ON A GENERAL CONCEPT OF “IN PROBABILITY":

By Joun W. PratT

Harvard Unaversity

1. Summary. Chernoff [1] has called attention to a paper of Mann and Wald
[5], which provides a general theory and a convenient notation for the derivation
of theorems concerning stochastic limits and limit distributions. The present
paper attempts to clarify the first of these topics, stochastic limits, by applying
one form of the definition of convergence in probability to any event rather than
just to convergence. As in the convergence case, most of the reasoning one is
intuitively disposed to do in this connection is valid. Its justification is made
more transparent but no more difficult by broadening the applicability of the
definition. Thus broadened, “in probability”’ neither implies nor follows from
“with probability one.”

2. Introduction. This section leads up to a general concept of ““in probability.”

Suppose {z.}, {r.} are sequences of points of the extended real line [— «, =],
It is customary to write z, = o(r,) if z,/r» = 0 asn — o, and z, = O(7,)
if 2,/r, is bounded for large n. (Saying ‘“for large n’’ allows a finite number of
Zn/T» to be infinite or undefined.) Writing out the definitions fully, we have:

xn = o(r,) if, for every positive 7, for some N, for every n > N, |v./r.| S 7;

2, = O(r,) if, for some n and N, for every n > N, |ca/1a] £ 1.

(“For some” and “there exist(s) ... such that” are equivalent.)

Suppose now that {X,} is a sequence of random variables on [— o, «]. It is
customary to define o, and O, by adding probability requirements to the defi-
nitions of 0 and O as follows.

DEerFNITION 1. X, = 0,(r,) if, for every positive e and », for some N, for every
n>N,Pud|Xo/ru| £} 21— e

X, = O0p(r,) if, for every positive ¢, for some 5 and N, for every n > N,
Pn{an/rnléﬂ}g]-—“f- .

X, = 0p(1) is also written: X, 5> 0. Note that only the distributions of the
individual X, are referred to. This is emphasized by the use of P, to denote
probabilities. The presence of any joint distribution is irrelevant, and indeed
at least one common use of the definition is in connection with asymptotic
distributions, where n is related to the sample size and there is not naturally a
joint distribution at all.

If we fix n first in'the above definition of o0, , we find immediately that it is
equivalent to another common definition:
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DEerniTION 1. X, = 0,(r,) if, for every positive 5, P,{|X./rs| < 7} — 1 as
R — ©;

We cannot “fix 4 first” in the definition of O, .

If we fix € first, we are led, less directly, to less familiar variations:

DerFmviTioN 17. X, = o0,(ra) if, for every positive e there exist ¢, with
P.{|X.| < ¢a} =2 1 — esuch that ¢, = o(r,).
DerFmniTioN 1", X = o0,(r,) if, for every positive ¢, there exist S, with

P.{X, €8:} = 1 — esuch that z, £ S, for all n implies z, = o(r,).

Definitions 1”7 and 1’’’ remain equivalent to Definition 1 if O is substituted for
o. For both o-and O, this equivalence can be proved directly by letting S be
[—ca , ca] and ¢; be the smallest number such that P.{|X.| < ¢i} = 1 — ¢, ie.,
the upper-tail e-probability point of |X.|. In Section 5, the equivalence of Defi-
nition 1’”” to Definition 1 will be proved for 0 as Corollary 2 and for O as Corollary
3 of Theorem 6. As far as I know, Definitions 1”7 and 1’ were first stated ex-
plicitly by Chernoff. It is proved in [5] that the condition of 1’” implies the con-
dition of 1.

Definitions 1”7 and 1’’’ are easier to work with than the original definition
for many purposes because of the way they separate the stochastic and limiting
aspects of the situation. They also seem to me to have at least as much intuitive
meaning and reasonableness. Definition 1’ suggests immediately the generali-
zation introduced in the next section.

