MOST ECONOMICAL MULTIPLE-DECISION RULES!

By Wwm. Jackson HaLL
University of North Carolina

0. Summary. This paper is concerned with non-sequential multiple-decision
procedures for which the sample size is a minimum subject to either (1) lower
bounds on the probabilities of making correct decisions or (2) upper bounds on
the probabilities of making incorrect decisions. Such decision procedures are
obtained by constructing artificial decision problems for which the minimax
strategies provide solutions to problems (1) and (2). These are shown to be
“likelihood ratio” and ‘‘unlikelihood ratio” decision rules, respectively. Thus,
although problems (1) and (2) are formulated in the spirit of the classical Ney-
man-Pearson approach to two-decision problems, minimax theory is used as a
tool for their solution.

Problems of both ‘“simple” and ‘“‘composite” discrimination are considered
and some examples indicated. (Some multivariate examples are given in [4].)
Various properties of the decision rules are derived, and relationships with works
of Wald, Lindley, Rao and others are cited.

1. Simple discrimination.
A. Formulation of the problem. We are concerned with a sequence X;, X,
, of real- or vector-valued, independent, and identically distributed random
Varlables each having a density function f, belonging to some specified class
Q, w.r.t. a fixed measure p.
The decision problem is to formulate a rule for choosing a non-negative in-
teger n (completely non-random), and, after taking an observation

T = (1, ", )

on X = (X;, -+, X,), for choosing one of m possible alternative decisions
Ay, ---, An . A multiple decision rule (m-d.r.) for choosing among A4, ,

, A, on the basis of z is defined by an ordered set of non-negative, real-
valued, measurable functions ¢(z) = [¢i(z), -+, dm(x)] on the space X of x
such that D ;¢; = 1 identically in z (for n = 0, the ¢:’s are constants). 4; is
then chosen with probability ¢.(xz) when z is observed. For non-randomized
d.r.’s (all ¢’s equal 0 or 1), the ¢,’s are characteristic functions of mutually
exclusive and exhaustive “acceptance’” regions R;, -+, R in X, where 4; is
accepted if z ¢ R; .
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A subscript or superscript 7 denotes the corresponding sample size; f"(z) and
u" are the joint density and product measure, respectively.

We suppose throughout Section 1 that @ consists of a finite number, say I,
of elements f,, --- , fi ; we say that the corresponding decision problem is one
of “simple discrimination” and a d.r. is a d.r. for “discriminating among f , -« -,
f1.” Here, if u is non-atomic, only non-randomized d.r.’s need be considered [2].

" A d.r. D = D, is characterized by the functions

p3(D) = Pr(D chooses 4,|,) = fx H@NI@) d" =1, i =1, ,m),

We consider two different criteria for choosing a d.r. for simple diserimination.
The first assumes that I = m and that the decision A; is to be preferred when
fiis true. Denote p;i(D) = pi(D) = 1 — ¢«(D), so that p; is the probability of a
“correct” decision and ¢; the probability of an “incorrect” decision when f; is
true.

DeFmNITION 1. Let @ = (ou, * -+, am) be a given vector of positive constants
each less than one. A d.r. Dy, based on a sample of size N, is said to be a most
economical m-decision rule relative to the vector « for discriminating among
fi, ++, fm if it satisfies

) piD) Z a; G=1--,m)

and if N is the least integer n for which (1) may be satisfied by some m-d.r. D,
based on a sample of size n. N is said to be the most economical sample size.
‘We now no longer require that ! = m, but suppose that corresponding to each
f: one or more of the alternatives A ; is preferable, or “correct,” when f; is true.
DermniTION 2. Let 8 = (8:;) be a given I X m matrix of positive constants
such that for every 7, j pair for which 4; is a correct decision when f; is true
Bi; = 1. Ad.r. Dy, based on a sample of size N, is said to be a most economical

m-decision rule relative to the matrix 8 for discriminating among fi,:--, fi
if it satisfies
©)] piiD) =By @G=1,---,L;j=1,-+,m)

and if N is the least integer n for which (2) may be satisfied by some m-d.r. D,
based on a sample of size n. N is said to be the most economical sample size.

If | = m and A; is preferred when f; is true, then an M.E. d.r. relative to 8
also controls the probabilities of correct decisions if Y ;i B8:; < 1 for all 4.

If I = m = 2, both (1) and (2) reduce to upper bounds on the probabilities
of the two kinds of error, and Definitions 1 and 2 define an M.E. 2-d.r. as one
with minimum sample size subject to these bounds.

It is intuitively clear (and elementary to prove) that a necessary and suffi-
cient condition for the existence of a M.E. m-d.r. relative to any e« or 8 (I = m)
is that there exist uniformly consistent sequences of 2-d.r.’s for discriminating
between every pair w; , w;(z ¥ 7) [5]. '

We shall utilize elements of Wald’s theory of decision functions as given in
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P2
(0,1) (1,1)
(0, &)
(P1"» P2")
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Fia. 1

[14], and shall use in particular some of the results of Sections 3.5 and 5.1.1,
altering his notation slightly. The differences in the ‘“‘data of the decision prob-
lem” assumed by Wald and here are only minor.

Let D, denote the class of all m-d.r.’s based on a sample of sizen (n = 0, 1, 2,
+++). Clearly, for n = N, D, C Dy ; Lemma 1 follows almost immediately.

