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1. Summary. This paper examines the loss of power when using tests based on
the assumption that the variable being sampled has a “complete” normal dis-
tribution when in fact the distribution is a “truncated” one. The cases consid-
ered here are for small sample sizes and ‘“‘symmetric” truncation, while the
hypothesis considered is the one-sided testing for the mean of a normal distribu-
tion. Some tables are computed and it appears that an appreciable loss occurs
only in the size of the test. The loss in power is found to decrease very rapidly
with the distance of the alternative value of the mean from the one tested and
also with the distance of the truncation from the mean.

2. Introduction. In sampling from a normal distribution the assumption that
the random variable X is defined over (— «, ») is an unrealistic one, and “a
sample of n from a normal distribution” is in reality a sample of # from a “trun-
cated” normal distribution. This problem has been dealt with from various points
of view in several recent papers (see references). However, one aspect that seems
to have been neglected is that of the tests of hypotheses. We shall attempt to
examine the results of applying some usual tests of hypotheses to the case when
the available sample is known to have come from a truncated population.

We call a normal distribution ‘symmetrically truncated’ at the ‘terminus point’
a if its density is given by

(2.1) f@) = o exp [—3(z — u)z/azl, for |:c - yl < ao,

V2o
=0 otherwise,
where ¢ is given by

(2.2 et gp.

vz L.

We shall confine our attention to the problems of symmetric truncation only,
with ¢ and ¢ known.
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3. Distribution of sample means. Suppose a sample X;, ---, X, of size n
is available from a distribution of the form (2.1). The sampling distribution of
X = 1/n) 7.1 X, for arbitrary n is very complicated and no general formula
giving the distribution of X explicitly is available. However, by using convolu-
tions of distributions, it is quite easy to derive the distribution of X for small
values of n. The results for n = 1, 2, 3 and 4 are given below where without loss
of generality u = 0, ¢ = 1. The density function of X is denoted by f.(z).

Case n = 1. From (2.1) the density is given by

3.1 @) = vz o =7/, for | 2| < a,

0 otherwise,

where ¢ is given by (2.2).
Case n = 2. Using convolution on (3.1) we obtain

2 VZ(a—|z})
V2 e f P for |z| < a,
(3.2) fole) = ¢ 7 0

0 otherwise.
Case n = 3. Convoluting (3.1) and (3.2) it can be verified that

(VB2 oumar [T [VIACIDED e gy g,
278/2 (~/674) (a—2) ’

for0 < |x| ég,

(33) filz) = ] 16’ gt / Vi) / VE(a-1(w/VE)+z1) e_““"“’) dt du
2732 (~/874) (a—2) 0 ’

forg <|z| < a,

0 otherwise.

Case n = 4. Applying the convolution law to the density (3.2) it is found
that

4 4 g [POT1ED VIl (uIDHED) VI (/D —2])
ce
0

w2 o 0

(34) fulz)

. e—;(u’+v’+w’) dw dv du, for !xl <ua
0 otherwise.

For sufficiently large n, Birnbaum and Andrews [1] have pointed out that nX
has a limiting normal distribution. Thus for large n one may obtain an approxi-
mate cumulative distribution of X from (4.2) in [1]. However, in this paper we
shall confine our attention to only those cases where n < 4.

4. Tests of hypotheses under truncation. In this section we consider the effect
of truncation on size and power of tests of hypotheses concerning the means
of parent populations.
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Consider a sample of size n from a normal distribution N(u, 1). Then & Uni-
formly Most Powerful (UMP) test of the one-sided hypothesis testing problem

“4.1) H:y = u, Altiuy > wo,
is given by (we assume without loss of generality that u, = 0),
(4.2) Reject H if X > Z./A/n;  accept H otherwise,

where Z, is the point exceeded with probability a using the distribution of the
standard normal variable. Now, if sampling from N,(u, 1) where N (g, 1) is
the density (2.1) with o = 1, and test procedure (4.2) is used, the predetermined
size a of this ‘usual’ test is really not obtained. The actual size is given by o’ =
Pr (Z: > Z.//n), where Z, is the random variable with density function
fa(x) of the last section.

