ON THE LIMITING DISTRIBUTION OF THE NUMBER OF
COINCIDENCES CONCERNING TELEPHONE TRAFFIC

By L. Tak4cs
Hungarian Academy of Sciences, Budapest

1. Introduction. Let us consider a telephone exchange. Suppose that the
subscribers make calls at the instants 7., 72, -+, 7o, -+, where 7, —
Taa(m = 1,2, ---; 70 = 0) are identically distributed independent positive
random variables with the distribution function F(z). Put ¢(s) = [se™*" dF (),
a = [fxdF(z) and ¢ = [ (z — a)’ dF (z).

Suppose that there is an infinite number of fully available channels and that
each call gives rise to a connection (conversation) on one of the free channels.
Denote by x. the duration of the holding time beginning in the instant
m(m=1,2 ---). It is assumed that x, (n = 1,2, - - -) are identically distributed
mutually independent positive random variables, which are independent also of
the random variables 7, (n = 1, 2, - --). Suppose that P{x,, < z} = 1 —e ™, if
z=0.

We say that the system is in state £ (k = 0, 1, 2, - - ) if k channels are busy.

In what follows we shall deal with the determination of the distribution of the
number of transitions £, — Eya (K = 0, 1,2, - - -) occurring in the time interval
(0, ¢] and the corresponding asymptotic distribution as t — .

The above problem was solved earlier by the author [7] in the particular case
when {7,} forms a Poisson process with density \.

2. Notation. Denote by n(f) the number of busy channels at the instant ¢
and put

P{n(t) = k} = P.(t), k=012 ---).
Define the r-th binomial moment of (f) as follows:
50 = % (H)ro, (r=0,12-)
and put
86 = [ e BO, R > 0).

Further denote by »*’ the number of transitions E; — Eip,k=0,1,2,.-),
occurring in the time interval (0, t]. (We say that a transition E_; — E, takes
place at ¢ = 0.) Denote by m(t) the expectation of the random variable »&*.
(ma() = 1ift = 0and m_4(t) = 0if ¢ < 0.)

Finally denote by m(t) the expectation of the number of calls taking place in
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COINCIDENCES IN TELEPHONE TRAFFIC 135
the time interval (0, ¢]. Then
m) = 3 Fu),
where F,(t) denotes the n-th iterated convolution of F(f) with itself. Clearly,

[ etam@y = 29 @) > 0).
o 1 — ¢(s)

3. The solution of the problem. If specifically {7.} forms a Poisson process
with density A, then {n(f)} is a Markov process. In other cases {7(¢)} ceases to be
a Markov process, but the instants 7, always form the Markov points (or
regeneration points) of the process. Accordingly, for fixedk (k = 0, 1, 2, ---),
the instants of the successive transitions E; — Ej4, form a recurrent (or renewal)
process.

Denote by R.(x) the distribution function of the distance between two con-
secutive transitions Ey — Ei,1, and by Ri (z) the distribution function of the
distance between the first transition E; — Ei4; and the zero point. Knowing
Ri(z) and Ri(z), the distribution function of »{ can be determined easily;
namely, we have

(1) P{y® > n) = RE*Rux -+ * Ri(t),

where the right hand side contains the n-th iterated convolution of Rx(Z).
Define

@) por = fo ) z dRy(x)
and
(3) ok = fo i (@ — o)’ dRi(2).

If o < o, then we have

. V’: — pit 1 ® _y2/2
@ Pf&"{méx}‘ﬁf_we ,
as it is well known in renewal theory. (Cf. W. Feller [1], W. L. Smith [4], and the
author [5].)

If we consider other initial conditions than n(0) = 0, then we obtain similar
results. In particular, the limiting distribution (4) is independent of the initial
condition.

Thus, the problem is reduced to the determination of the distribution functions
Ri(z) and Ry (z). We need some auxiliary theorems, which will be proved below.

4. The Palm functions. Hitherto we have not made any restrictions con-
cerning the servicing of the calls. Now, following C. Palm [3], let us suppose that
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the channels are numbered by 1, 2, ---, r, ---, and that an incoming call
realizes a connection through that idle channel which has the lowest serial
number. This assumption does not restrict the generality since {n(f)} is inde-
pendent of the system of the handling of traffic. Now denote by 7i” s ™, .,

" ... the instants of the calls which find all channels busy in the group
(1 2 -, ), leaving the other channels out of consideration. Obviously the
time diﬁ'erences 1'5.'3_1 — P (n =1, 2, ) are identically distributed inde-
pendent positive random variables. Let us denote by G.(z) their common dis-
tribution function. We shall prove the following

THEOREM 1. Define

(5) 1.(s) = fo ) ¢ dG,(z), (r=0,1,2--);
then we have

~ (N T L — els + 1)
6) a(s) = % (.7) I (st

- §< +l)’ tl—o(s+ 1w’
J Ji=e (s + iu)
where the empty product is 1 and Go(z) = F(z).