3. Definition and fundamental properties of a general concept of “in proba-
bility.”” Suppose, forn = 1,2, - -+ , P, is the distribution of the random variable
X, in the set X, , that is P,(X, € 8,) = P.(S,) is a probability measure on the
measurable subsets S, of X,. If S, is a measurable subset of X, , the event
X, ¢ Sa will be called an “X,-event” E, . If 8 is any subset of the product space
X = Xn-1 X., the event (X;, X;, ---) &€ S will be called an “(X;, X,, ---)-
event” E. (S need not be measurable, and indeed measurability need not be
defined for subsets of X.)

DermniTion 2. The (X, X,, ---)-event E will be said to “occur in proba-
bility,” written ®(E), if, for every positive ¢, there exist X, -events E, of proba-
bility at least 1 — e such that E occurs whenever all E, occur.

A more formal version of this, in terms of sets, is

Dermirion 2. ®@(S) if, for every positive ¢, there is a sequence {S,} such
that (1) S. is a measurable subset of X,., (2) P.(S.) = 1 — ¢ and (3)
X. 8. cC 8. '

The concept defined here is, as one would hope, independent of the choice of
underlying random variables from among those possible. More precisely, suppose
Y1, Ya, --- have given distributions. Then ®{(fi(Y:1), f2(Y2), --+ ) € T} has
the same meaning whether X, = Y, or X, = f,(¥,) in Definition 2, that is
whether the event (fi( Y1), fo(¥Y2), --+) € T'isregarded asa (Y;, Y, ---)-event
or as an (fi(Y1), f2(Y2), - - - )-event. This amounts to the trivial fact that there
are sets S, with P,(Y, € 8,) = 1 — € such that (fi(y1), f2(%2), ---) € T when-
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ever y, ¢ S, for all  if and onlyif there are sets S, with P,{f.(Y,) € Sl 21—
such that (fi(1), f2(¥2), - - ) &€ T whenever fu(yn) & Sa for all n.

We now investigate the behavior of ® in connection with some elementary
relations of events such as £ = F (which means the event F occurs whenever
the event E occurs.) The theorems are also stated in terms of sets. Thus, for
instance, £ = F' is equivalent to S < T if S and T are sets corresponding to
events E and F. Proofs given in terms of events can, of course, be directly trans-
lated into (perhaps more formal) proofs in terms of sets.

TaeoreEM 1. If E = F, then ®(E) = ®(F).

TuaeoreM 1'. If S C T, then ®(8S) = ®(T).

This is an immediate consequence of the definition of ®.

THEOREM 2. ®(for all @, E*) < for all a, ®(E®), provided the range of a is
countable.

TaeOREM 2. ®(N, 8%) © for all a, ®(S*), provided the range of o is countable.

Proor. = is an immediate consequence of Theorem 1, whatever the range
of a.

To prove <, suppose @ = 1, 2, .-+, and ®(E*) for all @, and ¢ > 0. For
each @, by Definition 2, there are X,-events E, of probability at least 1 — 2%
such that E, forall n implies E®. Let E, < forall o, E; . Then E, for all n im-
plies for all «, E°. Furthermore,

P.{E} =1— Zan{notEf.'} =21- 212“% =1—-ce
e was arbitrary. Therefore, by Definition 2, ®(for all , E).

THEOREM 3. @ (for some a, E®) if, for some a, ®(E*).

TueoreM 3'. ®(U, S%) if, for some a, ®(S%).

Here the range of « is arbitrary. The proof is trivial. (Technically, Theorem 1
is involved.)

The converse of Theorem 3 is false. If it were true, since we have ®(E or not E)
for every E, we would have either ®(E) or ®(not E) for every E, which is
clearly absurd. For instance, let P;(X; = 0) = % and let E be the event X; = 0.

®(mot E) = not ®(F), for otherwise ®(E and not E) by Theorem 2. The
converse, not ®(E) = ®(not E), is false, for otherwise we would again have
either ®(E) or ®(not E) for every E.

The following theorem covers Theorems 1-3 and summarizes what can be
obtained from them.