Now, the ‘usual’ power function of the test (4.2) is given by

Pu(p) = Pr (X > Zo/vV/n| X ~ N(g, 1/n)}
=Pr{Z > Z.— pv/n|Z ~N(O, 1)},

if sampling is from a “‘complete” normal distribution. However, if the sampling
is from a truncated distribution, N,(u, 1), the actual power function of the ‘usual’
size a test is given by

P([.t, a) = Pr {X- > Za/'\/"_l*X.Nfﬂ(xy .“)}

= Pr{Z, > Zo/V'n — u| Z: ~ fu(2)},
where f.(z, ) is the density of X when sampling from N,(u, 1), and Z, is the
random variable with density f.(z) = f.(z, 0).

We denote the difference of (4.4) and (4.3) by

(4.5) L(u, a) = Pu(u) — P(u, a).

For p = 0, L equals « — o, while for all other values of u, L is the “loss of
power” if the usual procedure is followed, while sampling is actually from a
truncated distribution. Values of P,(u), P(u, a), and the loss in power expressed
as percentage of P,(u) for different values of u and four terminus points ‘@’
are given in Table I for @ = 0.05 and » = 1, 2, 3 and 4.
It can be easily verified that (4.5) reduces to
Z

v a - 1
Ly, a) = Pr{X—”>W_ "lXNN<O’ﬁ>}

—_ PT{X bl ' > —% - I-’-IX-Nfu(xyO)})

(4.3)

(4.9)

(4.6)

and by graphical considerations one may see that L(u, a) and Z./\/n — &
have the same sign. Thus, as soon as u exceeds Z,/+/n, there will be a change of
sign from positive to negative in the loss of power, L(u, a). This is borne out by
the actual computations in Table I.
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TABLE II
Upper 100 a% points of f.(x)
”
a a
1 2 3 4
0.10 1.0 749 .510 .408 .351
1.5 1.022 .693 .559 .482
2.0 1.184 .813 .659 .569
2.5 1.254 .875 711 .615
3.0 1.275 .898 .732 .634
0.06 1.0 . 868 .636 .516 .445
1.5 1.226 .871 .708 .613
2.0 1.472 1.028 .838 725
2.5 1.593 1.114 .909 .'786
3.0 1.633 1.150 .938 .812
0.025 1.0 .932 731 .603 .524
1.5 1.350 1.011 .831 722
2.0 1.679 1.204 987 .857
2.5 1.868 1.315 1.076 .933
3.0 1.939 1.365 1.115 .966
0.01 1.0 .972 .821 .695 .609
1.5 - 1.436 1.155 .965 .843
2.0 1.848 1.396 1.154 1.006
2.5 2.142 1.545 1.266 1.100
3.0 2.279 1.611 1.318 1.143
0.005 1.0 .986 .870 .751 .664
1.5 1.467 1.238 1.049 .922
2.0 1.919 1.515 1.262 1.104
2.5 2.285 1.687 1.392 1.212
3.0 2.493 1.775 1.455 1.263

Now, suppose the sampling is from N,(u, 1). By applying the Neyman-Pear-
son Fundamental Lemma, a UMP test of (4.1) of size «a is

{Reject Hif X > K.(a, n),

%))
Accept H otherwise,

where K.(a, n) is the point exceeded with probability « using the distribution
whose density is f.(x). Table II gives the significance points for the test (4.7)
for different #, « and a. That is, if sampling from a truncated normal distribution,
(4.7) gives the ‘correct’ test for problem (4.1), and Table II gives the correct
significance points for this problem.