Lemma 1. For every fized sample sizen = 0, 1,2, - -, let D), be a minimaz d.r.
and denote r, = max; r(f;, D), where r(f;, D,) is the risk w.r.t. some bounded
loss function. Then the sequence {r.}, n =0, 1, 2, -+ | is a non-increasing se-
quence. : '

B. Most economical decision rules relative to a vector a.. Later in this section, we
shall apply Wald’s theory to two specific loss functions and develop in each case a
method of obtaining M.E. d.r.’s as defined by Definition 1. First, we motivate
geometrically the selection of such loss functions so as to identify the minimax
strategy with the desired one. This alternative approach may give some geo-
metrical insight into the properties of the d.r.’s obtained.?

For fixed n, let p(D) = (p«(D), - -+, pu(D)) denote a point in m-space, and
P, = {p(D): D &£ ®,}. It can be shown ([2], [10]) that P, is a convex body in
the unit m-cube U containing all corners of U with coordinates summing to
unity. The case m = 2 is illustrated. (Conditions under which P, is a proper
subset of P, for n < n’ and for which P, tends with increasing » to U are given
elsewhere ([3], [5]).)

2 The author is indebted to the referee for considerable improvement of this geometric
presentation.



1082 WM. JACKSON HALL

In the diagram, the point « £ P, ; therefore n is smaller than the required
sample size. The M.E. sample size is the smallest » for which « ¢ P, , in which
case the points p’, p” and « coincide (approximately). To test whether or not
a ¢ P, ,wecan examine the position of the points p’ or p” relative to the position
of a.

The points on the “upper” surface of P, (n fixed) include all points p(Dy)
corresponding to Bayes strategies D when the loss function is

3) W(fs, Aj) = Wij = —dijla @j=1--,m),

where §;; denotes the Kronecker é-function.? Then the risk w.r.t. Wy; is

) r(fi, D)= _Zi 8i; pij(D)/ s = —pi(D)/ e (G=1,---,m).
g=

If p’ is not on the boundary of U, the least favorable distribution for the weight
function W; will positively weigh each element in Q. (This will occur if the region
in % of positive density is constant 'over ©.) In this case, the minimax strategy
D, will be such that p(D;,) is on the line L; of constant risk; i.e., p(Dy) = p.
(To obtain the minimax geometry with the loss function W;;, transform the
diagram by dividing the 7th coordinate by —e; ; then the convex body P, goes
into the convex body of risk points (ry, * -+, rw), r: = r(fi, D).)

Alternatively, the ‘“‘upper” surface of P, corresponds to Bayes strategies when
the loss function is
G WHFi, 4) = Wi = (1= 8)/(1 — @) Gj=12",m)
and the risk function is #*(f;, D) = ¢«(D)/B:, where 8; = 1 — ;. The least
favorable distribution will likewise positively weight each element of @ when-
ever p” is not on the boundary of U. In this case, the minimax strategy D’ will
be such that p(D%) is on the line L, of constant risk; i.e., p(Dy) = p”. (To
obtain the minimax geometry with W3, transform the diagram by dividing
the 7th coordinate by 1 — «; , again transforming P, into the convex body of risk
points.) This latter approach is similar to that used by Rao [11] for problems of
classification in multivariate analysis. '

When ! = m > 2, there is an added complication for the latter loss function
since the line (Lg) from (1, 1, ---, 1) through « need not necessarily pierce P
for n < N, the M.E. sample size. (Of course, if « ¢ P, , then the line certainly
pierces P,.) Thus the components of a least favorable distribution are not
necessarily positive unless n = N and p” is in the interior of U.

Thus, in one instance, minimax rules maximize the common ratio p;/on =
«++ = pm/an and, in the other, minimize the common ratio ¢/B; = :--=
gm/Bm. The MLE. sample size is the smallest one for which the common ratio
is =1 or =1, respectively. We now formalize these results. (Wald’s Theorem
5.3* asserts the existence of a minimax d.r. D° for any (fixed) sample size.)

3 This loss function satisfies Wald’s requirements although it is not necessarily zero when
a correct decision is made nor necessarily positive otherwise, as intuitively suggested, but
never required mathematically, by Wald.

4 All references to Wald refer to [14] unless otherwise specified.
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THEOREM 1. For eachn = 0,1,2, - - - , let D), be a minimax d.r. w.r.t. the weight
Sfunction (3) for samples of fixed size n. Suppose for some n,

(6) max r(f;, D3) £ —1

and let N be the least such integer. Then DY is an M .E. d.r. relative to the vector o
for discriminating among fi, -+, fm . Conversely, if there exists an M.E. d.r.
relative to « for discriminating among fi, -+ , fm, and the M.E. sample size is
N, then Dy is an M.E. d.r.

Proor. From (4) and (6), it follows that D} satisfies (1). Now suppose for some
n < N, there exists a d.r. D, satisfying (1). Since D), is minimax, max, r(f; , D%) <
max; 7(fi , D») = max; [—pi(D,)/al. Since D, satisfies (1), we have from ‘above
that max; r(f;, D) £ —1, in contradiction to the fact that N is the least in-
teger n for which this is true. Hence, DY is an M.E. d.r.

To prove the converse, suppose Dy is an M.E. d.r. Then

—1 = max; [—p:(Dy)/ai] = max; r(f;, Dy) = max; r(fi, Dy)

since Dy is a minimax d.r. Hence, (6) is satisfied for n = N, and since N is the
M.E. sample size, Dy is an M.E. d.r.

Lemma, 1 assures us that any n for which (6) is violated is too small. Now let
us consider the structure of minimax d.r.’s for a fixed sample size 7.