Proor. C. Palm [3] has proved that the distribution functions @ (:1;)‘
(r = 1,2, - - ) satisfy the following system of integral equations:

=0

M 6@ = 6@~ [ L= (1= Glo—1) dGal), (=12---),

where Go(z) = F(z). This can be proved easily. Let us suppose that ¢’ =
3™ (where ¥ = 7,,). Then conditionally

P{TS::Q)-I _ (r) < xl (r—l) T(r—l) y}
_Je"+ Q-G -y, if0=sy=uz,
- 0 , ify > =z,

and by the theorem of total probability we have

Pirih — ¥ <2} = G(z) = fo " ™+ (1 — ™G (x — ] dGra(y),

which proves (7).
Taking the Laplace-Stieltjes transform of (7) we obtain Palm’s recurrence
formula,

_ 'Yr—l(s + I»‘) _ .
(8) 'Yr(s) = 1= 'Yr—l(s) ¥ ’Yr—l(s ¥ ”) ’ (‘I" = ls 2, )7

where vo(s) = o(s).
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If we define
: 11— e+
9 D,(s) = r) ——esT W =0,1,2, -
© 0 -3 (oot )
then it is easy to see that
1—
(10) DH-I(S) = Dr(S) + ‘P(;;(S) D"(s + ”')y (7‘ = 07 17 2) : )
Further, a simple calculation shows that the function,
_ D.(s) _
(11) v:(8) = WO (r=0,1,2, ---)

satisfies (8) and vo(s) = ¢(s). This proves (6).

6. The binomial moments B,(f). We shall prove the following:
TurEOREM 2. The binomial moments B.(t), (r = 0, 1, 2, ---) exist for all
t 2 0, and we have

R _ 1 s+ iw)
(12) Br(s) - j; € B"(t) dt - s + T ',I_Io 1 — ¢(s + 71[.4)

if R(s) > 0.

Proor. Introduce the generating function
(13) 6,9 = 3 PO
G(t, 2) satisfies the following integral equation:
(19 669 = (1= FOI+ [ 662201 — (1 — 6] dF(a).

This can be proved as follows. Define

1, f0 =t =,
vy = {O, otherwise.

Then
2 = 3 = %0,

Now let us suppose conditionally that r, = z; then

_ [t —zx) + 9@ —2), ifz <,
"(t)_{ 0 , ifz >t

where 7(t — z) is independent of f(t — z, x1) and has the same distribution as
7(t — z). Here the generating function of f(t — z, x1) is [l — e 4 2],
if 0 = 2 =< t, and the generating function of #(t — 2) isG(t — z,2),if 0 < = < ¢.
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Therefore, applying the theorem of total expectation for G(t, z) = E{2""},

obtain

we

G(t,z) = [1 — F@)] + fot Gt — z,2)[1 — ™ 4 26 dF (z),

which proves (14).

I am indebted to R. Syski for calling my attention to the possibility of the
above proof. Applying the results of R. Fortet [2] or the author [6], R. Syski
showed that G(¢, z) satisfies the following integral equation:

(15) Gt,z) =1— (1 — z)fot Gt — z,2)e* " “dm(x),

where m(t) denotes the expected number of the calls occurring in the time in-
terval (0, ¢].
Since

(16) Br(t) = l' (dr G(t’ z)) ’ (7‘ = Oa 1; 2) v '))
T dz' z=1

we obtain from (14) that
t t

17) B,®) = f B.(t — z)dF(z) + f B, it — )™ ™PdF(x), (=12, ---).
0 0

This is a linear integral equation of the Volterra type for the unknown B,(?).
As is well known, the solution is

(18) B.(t) = lt Bt — 2)e*™ dm(z), (r=1,2,---).

This can be obtained immediately from Syski’s equation (15).
Taking the Laplace transform of (18), we obtain the following functional
equation:

o(s)
1 — o(s)

Since By(t) = 1, consequently Bo(s) = 1/s, and applying repeatedly formula
(19) we finally obtain

(19) Bi(s) = Bra(s + ).

