ = T, 0@ - 2 + 0 e

= — ft[é— T(yz, -+, y) 2® - p(ya + §) dt.
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Integration by parts with respect to z; and an application of Schwarz’s in-
equality yields

Oé—[ [ (I’(xlyyz’""yn)dxldy2"'dyn
=[ [ ziler — Ty, -,y p(z1) -+ plyn + 20) doy -+ - dyn

§2[m--- Lo:vfp(xx) s plyn + ) dy o+ - dyn.

The final expression is therefore finite by virtue of Assumption VII.

TaeorEM 9. If plw, g) < plw, 8*) for all w, and g satisfies Assumption IX,
then g = &%, a.e.

Proor. Define G(x1, 92, -, yn) and H(x1, ¥2, ***, Ya) as in Theorem 7.
By Lemma 8, G(xy, ¥z, -++, ¥a) € L’, and by Assumptions VII and VIII,
H(zy, Y2, -+ , Yn) € L. Therefore, the Fourier transforms G(4, -+ -, f,) and
H(t,, ---, 1) of G and H, respectively, are well-defined and belong to L*. The
Fourier transform I(¢;, - - , ) of

I(wla"')wﬂ)=[ "'[ [xl—T(yzr""yﬂ)_g(xlsyﬂy""yﬂ)]

X [x!+w1_ T(y2+w2s "')yn+wn)]p(xl+°’1) M p(yn+wn+x1+wl)
X dzydys « + - dyax

is well-defined and equals G(—1t, -+, —t.)H(t, -+, t.). By an argument
analogous to that of Theorem 7 it follows. that

lim,.mfn T, 0, -, 0)den = 0,

which proves the result.
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