DeriniTION 3. A d.r. D defined by ¢(z) is said to be a likelihood ratio d.r. if
there exist positive constants a; , - - - , an such that for any j and any z for which
i) > 0, a;f7(x) = aifi(x) for all 7 5= 7.
(Note that a;, ---, an determine ¢ completely except in sets of 2 for which
afi(x) = max; a;f(z) for more than one value of ¢.) Setting a; = £;/a;, where
¢= (&, -, &) is an a priori distribution over @ = (f1, -+, fu), it follows
from Wald’s Theorem 5.1 (with (5.6) replaced by (5.7)) that a Bayes d.r. rela-
tive to any £ for which all £ > 0 is a likelihood ratio d.r., and conversely.

Wald’s Theorem 5.3 asserts the existence of a minimax d.r. and a least favor-
able distribution, and that any minimax d.r. is a Bayes d.r. relative to any least
favorable distribution. Moreover, it follows from (4) and Wald’s Theorem 5.3 .
(iii) that if all components of a least favorable distribution are positive, any
minimax d.r. D° has the property:

(7) n(D")/oy =+ = pu(D")/am .

We shall give sufficient conditions for this to be true.

AssumptioN 1. If R is a subset of & for which [z f7(z) du" = O for some ¢,
then [ f7(z) du™ = 0 for all values of 7. (Whenever this assumption is made, we
shall tacitly assume that & is redefined so that f7(z) > 0 for all ¢ and z £ X.)
We state a theorem analogous to Wald’s Theorem 5.4;° the proof (not given)
is also analogous.

§ It might be noted that Wald’s condition (iii) of Theorem 5.4 is superfluous since it is
always fulfilled; e.g., in Wald’s notation, let 8 = 1/u (¢ = 1, ---, u) identically in z, and
then r(F;,8) = (u — 1)/u <lforj=1, -, k.
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THEOREM 2. If Assumption 1 holds, all components of a least favorable distribu-
tion & w.r.t. the weight function w;; are positive.

Hence, under Assumption 1, an M.E. d.r. may be obtained by the following
method: for each sample size n, find a likelihood ratio d.r. D), for the constants
a1, , Gn determined by Egs. (7), and then choose N as the minimum n for
which py(D}) = e .

As an alternative approach, we can consider the weight function W}; and
proceed analogously to the first approach, giving a theorem identical to Theorem
1 with (8) replaced by max; r(f;, D}) < 1; and, replacing a; = £;/a; by £;/8;,
it follows analogously that a Bayes d.r. relative to any ¢ for which all £ > 0
is a likelihood ratio d.r., and conversely. Moreover, if all components of a least
favorable distribution are positive, any minimax d.r. D° has the property:

@® aD) /B = -+ = qu(D°)/Bn.

We shall give sufficient conditions for this to be true. Analogously to Wald’s

Theorem 5.4, we have:
Lemma 2. If Assumption 1 holds, and if there exists some d.r. D for which

T(_f;, D) < l/ma‘xléjémﬁ.’i (7/ = 1) T m);

then all components of a least favorable distribution are positive.
The following lemma may be useful in this regard:

Lemma 3. If B:i < [1/(m — 1D 1iB; (ie, ;> [D a;j — 1]/Im — 1])
for all ¢, then there exists a d.r. D for which r(f;, D) < 1/max; B; for all 1.
The proof follows by considering a d.r. defined by ¢i(x) = 1 — (m — 1)8:/
> 8; > Oidenticallyinz ({ = 1, --- , m).

TaroreEM 3. Suppose Assumption 1 holds. For any sample size greater than or
equal to the M.E. sample size, all components of a least favorable distribution are
posttive.

Proor. Suppose n = N, the M.E. sample size, and that D} is a minimax d.r.
for samples of size n; then, using Lemma 1 and the theorem analogous to Theo-
rem 1, DY satisfies (1). Use of Lemma 2 completes the proof.

Hence, under Assumption 1, Dy is a likelihood ratio d.r., and an M.E. d.r. may
be obtained by considering likelihood ratio d.r.’s Dj for each n for constants
a1, *** , Gn determined by (8), and then choosing N as the minimum » for which
qi(D2) £ B . If for some 7 one of the components of a least favorable distribution
"is zero, we know that n is less than the M.E. sample size (Lemma 1).

A Bayes d.r. relative to any £ of which all components are positive is admissible
[15]. Hence, any likelihood ratio d.r. is admissible, and under Assumption 1
M.E. d.r.’s obtained by either of the above approaches are admissible. Thus,
denoting an M.E. d.r. by D, there does not exist a d.r. Dy for which p.(Dy) =

p«(D¥) (¢ = 1, --- , m) with strict inequality for at least one 7 (under Assump-
tion 1).
Suppose now that a real-valued statistic ¢ = #(z:,- - - , z») exists which is suf-

ficient for the class {fi} (¢ = 1,-.., m), and suppose that ¢ has a monotone



MULTIPLE DECISION RULES 1085

likelihood ratio for some ordering of the elements of Q; i.e., if g;(f) is the density
of ¢t corresponding to fi(x), then, for some ordering of the subscripts,

9i(t)gi(t) Z gi(t)gi(t)

for 7 > jand # > ¢ [8]. It follows almost immediately that for any ¢(z) which
defines a likelihood ratio d.r. there exist constants {¢;}, —©® = = = -+ £
Cma = €m = o, such that ¢«(x) > 0 implies ¢;; =< #(x) = ¢;. Moreover,
¢i(x) = 1 if the latter inequalities are strict, so that randomization may be re-
quired only at the points ¢ = ¢; and only then if such points have positive prob-
ability. Such d.r.’s have been called monotone [1], [8]. If, for example, f; is of
the exponential type f; = 8(6:)e’**r(x), r = 0 and 6; real, for all 7, the above con-
ditions are satisfied [1].