The power of this ‘correct’ test (4.7) is given by

(4.8) Po(u) = Pr(Z: > Kda, n) — u),

where Z, is the random variable with density f.(z). The gain in power, G(u, @) =
P.(u) — P(u, a), is the gain that would result if one uses the correct test rather
than the usual test. The values of P.(u), G(u, a) and the gain in power expressed
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TABLE III
Values of Pe(u); G(u, a) and gain in power expressed as percentage of P(u, a)
for a = 0.06
[ 1.5 2.0
”
17 S 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 3.0
1{ P, .1929) .3968] .6246| .8238| .9601] .3098| .5117} .7108| .8646| .9576
(] L1245 1744 .1911f .1637| .1095| .0618| .0721] .0655| .0464| .0257
% Gain [182.0 (78.4 [44.1 [24.8 [12.9 |24.9 |16.4 [10.2 {5.7 |2.8
2{ P, .2508( .5923| .8761| .9880| 1.0 .4828] .7684| .9393| .9935| .9999
G .1400, .2084] .1472] .0458] .0016| .0823] .0695f .0325 .0071) .0002
% Gain [126.4 (564.3 (20.2 4.9 0.2 (20.5 9.9 3.6 0.7 —_
3| P, .3199| .7450, .9684| .9997| 1.0 .6220 .9010] .9905( .9999(1.0
G .1666] .2001] .0723) .0046] — .0836] .0444| .0085/ .0003] —
% Gain |108.7 {36.7 8.1 0.5 — |15.5 5.2 0.9 — —
4| P, .3836| .8468( .9931| 1.0— | 1.0 .7305] .9611] .9988/1.0— |1.0
G .1859) .1676] .0267) .0002] — .0766| .0237] .0016] — —
% Gain | 94.0 [24.7 2.8 — — (11.7 2.5 0.2 — —_
[ S 2.5 3.0
”
1 5 1.50 2.25 3.00 3.75 .5 1.0 2.0 3.0 4.0
1] P, .1958] .4625| .7475| .9256| .99068| .1276] .2627) .6436| .9152| .9924
G L0144/ .0209| .0172] .0081 .0022| .0025/ .0039] .0045/ .0018| .0003
% Gain | 7.9 4.7 2.4 0.9 0.2 2.0 1.5 0.7 (0.2 —_
2| P, .2986 7124 .9534| .9983 1.0 L1773 L4156 8873 .9965/1.0
G .0244] .0249; .0078 .0005| — .0048| .0074{ .0047| .0003| —
% Gain | 8.9 3.6 0.8 — — 2.8 1.8 0.5 —_ —
3| P, .3881f .8558 .9933] .9999| 1.0 .2221)  .5431 .9689| .9999/1.0
G .0276) .0210; .0016] — — .0060, .0081 .0014] — —
% Gain | 7.7 2.5 0.2 — — 2.8 1.5 0.1 — —
4| P, .4703] .9320] .9992| 1.0— | 1.0 .2644| .6477 .9922(1.0— |1.0
(] .0300; .0107, .0003] — — .0069] .0078] .0004| — —_
% Gain 6.8 1.2 — — — 2.7 1.2 —_ —_ —_

as percentage of P(u, a) for different u, @ and n and for « = 0.05 are given in
Table III.

6. Conclusions. An examination of the tables indicates that serious losses occur
in the size of the test rather than its power. For example, if the truncation occurs
at 1.5 times the standard deviation on either side of the mean, and a usual 5%
significance test is used, one is really using approximately 1% significance test
rather than 5%. If the truncation occurs at twice the standard deviation on
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either side of the mean, the usual 5% significance test gives only approximately
3% significance level. Thus one consequence of applying the usual test is to
err on the conservative side in making it much more difficult to reject the hy-
pothesis. As expected, however, when the truncation is at about three times the
standard deviation on either side of the mean, there is hardly any difference
between the usual and the correct test. Even when the truncation occurs at less
than twice the standard deviation away from the mean, there is not much change
in the value of the power function beyond one standard deviation away from the
value of the mean specified by the null hypothesis. Hence it would appear that
unless there is severe truncation and unless the alternative value of the mean is
quite near the value specified by the null hypothesis, the usual test would be
satisfactory. The results given here are only for a usual 5% significance level
test. It is proposed to give extensive tables of the distribution of the mean of
samples from truncated distributions and to examine the tests at other than 5%
significance levels in another paper.
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