1 7 els+ i)
s+ ruize 1l — o(s + wu)’

B:(s) =

as was to be proved.
It is to be remarked that there exists a constant C so that

(20) B.t) < % r=012 ),

for all t = 0. This can be proved by virtue of (18).
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Remark. Since

(21) 50 = 5 (*) o

k=r \T

and B,(t) < C"/rl, (r=10,1,2,...), we obtain easily that
(22) R = 3 0 (}) B0,

Hence, specifically,

© —8t _ - r—k (T 1 = (0(8 + iﬂ)
(23) /; e Pk(t)dt—r;k(—l) (k)s—}-m?é()l-—«p(s-i-iu)'

6. The transitions E; — K. .
THEOREM 3. If mi(t) denotes the expectation of the number of transitions Ky —
Ey1 occurring in the time interval (0, t}, then we have

(24) fon ¢ dmi(t) = é (- (,’c) gl_f_(—‘;(*s%—) (k=012 ).

Proor. Applying the theorem of total probability we can write

7

@9 R0 = 3 (]) [ 0t - L = Pl 0] dma.

This follows from the fact that the event that there is a state Ej at the instant ¢
can occur in several mutually exclusive ways: the last transition in the time
interval (0, #] is E;, — E; (j = k, k + 1, - - -) and this transition takes place at
the instant (0 £ u =< t), and in the time interval (u, ] there does not occur any
new call, but ; — k conversations terminate.

Hence,

(26) B.(t) = f) ("’) Pi(t) = f: (ﬁ) fo t e — F(t — w)] dmja(u),

k=r \T J=r

where (f) (;c) = (‘: ) (‘;c : :) has been used. Forming the Laplace transform of

(26), we have
8.(s) = _1;‘091@ i: (‘7) ‘/0@ et dmj(f).

s+ 7=r \T

Now by the aid of (12) we obtain

YAV 1 T els + )
Zﬁ (T)fo ¢ dmia(t) = 1 — o(s + ru) aI-Io 1 —o(s+ 1)

Multiplying both sides of this formula by (— ! (;) and summing over r =
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I,I1 4+ 1, .- we obtain

j; ) et dm,1(b)
_ i (=1 (;) [ﬁ ols +iw) | fI o(s + n) ]

=01 —o(s+du) ol — (s + du)

(27)

If we writel = k + 1, then

© —3t _ ~ . r—k [T : §0(3 + i”')
(28) j; ¢’ dmi(t) = ; (=1) (k) .I=Io T—oG + i)’
which was to be proved.

7. The distributions R.(z) and Rx (z).
TuroreM 4. We have

29) fo“ ¢ dRY @) = [’f:‘ (k + 1) I—I‘ 1— (s + iu)]“

= b Jis e(s + 1w
and
0 ] —1 _
f e—vaz de(x) - {[Z (k + 1) 1 (,0(8 + Zﬂ)]
(30) 0 =0 =0 (s + 1)
s~ o (7Y 17 __e(s + du) ]—l
[rz—:k( D (k)gl—¢(s+iu)} ’
if R(s) = 0.
Proor. Denote by Go(z), Gi(x), - -+, Gi(x) the distribution functions of the
distances between the successive tra.nsmons E,—E,E,—E ,E—E,- -,

E, — E.,1, respectively. It is easy to see that the distribution functions G.(z)
(r =0,1,---, k) are just Palm’s distribution functions defined by (6). Now

clearly

(31) Ri(@) = GoxGyx -+ x Gi(z),
and thus,
(32) [ e drE@ = 3oom - n),

where v,(s) (r = 0, 1, 2, - - -) is defined by (6). This proves (29).
On the other hand, if

(33) Wi(s) = _{ i ¢ " dRi(z),

then we have

- vo(8)11(s) vi(8)
(34) [ e dmy = LB 008
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For, as is well known in renewal theory, we have
mi(t) = BE(t) + BE » Ri() + Ri # Ru# Ru(t) + - -

Taking into consideration (6) and (24), we can determine W¥,(s) from (34), and
thus we get (30).
THEOREM 5. We have

(35) i N )
and
k41 2 _ a2 ) .
d- (1)1 5 R (e
(36) = -
D SRt AT R ACO N
a (D (k) C 2 so(iu)ll—sa(in)]:l’
where
(37) ¢, = [TL= e, (r =012 ).

=1 o(ip)
Proor. Since
3 k+l>"“1—¢(s+z'u)_ "“(k+1) | 4
:‘20( J HW—I'*'S“; j Cja + o(s)
and

5 o ()i - 18 oo (e

il —o(s+ iw)  sar=t

TRAL Tl () LA oSSVl (AT SR L. R}

=1 o(tu) [1— o (ip)]

as s — 0, we obtain easily that

2 2
Vils) = 1 — s+ 2T P2 4 o(eh),
2

as 8 — 0, where p; and o} are defined by (35) and (36) respectively. This proves
the theorem.
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