Ezample 1. Suppose f; is a normal density function with mean 6; (—» <
6 < +++ < 0, < ) and known variance ¢°. Then ¢ =  is sufficient and the
¢’s and N may be obtained by first solving the following equations (iteratively)
for the ¢%’s and n with p, = 1:

9 pi(Dn) = ®[\/nlc? — 0,)/0] — ®[\/n(cis — 0:)/0] = aipn
(@G=1--,n),

where ® denotes the standard normal distribution function, and then, choosing
N to be the least integer =n, re-solving for the ¢;’s and px . Such a monotone
rule will be minimax w.r.t. W;; for the M.E. sample size. Alternatively, (9) may
be replaced by equations of the form 1 — py(D,) = (1 — a:)p., and a solution
obtained which will be minimax w.r.t. W; .

Other examples may be treated analogously, allowing for randomization in
the discrete cases if desired.

C. Most economical decision rules relative to a matrixz 8. To obtain M.E. d.r.’s
as defined by Definition 2, we shall construct an artificial decision problem whose
minimax solution will have the properties desired. For convenience, we replace
each B;; which is equal to unity by + .

Suppose n fixed, and let @ be a set of density functions g;; w.r.t. p (Z = 1,
«ve, 135 =1, -+, m), where g;; = f; identically in z. Define a weight function
W(g.j, Ax) = Wij, where

(10) Wip=1/8;; ifj=k@=1,---,1;45,k =1, .., m) and O otherwise.

We consider the artificial decision problem of choosing among A4;, -+, Anx
when one of the I’ = Im density functions g;; is “true’”, and where the ‘loss”
incurred by choosing Ay when g,; is “true”, is W(g:; , Ax). The risk function is
r(gii, D) = 2 Wiupin(D), where pin(D) = Pr (D chooses Ax|gi;) =
pa(D); thus r(gi;, D) = pi(D)/Bi; (¢ =1,---, 1; j=1,---, m). Wald’s
Theorem 5.3 asserts the existence of minimax d.r.’s.

TaEOREM 4. Foreachn = 0, 1,2, --- , let D be a minimaz d.r. w.r.t. the weight
function (10) for discriminating among gu , g1z, * -+ , §im for samples of fixed size n.
Suppose for some n, max; ;r(gij, D2) < 1, and let N be the least such integer.
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Then D% is an M.E. d.r. relative to the matriz B for discriminating among f1, -+ ,
fi . Conversely, if there exists an M .E. d.r. relative to B and N s the M.E. sample
size, then DY is an M.E. d.r.
The theorem may be proved in a similar manner to Theorem 1. Now let us con-
sider the structure of these minimax solutions w.r.t. W .
DEerNITION 4. A d.r. D defined by ¢(z) is said to be an unlikelihood ratio d.r.
if there exist non-negative constants a;; (1 = j; ¢ =1, ---, ;5 =1,---, m),
where for each ¢ at least one a;; > 0, such that for any k& and any z for which
o) > 0, Divar aif?(x) S Dinsaiifi(x) for all j 5= k.
Setting a;; = &/ Bij, where £ = (fu, 12, -+ , £im) denotes an a priori dis-
tribution over @, we have from Wald’s Theorem 5.1 that any Bayes d.r. relative
to £ is an unlikelihood ratio d.r. and conversely. Lindley [10] introduced such
d.r.’s, obtained by his “method of minimum unlikelihood.” Hereafter, we shall
suppose £;; = 0 for every ¢, j for which B;; = « without loss of generality.
Wald’s Theorem 5.3 asserts the existence of a least favorable distribution
£, and that any Bayes d.r. relative to £ is a minimax d.r. and conversely; more-
over,

(11) pi;(D%)/Bi; = max [ps;(D")/Bi;] for any %, 7 for which £; > 0.
T

Apparently, however, there are no general conditions under which all £; >0,
and consequently we have no proof of the admissibility of a minimax d.r. In
fact, supposing [ = m and the B:;’s satisfy > B:; = 1 for every 1, then £;,>0
for all ¢, § would imply p:; = B:; , regardless of the sample size! Geometrlcally,
the convex body in the I-m-dimensional space with coordinate axes p;;, corre-
sponding to all possible d.r.’s for a fixed sample size, is not necessarily inter-
sected by the line determined by p:;/B:j = pirj» / Bwj» for all pairs of sub-
seripts corresponding to incorrect decisions. However, we do have the following
theorem in this regard, assuming I = m and A4; is “correct” when f; is true (¢ =
1, ---,m).

THEOREM 5. Suppose Assumption 1 holds and that D ;=i Bi; < 1 for every 1.

For any sample size greater than or equal to the M.E. sample size, a least favorable
distribution £ has the property Y i £2; > 0 for every j.
The theorem may be proved by a contradiction, using Assumptlon 1, Definition
4, Lemma 1, and constructmg a Bayes d.r. relative to £. From Theorem 5 and
(11), it follows that p:;(Dy)/B:; attains its maximum for at least one value of
i for every j, where DY is a minimax d.r. for samples of the M.E. size.