THEOREM 4. If ¢(E®) = F, then ¢(®(E")) = ®(F), for any logical combina-
tion or formula ¢, provided only that ¢ involves at most a countable number of and’s
and no not’s. More precisely, we suppose that ¢ conststs of a finite number of phrases
“for all” and “for some,”’ each with an index set, which must be countable in the
case of “for all.” .

For instance, we might have ¢(E*) = “for some 4 ¢ @, for all a £ 4, E,”’
where each A ¢ @ is countable, though @ need not be.

TueoreM 4'. If ¢/(8%) < T, then ¢(®(S*)) = ®(T), where ¢’ is a finite
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series of the set operations of intersection (with countable index) and union (with
arbitrary index), and ¢ is obtained from ¢’ by replacing intersection by “for all”
and union by ‘“for some.”

Proor. ¢(®(E®)) = ®(¢(E”)) by successive application of Theorems 2
and 3. ®(¢(E")) = ®(F) by Theorem 1.

These theorems may seem like poorly disguised trivialities, as indeed they are.
My main purpose has been to remove the disguise from some useful trivialities.
For example,

THEOREM 5. Suppose that

FR(Xa) = 0,(+%), j=1--,J

19 (Xa) = 0,(s%), E=1,-,K,
and that ha.(zx,) = O(t,) whenever

f@) = 0%, - j=1,-,J

g% (za) = o(s%), k=1,---,K

Then it follows that ha(X,) = Oy(t.). Furthermore, if O(t,) is replaced by o(,)-
in the hypothesis, the conclusion is ho(Xa) = 0,(ta).

This looks formidable, as does Corollary 1 of [5], of which it is a paraphrase.
However, Chernoff reports in [1] that he has found Theorem 5 very useful, and
it seems to be about the least general theorem which covers the cases that occur
in practice. Both Theorem 5 above and Corollary 1 of [5] are weaker in several
respects than Theorem 4, and are covered directly by it and proved in the same
way once the equivalence of Definitions 1 and 1’” is established. To realize that
Definition 1 will be tractable when put in the form 1’/ is the nontrivial part of
the reasoning.

4. Examples. It will be proved (Corollaries 2 and 3 of Theorem 6 below), and
a direct proof has already been indicated in the next to last paragraph of Section
2, that f,(X.) = 0,(r,) if and only if ®(f.(X.) = O(r,)) and the same for o,
and o, that is, Definition 2 is actually a generalization of Definition 1. This fact
permits the theorems of the last section to be used to carry out a certain common
type of argument. Chernoff {1] gives some examples, and others follow here, as
well as a case where the argument is temptlng but cannot be used.

41. 4 Y, — Yu—>50,2Z, — Zn50,Yn = 0,,(1) Z = 0,(1), and f(y, 2) is
(jointly) continuous, then f(Y., Z.) — f( Yo, Zn ) 7 o

To prove this, apply Theorem 4 w1th X, = (Y,. . Y,, , Z,, ) Z.); E' the event
Y. — Y, — 0; E? theevent Z, — Zn — 0; E° the event{Y } bounded; E* the
event {Z,} bounded; F the event (Y., Z,) — f(Y,. , Zn) — 0; and ¢(E" B,
E’, E*) the simultaneous event E' and E* and E® and E*. The fact is used that
a continuous function is uniformly continuous on bounded sets.

The treatment of special cases of this example in the literature indicates the
value of the approach codified here. For instance, Cramér ([2], p. 255), attribut-
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ing the result to Slutsky [6], uses the relation between convergence in probability

and convergence in distribution to prove that if Y, 2> ¥, - -+, Z, 3*> 2 where
Y, -+, 2 are constants, and if f is a power of a rational function, then
f(Yn,-++,Zs) 2 f(y, -+, 2). (A finite. number of arguments y, ---, z is no

more dlﬁicult than two, of course. ) Halmos ([3], p- 94, Problem 1) outhnes an
mgemousproofthatYZ —YZ,,,,OlfY —Y,.,,OZ —Z,.,,OY =Y,
and Z, = Z. (An easy extension to the case Y» = 0,(1) and Z, = 0,(1) and a
slight further argument would then prove the first sentence of this subsection
(4.1) for f a power of a rational function.)