Ezample 2. We shall consider unlikelihood ratio d.r.’s for samples of size n
for Example 1 above. For simplicity, suppose ¢ = 1,1 = m = 3, and 6; = 0,
the alternatives A;, A;, Az corresponding respectively to the densities fi,

f27f3-

A d.r. with acceptance regions
R? = {z:hi(z) = hi(x), hi(x), = k3 (2)},
Ry = {z:h3(z) < hi(z), he () = hs (2)},
Ry = {x:h3(z) < hi(), hi(x) < h3(z)},

Il

Il
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where hi'(z) = a;;fi + axfi and (4, §, k) is a permutation of (1, 2, 3), is an un-
likelihood ratio d.r. for the weights (a:;). Denoting the sample mean by &, we
may replace h? by g7 = [aji exp (08, — n63/2) + ax; exp (n6E — nbi/2)].
Now g1 is an increasing function of £ and g5 a decreasing function; g; has a single
stationary point, a minimum. By sketching the three g; functions, it is clear that
if none of the acceptance regions is to be empty, one of three possibilities must
obtain: the acceptance regions are of the form R, = {z:% < ciorc; £ £ = cif,
R, = {z:c; S T = ¢3}, Rs = {ri¢1 S T < ¢z or T = c.}, where either ¢; = ¢3,
or ¢; = ¢4, or both. (Equality signs have been assigned everywhere in the R,’s
for simplicity.) Let ¢ (=2 or 3) denote the number of ¢;’s to be determined. The
¢;’s may be obtained by solving ¢ + 1 of the six equations p;; = pB:; for the
¢’s and p, the choice of the equations to be solved being such that p;; = pB:;
for all six pairs of subscripts. Theorem 5 may be helpful in this choice of equa-
tions. To obtain an M.E. d.r., the sample size n is to be minimized subject to
p = pn = 1. Similar methods may be applied to simple discrimination problems
concerning any distribution of the exponential type.

2. Composite discrimination.

A. The problem. In this section we allow a continuum of possible density func-
tions. For specificity, assume Q to be the space of a real- or vector-valued param-
eter 0 indexing the class of density functions w.r.t. u with elements f(z, 6).

We further suppose that disjoint subsets w;, -+, w; of @ are specified such
that for every pair ¢, j (¢ = 1, --- , m;j = 1, - -+, I) there is a definite prefer-
ence for or against the decision A4; if the true 6 £ »; . We suppose that none of
the decisions is definitely preferred if 6 is not in some w; ; this “indifference re-
gion” is excluded from @ for convenience. Under these assumptions, we say that
the corresponding decision problem is one of ‘“‘composite discrimination” and
a d.r. is a d.r. for “discriminating among w; , -+, w;.”” Ad.r. D = D, is charac-
terized by the functions

(6, D) = Pr (D chooses 4,[0) = [o ¢i@)f"(z, O)dn" (G =1,---, m),

defined for all 6 ¢ Q.

We again consider two criteria for choosing a d.r. for composite discrimination.
The first requires ! = m and A; to be a “correct’ decision if 8 ¢ w; and ““incor-
rect” if 0 € w; (j # 7). For the second criterion, we suppose that corresponding
to each w; one or more alternatives A ; is preferable when 0 € w; .

The definitions and comments of Section 1.A may be restated, substituting
only w; for fi, infs.; pi(8, D) for pi(D), and sups.; g:(6, D) for q:(D). When
I =m = 2, an M.E. 2-d.r. may be considered as a test of the hypothesis that
0 & w; against the class of alternatives § ¢ w. , satisfying bounds on the two kinds
of error; such a d.r. may be obtained by considering, for each n, tests of size
1 — a; w.r.t. o, which maximize the minimum power w.r.t. w; and choosing
that test for which » is a minimum subject to the minimum power being at least
as [7]. '

Before extending this result to m-d.r.’s for composite discrimination, we re-
quire some results in minimax decision theory.
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B. Mintmazx decision rules for fized sample sizes. We prove three theorems
which may be useful in finding minimax d.r.’s. Also, if a sufficient statistic with
a monotone likelihood ratio exists, Karlin and Rubin’s complete class theorem
may be applicable [1], [8]. Sverdrup’s results [13] should also be noted.

‘We shall use a number of Wald’s results in [14], Section 3.5 and 5.1.4, with
some alteration in his assumptions and notation. We denote a weight function
by W(6, A;) = W;(0) (j = 1, --- , m) and the corresponding risk function when
using a d.r. D by r(6, D). An a priori distribution over the Borel subsets {w} of
Q is denoted by & = (¢ \), where E(w) = Pr (6 e w) = D+ £Ei(w) and
£ = E(w), Mi(w) =Pr(@ecwl@ew) (@ =1,---,1). The average risk relative
to E is denoted by r(&, D). Other terminology and notation will be self-evident.
Wald’s Assumptions 5.1 and 5.6, his remarks on page 148 characterizing a Bayes.
solution, and his theorems 5.11, 5.12, 3.8, 3.9, and 3.10 characterizing minimax
solutions are especially pertinent to what follows. Lehmann’s existence theorem
for least favorable distributions [9] might also be noted.

AssumptioN 2. For each ¢, j pair (¢ =1, --- ,1;5 =1, --- , m), W;(0) equals

a constant, say W;;, for all 6 € w;.
(That is, for each alternative, the loss varies only from subset to subset among
@y, + -, w; and not within any subset.) This assumption is sufficient to imply
the validity of Wald’s Assumptions 3.1 to 3.6 (see his remarks on page 148).
For a given set of conditional distributions A = (A1, - -- , A\;), we denote

(12) 2@ = [ reoa (=100

n is fixed and need not be evident in the notation.

TuroreEM 6. If Assumption 2 holds, a necessary and sufficient condition for a
d.r. D* to be a Bayes d.r. relative to & = (£, N) for discriminating among o , « -+,
wy is that D* be a Bayes d.r. relative to £ for discriminating among f3, « -+ , f wr.t.
the weight function W ;. The average risk in the two cases are equal.

. Proor. Using Assumption 2 and (12), we have

Ja WiO)f"(z, 6) dE = >t &Wifi(x).

The first part of the theorem follows immediately, using Wald’s Theorem 5.1
and second paragraph on page 148. By expressing (6, D) as in Wald’s (5.81),
interchanging the order of integration, using (12) and Wald’s (5.2), we have
for any d.r. D,

(13) f #(6, D) dn = #(f}, D).

Denoting by n(¢, D) the average risk relative to £ when discriminating among
£ -+, f1, we have
(14) T(E) D) = rh(f, D))

completing the proof.
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THEOREM 7. Suppose Assumption 2 holds. Necessary and sufficient conditions
that 2 = (£, \°) be a least favorable distribution and D° a minimaz d.r. for dis-
criminating among w;, - -+, w; are that

() £ 4s a least favorable distribution and D° is a minimaz d.r. w.rt. Ws;
for discriminating among fi‘o, sy f?o; and

(ii) for any © for which £ > 0, [u, (6, D°) d\; = sups.., r(6, D°). Moreover,
the mazimum risks in the two cases are equal; i.e.,

(15) sup r(6, D) = max r(fﬁo, D".
Q 1gigi

Proor. Necessity: Since &' is least favorable, infp, 7(5°, D) = inf, r((¢, \°), D)
for any £, so that, using (14), infp mo (&, D) = infp moe(¢, D); that is, £ is least
favorable. Using Wald’s Theorem 3.9 and then Theorem 6, D° is a Bayes d.r.
relative to Z° and a minimax d.r. for discriminating among f1°, - - - , 1%

We shall now verify (15). Using Wald’s Theorem 5.3 (iii), max; r(f’, D°) =
> gr(f°, D°) = mo(£, D°), so that together with (14) and Wald’s Theorem
3.10, we have max; r(fi’, D°) = r(&°, D°) = supq r(6, D°). Continuing with the
necessity, for any ¢ for which £} > 0, we have r(f}’, D°) = max; r(}’, D°) and
supw; (6, D% = supq (6, D°) by Wald’s Theorem 3.10, which, together with
(15) and (13), prove (ii).

Sufficiency: By Wald’s Theorem 3.9 and Theorem 6, D’ is a Bayes d.r. rela-
tive to 2 = (&, \Y); i.e., 7(E, D°) = infp »(5°, D). Hence, we need only prove
that E° is a least favorable distribution. Suppose it is not; then there exists a
= = (& \) such thatinf, 7(E°, D) < infp r(%, D). Butinf, r(Z, D) < (&, D°) =
i &ifw; 7(8, D°) dN\i < D i i supe, (6, D°) < supq 7(8, D'). Combining these
last three results, r(&°, D) < supq r(6, D).

By Wald’s Theorem 5.3 (iii), for any ¢ for which & > 0, r(f’, D% =
max; r(fY, D°), which, together with (13) and (ii), implies sup., (6, D°) =
max; sup.; r(6, D°) = supg (6, D°). Hence, from (ii),

T(E"Or Do) = Z ngw.' 7(0) Do) d)‘g = SUpa 7(07 Do))
a contradiction. Q.E.D.

TuroreM 8. Suppose Assumption 2 holds, and suppose {N'} is a sequence of
sets of conditional a prior: distributions and D° a d.r. such that

(16) lim [ (6, %) d\: = sup r(6, D) G=1-,0,
where for each v = 1, 2, ---, D’ s a mingmazx d.r. for discriminating among
Y, oo, fY". Then D° is a minimaz d.r. for discriminating among ey, + -+ , w; .

Proor. By Wald’s Theorem 5.3, for each » there exists a least favorable dis-
tribution #, and D’ is a Bayes d.r. relative to ¢ for discriminating among f}’,
-, fY; ie., for any d.r. D, n.(£, D) < (£, D), and hence, using (14),

an  T&[ repyais e[ w6,D) s sup e, D)

Wi
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Now each sequence {£;} has at least one limit point; let {E},j=1,2, ---,
be a sub-sequence of {E = (£, \)} for which each & converges to a limit,
say £; then D ;& = 1. By Wald’s Theorem 5.3 (iii) and (13), for each % for
which £ > 0, [., r(0 D’) d\; = max; [., 7(6, D") d\; so that, from (16), for
each ¢ for which £ > 0, sup., r(0 D°% = max; sup., (6, D) = supg r(6, D°).
Hence, from (16), limj— > i & fu, 7(6, D) dNF = >, f, sup,, (8, D% =
supg r(() D), which, together with (22), asserts supg r(6, D°) < supq (6, D) for
any D. Q.E.D.

If a least favorable distribution exists, the problem reduces to one ot simple
discrimination, so that if u is non-atomic only non-randomized d.r.’s need be
considered. A lemma for the case of composite discrimination analogous to
Lemma 1 may be derived.

C. Most economical decision rules relative to a vector a. As in Section 1.B, we
shall apply the above theory to two specific weight functions W;(6) and develop
in each case a method of obtaining M.E. d.r.’s relative to «. We assume ! = m.
First, let

(18) W, 4;) = Wi6) = —1/a; if 6 £ w; and 0 otherwise.®

The risk w.r.t. W;(9) is r(6, D) = p,(() D)/a;if0ecw; (¢ =1,---, m), and
supw; (6, D) = —1an. (8, D)/a, (z=1,---, m). By Wald’s Theorem 5.12
(i), there exists a minimax d.r. D° for any (ﬁxed) sample size.