4.2. It is easy to see that y./n — 0 = max(y1, -+, ¥a)/n — 0. A hasty
application of Theorem 4 (or Theorem 1) would then lead to the conclusion that
Y./n 3 0= max(Y,, -+, Ya)/n30.

To see that this conclusion is false, let the Y, be independently exponentially
distributed with means u, , that is, for ¢ > 0, P,.{Y, > #} = exp(—t/u.). Then
Y./n > 0if (and only if) u,/n — 0. Let p, be arbitrary and u, = 7/log n, n > 1.
Then Y,/n 5 0. However, P,{max(Yy, -+, Ys,) < 2n¢ £ [[2"P.(Y; £ 2ne)
<[ - (2n)"_2’]" — 0 for ¢ < %, so max(Y,, ---, ¥,)/n does not 3> 0.

The difficulty is that max(Y,, ---, Ya.)/n 3> 0 is not equivalent to
®(max(Y,, ---, Y,)/n — 0) for any X, for which Y,/n 5 0 is equivalent to
®(Y./n — 0) so that Theorem 4 cannot be applied. If X, = Y,, then
max(Y;, ---, Y,) is not a function of X, alone, so Corollary 2 of Theorem 6
cannot be applied to show max(Y,, ---, ¥Y,)/n 3 0 equivalent to
®(max(Yy, -+, Yo)/n—0). If X, = max(Yy, -+, Y,), then V,/n 5> 0 is
similarly not equivalent to ®(Y,/n — 0). If X, = (Y1, -, Va),
max(Yy, -+, Y,)/n — 0 is not an event on the whole of the product space of
the ranges of the X, , but only on the subspace with points (y1; ¥1, ¥2; n1,
Y2, Ys5 00 ).

4.3. Suppose ¥, — Y 3> 0, Z — Z 37 0, and f(y, 2) is (jointly) continuous.
Then f(Ya, Za) — f(Y, Z) ?

As in 4.2, we cannot apply Theorem 4 directly. However, letting (Y., Y,.,
Zn,Z ») have the dlstrlbutlon of (Y, ; Y, Z., Z) for each n, the hypothesis is
equlvalent to Y, — Yo 5 2> 0, Z, — Zw < 0 and the conclusion to f( Y, Z») —
I( Y, , Zn ) 7 0. Thus the desired result follows from 4.1.

Having to restate Yo=Y 50asY, — Ya 5 2> 0, ete., is no loss mathematically,
since the statements are eqmvalent Indeed this very equivalence gives some
insight into the problem. It shows that we will have to make use of the uniform
continuity of f on bounded intervals. Further, it emphasizes that when
Y, — Y 5 0, the fact that the value of Y is the same for each n contributes
nothing essentlal Of course, the fact that the dlstrlbutlon of Y is the same for
each n may contribute; indeed, it does, since it gives Y, =0 »(1).

4.4. Suppose Y, — Y 3> 0. Suppose also F, is a random function and, for
every M, supyisu | Fa(y) — () | 5 0. Then Fa(Y,) — f(¥) 3 0.

The usefulness of results of this kind is that the limiting distributions of Y,
and Y, are the same if ¥, — Y, > 0. Thus, for example, in 4.4 the problem of
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finding the limiting distribution of F,(Y,) has been reduced to finding that of
f(Y) which is ordinarily much easier.

4.5. Suppose X, is the proportion of successes in n independent binomial
trials with probability p of success. X, — p = 0,(1/4/n). If f is once differ-
entiable at p, f(Xa) = (o) + f'(p)(Xa — p) + 0,(1/4/n), and

Valf(Xa) = f(p)] = f'(e)Vm(Xn = p) + 0,(1).