TarorEM 9. For eachn = 0,1,2, - - -, let D, be a minimaz d.r. w.r.t. the weight
function (18) for samples of fixed size n. Suppose for some n, supg r(6, D3) < —1
and let N be the least such integer. Then D), is an M .E. d.r. relative to « for discrimi-
nating among wy , - -+ , W, . Conversely, if there exists an M.E. d.r. relative to o
for discriminating among w; . - -+ , wm , and the M.E. sample size is N, then D%
isan M.E. d.r.

The proof is like that of Theorem 1, replacing p:(D,) by inf,; p:(6, D,).

Note that (18) satisfies Assumption 2 with W; given by (3). Hence, if a least
favorable distribution = = (£, A°) exists, Theorems 6 and 7 imply that the
composite dlscrlmmatlon problem may be treated as a simple discrimination
problem with fi(z) = f}'(z) = fu; f(z, 6) d\}, and the theory of Section 1 will
be applicable. If a least favorable dlstrlbutlon does not exist, Theorem 8 asserts
that by a similar treatment for a sequence of a priori distributions having cer-
tain properties in the limit, it may be possible to solve the composite discrimina-
tion problem. Now suppose a least favorable dlStI’lbuthIl 5 = (& \°) exists.
By Theorem 7(ii),

f pi(8, D°) d\} = mf pi(6, D" for any 7 for which £2 > 0.

Assumption 3. If R is a subset of & for which [ f"(z, 6) du™ = 0 for some
6 £Q, then [f"(x, 8) du” = 0 for all 6 ¢ Q.
This assumption implies Assumption 1 for the density functions f3, ---, fa,

8 See footnote 3.
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defined by (12), for any set of conditional distributions A. If Assumption 3 holds,
and if a least favorable distribution exists, it follows from Theorem 2, Wald’s
Theorem 5.3(iii) and (18) that

(19) L inf puf6, D) = - = — inf pa(o, DY),
a1 fewy Om Gewpy,
where D° is a minimax d.r.
As a second approach, consider the weight function:

(20) W, A;) = W;i0) = 1/8: if 6 € wi, ¢ # 7, and 0 otherwise,

where8; = 1 — a; asbefore. Thenr(8, D) = ¢;(0, D)/B:if 0 cw; (i =1, --,m).
We may proceed analogously to the first approach, making changes correspond-
ing to those made analogously in Section 1. We thus obtain a theorem analogous
to Theorem 9 and also

TuroreM 10. Suppose Assumption 3 holds and that a least favorable distribu-
tion exists. For any sample size greater than or equal to the M .E. sample size,

(21) 1 sup (6, D°) = -+ = 1 sup ¢m(6, D%
ﬁl fewq ﬂm Ocwm
where D° is a minimaz d.r.

No proof of admissibility of the M.E. d.r.’s derived in this section has been
obtained. However, if Assumption 3 holds and there exists a least favorable
dlstrlbutlon, it can easily be verified that there does not exist a d.r. Dy for which
inf,, p«(6, Dy) = mfa,, pi6, Dy) (G = 1,---, m) with strict inequality for at
least one 7, where Dy is an M.E. d.r. obtamed by either of the minimax methods.

D. Most economical decision rules relative to a matriz 8. Just as the approach
of Section 1.B was extended in Section 1.C, we shall extend the approach of
Section 2.C in this section to the consideration of M.E. d.r.’s for composite
discrimination relative to 8 = (8:;).

Suppose 7 is fixed, and consider parameter spaces @ , - -+ , @, each @; being
identical to @, and denote @' = U;Q;. For each j, denote the corresponding
subsets by w;, -+, w;j. Define a weight function W(6, Ax) = Wi(6) for
k=1..-,m,by

ch(o) = 1/31’:‘
ifewjandj =k(@ =1, ---,1l;j =1, ---,m),and 0 otherwise.

(22)

Then 7(6, D) = pi(6, D)/B:; if 6 & wi;. Let E be an a priori distribution over
Q' with components £&;; = E(w;;) and \ij(w) = Pr(6 ¢ » | 6 € w;;). For a given set
of N’s, denote

(23) gi(x) = f (=, 6) d\g;.

w”
Theorem 9 may be restated and proved, substituting only (22) for (18), +1 for
—1, and B for a. The theorems of Section 2.B may be applied to obtain mini-
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max d.r.’s for composite discrimination w.r.t. the weight function (22) by re-
placmg lin the theorems by I’ = [-m and replacing single subscripts < by ¢/ and
fi by ¢t;. If a least favorable distribution exists, then the composite discrimina-
tion problem reduces to a problem of simple discrimination among the “aver-
age” density functions g}; defined by (23) w.r.t. a set of “least favorable condi-
tional distributions” A, and Theorem 5 and the remarks of Section 1.C are
applicable. Thus, this method of solution gives unlikelihood ratio d.r.’s as M.E.
d.r.’s. If a least favorable distribution does not exist, then a minimax d.r. will
be a Bayes d.r. in the wide sense and Theorem 8 may be applicable.