Now the asymptotic distribution of 4/n(X, — p) has variance p(1 — p), so
the asymptotic distribution of /n[f(X.) — f(p)] will have variance inde-
pendent of p if and only if f*(p) is a multiple of 1/(p(1 — p))*. This gives f(p) =
arcsin 4/)p, up to affine transformation. Note that we have not proved anything,
except heuristically, about the limit of the variance of v/n[f(X,.) — f(p)], even
though v/n(X, — p) has variance p(1 — p) for every n. This is because E(0,(1))
is not necessarily o(1). On the other hand, what we really want, often, when we
ask for asymptotically constant variance is that the variance of the asymptotic
distribution shall be constant, since in this case an F statistic based on the trans-
formed variates will have an F distribution asymptotically. This justification of
the arcsin transformation has no bearing, of course, if the purpose of the trans-
formation is to make some effects additive.

4.6. If X,-events E,(¢) are given with P,{E,(e)} = 1 — ¢, then @ {for some e,
for all n, E,(¢)}. This remark is trivial, but it is technically involved, along
with Corollaries 2 and 3 below, in showing that Theorem 4 of this paper includes
Theorem 1 and Corollary 1 of the Mann-Wald paper [5].

6. A theorem showing the equivalence of the definitions. It will be proved
from Theorem 6 that X, 5 0 is equivalent to ®(X, — 0) and X, = 0,(1) to
®(X, = 0(1)). These facts are a little more easily proved directly. However,
Theorem 6 and Corollary 1 may be of interest in themselves.

THEOREM 6. Suppose that, for every n and o, Es is an X -event and Es = E°,
if 8 > a. Then

P.(E3) > 1 uniformlyin n as a— o
inf, P,(E3) >1 as a— xu&
®(for some a, for all n, Ey).

(We have in mind that the range of « is the positive integers, although the proof
applies to more general partially ordered sets.)

Proor. The first < is immediate.

To prove the second =, suppose inf,P,.(E3) — 1 as @« — «. Let ¢ be
an arbitrary positive number. There exists ¢ such that, for all @ = ¢ and all n,
P,.(E3) 21— e. Let E, & E; . Then P,(E,) 2 1 — e Furthermore, E, for
all n = for some a (namely o), for all n, E; . Therefore, by Definition 2, @
(for some e, for all n, E3).

To prove the second <=, suppose ®(for some «, for all n, E3), and let € be an
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arbitrary positive number. By Definition 2, there exist E, with P.(E,) = 1 — ¢
such that E, for all n = for some «, for all n, E5.

Fix m arbitrarily. E, for all n = for some «, E,,. Therefore, the other E, being
irrelevant, E,, = for some a, Er, . Since Ex = E& for 8 > a, it follows the event
(En but not E7) decreases to the null event as @ — . Then there is an .,
where E occurs but E;, occurs only for a so large that P..(E. but not E5) < e

Suppose 2. has been so chosen for every m. At (x;, 23, -+ ), Em occurs for
all m, and, consequently, there exists o such that, for all m, Ey, occurs. For a = ,
E7 occurs at . , whence Pn(E but not En) < e Therefore, for all m, for all
@ 2 0, Pu(En) Z Pn(En) — € 2 1 — 2¢. But ¢ was arbitrary and o didn’t
depend on m. Therefore P,(Ens) — 1 uniformly in m as a — .

CoroLLARY 1. Pa(E,) — 1lasn — « < @( for some o, foralln = a, E,).

ProoF. Let E; = E, forn = a, let Ej be thé universal event X, ¢ X, other-
wise, and apply Theorem 6.

COROLLARY 2. fo(X,) = 0,(ra) © ®(fu(Xa) = o(ry)).