Ezample 3. Suppose f(z, 8) is a normal density function with variance o’
(known) and mean 6, and

o= {0:0 <6}, = {(0:0506Z6)}, w = {0:0= 6,

for some specified ; < 63 < 63 < 6; . It may be shown that the least favorable
conditional distributions over wi, wy, ws (Theorem 7) assign probability one to
0, 0,, 65, where 6, = 05 or 67 determined below. Thus, this example reduces
to Example 1. (Karlin and Rubin’s results [8] also imply that a minimax rule
will be monotone in #; determining the explicit form of the monotone rule is
equivalent to showing that the above distribution is least favorable.)

0, is determined as follows:
(24) 0, = 0; if p2(92 y D') p2(9’2, ’ D’),
0, = 0;, if Pz(og , D") < p2(02 , D"),

where D’ and D” are the solutions to the corresponding simple discrimination
problems with 6, = 6; or 63 for fixed n. We shall show that such a determina-
tion of 6, is complete and consistent by showing that if p.(65 , D”) > p.(6; , D”)
then pa(63 , D’) > ps(62, D) and conversely. From (9), with either a prime or
double-prime on p, D, ¢;, and ¢, , we have ¢, = 6; 4+ 0® (aup)//n and

= 65 + o®7'(1 — as)/V/n,

where '(z) = t is defined by ®(¢) = x. Substituting in p.(6, D) it becomes
clear that it is a decreasing function of p for fixed 8. Now asp’ = ps(65 , D’) and
asp” = (62 , D”) so that
(25) ax(p” — p') = pa6 , D") — po(6s, D).
Suppose px(63 , D”) > pa(6: , D”); substituting in (25), it follows that p” > p’
since p. is a decreasing function of p. For the same reasons,

0 < alp” — o) < pa(6z , D) — pa(6, D).
Conversely, in the same manner, if p.(65 , D’) > pu(6;, D’), then

a(p” — ') > pa67 , D”) — o8 , D),

and p” must be greater than p’; hence,

0 < axlp” — p') < pal6s , D”) — pa(6}, D).



MULTIPLE DECISION RULES 1093

Other examples with exponential density functions may be treated analo-
gously, and also similar examples for Section 2.D.

Example 4. Now suppose ¢ is also unknown; denote the mean by u and re-
place @ in the w;’s defined in Example 3 by /0.

Denoting Student’s ratio by ¢ and the sample sum of squares by &%, (¢, s) is
sufficient for 6 = (u, ¢). If we invoke invariance (under changes in scale), it
follows from Blackwell and Girshick’s work [1] that a minimax invariant rule
must be monotone in ¢. Theorem 8.8.1 in [1] proves, for the m-decision case as
well as the 2-decision case, that invariance is no restriction when discriminating
among 6, -, 0, , where 8 = p/¢. Thus a minimax d.r. for discriminating
among 6, , 63 , 0; is monotone in £, By showing that the risk for a monotone rule
is a maximum in w; at p/oc = 6; (with 6, determined as in Example 3), it will
follow that a monotone rule in ¢, with ¢;, ¢c; and p determined by equations of
the form (9) with the ®’s replaced by non-central ¢ distribution functions, will
be minimax for discriminating among w; , ws, ws.

Alternatively, this same result may be obtained by an application of our
Theorem 8, letting A} assign probability one to sets of (i, o) in which

plo = 6,

and letting ¢~ be distributed as x* with degrees of freedom tending to 0 as
v — o, The details appear in [3], adapted from a 2-d.r. argument by Hoeffding.

Example 5. We shall derive a three-decision extension of the sign test for
the median of an arbitrary distribution function by adapting an example of
Hoeffding [6]. (See also [12].) Analogously, an M.E. d.r. concerning any quartile
of an arbitrary distribution may be derived.

Let @ be the class of all density functions f w.r.t. a fixed measure u on the
real line such that u{z = 0} > O, wlz > O} > 0. Denote 6(f) = [ f(z) du.
leen01,02,02 , 0; (0 < 0 < 02 -§ i< 02 < 0; < 1), letw, = {f:60(f) < 01},

= {f16; < 6(f) < 67}, ws = {f:6(f) = 65}. The alternatives 4, A,, A4s,
correspondmg to w;, we, ws, might be that the median of the unknown dis-
tribution is “‘appreciably’’ less than zero, “close” to zero, “appreciably” greater
than zero, respectively.

Let f(z, 6) = 6°“(1 — 6)'*®/c if z < ¢ and 0 otherwise where ¢ is an arbi-
trary positive constant and b(z) = 1 if z < 0 and 0 otherwise, and let A =
(M, Az, Ns) be a set of conditional distributions over w; , w;, ws, respectively,
where A, assigns probability 1 to f(z, 6;) and where 6, is to be determined as in
Example 3. It is easily verified that a minimax d.r. D, (n fixed) for discriminat-
ing among f} , f5 , f} is monotone in #(x) = Y b(z:), the number of non-positive
observations, with ¢;, ¢; and values of ¢; when ¢ = ¢; or ¢; determined so that
pi(0; , D) = aip (1 = 1, 2, 3) for some p; and

P10, D) = Bler — 1) + aib(er), (6, Dx) = 1 — B(es) + (1 — a2)b(ca),
p2(6, Da) = B(cz — 1) + asb(cs) — Bler) + (I — an)b(e),
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where B = B, and b = b, denote the binomial distribution function and
probability function, respectively, and a; = ¢i(c;) = 1 — ¢ipi(c;). (It may be
shown that D, defined above is also minimax for discriminating among

bn,el ) bn.02 ’ bn,o; ‘)

This A may be shown to be least favorable, and an M.E. d.r. may be obtained
according to Theorem 9 (see Example 1).
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