Proor. Let Ya = |fa(Xa)/rn|. fa(Xa) = 0,(rs) & for every positive 7,
Pu{Y, < 9} > lasn— » < forevery a, Po{V, < 1/a} > 1 asn — » < for
every @, ®(lim sup Y, = 1/a) < @(for every a, lim sup ¥, < 1/a) &
®(fa(Xa) = o(ra)). (The range of « is the positive integers.) The first < is
Definition 2, the second is immediate, the third follows from Corollary 1, the
fourth follows from Theorem 2, and the last is virtually definition.

COROLLARY 3. fu(Xs) = 0,(ra) & @(fa(Xa) = O(rn)).

ProoF. Let Yo = |fa(Xa)/7a|. fa(Xs) = 0,(rn) < for every positive e, for
some n and N, for every n > N, P, {Y, < 5} =21 — e

infoon Pa{Y, S N} 51 as N - o &

®(for some N, foralln > N, Y, £ N) & ®(fa(Xa) = 0(rs)). The first < is
Definition 1, the second is immediate, the third follows from Theorem 6, and the
last is virtually definition.

6. Relation to Probability One. One might ask what relation there is between
®(E) and Pr(E) = 1. This question is not entirely natural, in that Pr(E) = 1
refers to the joint distribution of the X, , while ®(E) refers only to their indi-
vidual (marginal) distributions. The joint distribution may sometimes be
changed so that Pr(E) is changed without changing the marginals. For example,
suppose X;, X;, --- have the standard normal distribution. If they are inde-
pendent, Pr(X, diverges asn — o) = 1. If X; = X; = - -, Pr(X, diverges
asn — «) = 0. In any case, ®(X, diverges as n — = ). To prove the latter,
let £, in Definition 2 be the event X, not between a, and @.2 , where a. takes on,
in rotation, the ke/2-points of the standard normal distribution.

* The range of a must be a directed system for “a — «’’ to have meaning. Further re-
striction of the range of «, and the hypothesis that for every n, E2 = E5 if 8 > a, are re-
quired only to establish this statement, and hence only to prove the second <=, which is the
least trivial part of the theorem.
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As another example of what can happen, let X, be normal with mean 0 and
variance e, and let X;, X, --- be independent. Then

X, 50 ifandonlyif e, — 0.
Pr(X, — 0) = 1 if, for every positive ¢, 2®(e/e,) < o,
Pr(X, diverges) = 1 if, for some positive ¢, ZP(e/e,) = o,

where ®(t) is the tail area above ¢ of the standard normal distribution. Letting E
be the ‘event X, diverges, we see that we may have, even for independent
X, X5, -+, Pr(E) = 1 yet ®(not E).

There are some events for which this is not the case. For example,

THEOREM 7. If, for every a, Pr(E®) = 1= ®(E*®), then Pr(for every a, E*) =
1 = @(for every o, E*), provided the range of a is denumerable.

This is an immediate consequence of Theorem 2. .

TueoreM 8. Suppose that, for every n, Ex = E5 if 8 > a. Then Pr( for some a,
for every n, E3) = 1= ®(for some a, for everyn, E).

(The same range of « is possible here as in Theorem 6.)

Proor. The hypotheses imply that Pr(for every n, E;) — 1 as a — «. It
follows that inf,P,(E3) — 1 as @ — «. Theorem 6 completes the proof.

These two theorems may be applied successively to prove Pr(E) = 1= ®(E)
for many events E. For instance, they cover the facts that Pr{X, = o(r.)} =
1 = @®(X, = o(r,)) and that Pr{X, = O(r,)} = 1 = ®(X, = 0(ra)).

Theorems 7 and 8 do not restrict the joint distribution of the X, . Thus the
second sentence of Theorem 8 could be changed to: If the X, have given dis-
tributions and these distributions are the marginals of some joint distribution
of the X, under which Pr(for some «, for all n, E;) = 1, then ®(for some a,
for all n, E3). A similar rewording of Theorem 7 is possible.

7. Further generalizations. Definition 2 and Theorems 1-4 generalize im-
mediately to the case that n» ranges over some entirely arbitrary set.

A (perhaps more interesting) generalization is to do away with product spaces.
This permits the consideration of events not defined on the product space, both
those depending (say) on a further variable as well, and those not defined on the
whole space, such asmax(Yy, ---,Y,) -2 0with X, = (Y;, --+, Y,.). Suppose,
then, for each n, P, is a probability measure on a Borel field ®. of subsets of a
set X.

DerFiNiTION 3. ®(S) for a subset S of X if, for every e > 0, there exist S, € B,
such that P,(S.) = 1 — eforallnand NS, c S.

Theorems 1’-4’ continue to hold. However, some curious things can neverthe-
less happen. For instance, ®(S) for every S in the following case, essentially the
case that P, is the joint distribution of (X;, X.).

TueoreM 9. Let @, be a Borel field of subsets of X., n = 1, 2, ---;
let X = Xne1 Xn; let B, be the smallest Borel field including all subsets of X of the
form {x:23, € A1, 2. € A4}, A1 € Gy, Ar € Gn ; let Q be a probability measure on
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Gy ; let P, be a probability measure on ®, such that P.{z:z ¢ A)} = Q(A,) for
Ay € @y . Then ®(8) for every S provided only Q ts non-atomic.

Q is essentially the distribution of X .

Proor. Choose T, such that Q(T,) < e and UT, = X;. Let z £ S, if and
only if z; £ T, . Then P,(S,) = 1 — Pu{z:z e Tw} 2 1 — e for all n yet NS,
is empty. Hence, by Definition 3, ®(S) for every S.

Thus we can now have both ®(S) and ®(X — S), but by Theorem 2, only
if we have ®(null set), or equivalently, by Theorem 1’, ®(.S) for all S.

Theorem 9 makes it amply clear that its hypothesis does not provide a situa-
tion in which X, — X; 3 0 is equivalent to ®(X, — X; — 0), and the generality
of Definition 3 does not seem, as one might hope, to permit cases like that of
Example 4.3 to be handled by Theorem 4 without introduction of new random
variables like Y5, .

The following question seems to me natural and interesting, but I have not
pursued it. Suppose X, is a function from X to the real line and ®, is the Borel
field of inverse images under X, of Borel sets. Suppose P, is a probability meas-
ure on ®,. What restrictions are required to make X, 5> 0 and ®(X, — 0)
equivalent? We have seen that it is certainly sufficient that X, be the nth co-
ordinate of X.

8, Miscellaneous remarks.
8.1. A stochastic process X is called continuous in probability if, for every u,

X:— X,50, as t—u.

The statement ®(X, continuous), which might also be read ‘“X, continuous in
probability,” has no meaning as it stands. If ¢ is to take the place of n in Defini-
tion 2, then for each {, X; must be a random function of another variable. If
“continuous’” means ‘‘continuous in ¢,”’ then a collection of stochastic processes
is required, one for each n in Definition 2. In both cases X, refers to something
more complicated than a simple stochastic process, and the statement ®(X,
continuous) is therefore, however interpreted, quite different from the statement
that (the stochastic process) X is continuous in probability.

8.2. I have not been able to see that the point of view explored in this paper
throws any light on certain problems which concern convergence in probability
and involve pairwise or joint distributions. For example, a stochastic process
which is continuous in probability on a finite closed interval is uniformly con-
tinuous in probability thereon, that is for every positive e¢ and », for some 8,
Pr{| X, — Xu| S99 21— eif [t —ul| =5 (see Lévy, [4], pp. 36-37). Again,
if X, — X, 5> 0asn, m — «, then there is a random variable Y such that
X, 3 Y (see Halmos, [3], p. 93). Again, X, 7 0if and only if every subsequence
has a subsequence which — 0 with probability one. Pairwise distributions are
involved in the first two cases. The last is interesting in that a condition which
involves a joint distribution is equivalent to one which does not. All three are
most easily proved directly from Definition 1.
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