DETERMINING BOUNDS ON INTEGRALS WITH APPLICATIONS
TO CATALOGING PROBLEMS!

By BeErNARD HARRIS?

Stanford University

1. Introduction and summary. Assume that a random sample of size N has
been drawn from a multinomial population with an unknown and perhaps
countably infinite number of classes.

Hence, if X; is the jth observation, and M the ¢th class, then

PiX;eM} =p; 20 t=1,2, ---;forall g,

and D T p; = 1.

If the number of classes is finite, then p; = 0, for all 7 > S, where S is the
number of classes. :

We do not suppose the classes to have a natural ordering, since the classes
may be species of insects, or chess openings.

Let n, be the number of classes which occur exactly r times in the sample.
Then

o N
>.rn, =N and d= > n
r=0 r=1

where d is the number of distinect classes observed in the sample.

It is the purpose of this paper to present some techniques to aid the experi-
menter in answering the following kinds of questions.

1) Prediction of the number of distinct classes that will be observed in a
second sample of size aN, o = 1.

2) Prediction of the number of additional classes that will be observed when
the sample size is increased by (¢ — 1)N additional observations.

3) Estimation of the coverage of the sample, where coverage, denoted by C,
is defined as follows:

(1) - C=§;Pi-

The sum is to be taken over those classes for which at least one representative
has been observed.

4) Prediction of the coverage of a second sample of size aN.

5) Prediction of the increased coverage to be obtained when the sample size is
augmented by (@ — 1)N additional observations.
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522 BERNARD HARRIS

Let d(a) and C(a) denote the number of classes and coverage obtained from
aN observations, either in the case of a second sample, or an augmented sample.
Subsequently, we will show that

—(a—1zY
(2) Ed(a) md-{—nlE{l;‘;_}
and
(3) EC(a) -1 — % + %E{l _ e"“"“”’}

where the expectations on the right hand side of (2) and (3) are taken with
respect to F(x), a constructed cumulative distribution function on [0, =),
which is unknown to the experimenter, but estimates of the moments of this
distribution are available.

It will be shown that
4) o (r + 1) ()

ny
where p, = [o 2" dF (z).

Hence, a reasonable procedure is to compute upper (lower) predictors for
d(a) and C(a) by computing the supremum (infimum) of (2) and (3) respec-
tively, where the supremum (infimum) is taken over all cumulative distribution
functions whose first k moments are specified by (4).

It will be shown that

1 _ e—(a—l)x- )
o(z) = - and Y(z) =1 — gt

may be treated identically in the computation of extrema with the observation
that the computation of the supremum of E{¢(x)} will be identical with the
computation of the infimum of E{¥(x)}; and similarly for the computation of
the infimum of E{e(x)}. Thus, we will restrict the discussion to ¢(z).

The solution will be of the form

(5) sup(inf) Blo(2)} = 3 Ml

where A; = 0, 2 71 \; = 1 and z; belongs to the extended non-negative real

numbers.
To determine the «, and A; , the following system of equations must be solved.

My + X2 + - F N =
(6) ME A Nt o N2 =

MY A heth o N2 =

IIA

where 2y £ 2, < -+ .
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If ¥ = 2¢, ¢ an integer, the supremum will be obtained by solving (6), with.
w1 =0,r = (k4 2)/2,and a», - - -, 2, interior points of [0, « ). If k = 2¢ + 1,
the solution of (6) will coincide with that for k& — 1 with the addition of a mass
point at infinity, with mass tending to zero at a rate which will satisfy the kth
moment constraint. Since ¢(* ) = 0, no change in (5) is obtained by the ad-
dition of the kth moment constraint.

If £ = 2¢ 4+ 1, the infimum is obtained by solving (6) with r < (k + 1)/2
and the z, are all interior points of [0, « ). If £ = 2¢, ¢ > 0, the solution of (6)
is obtained from that for & — 1 by the addition of a mass point at infinity with
mass tending to zero at a rate which will satisfy the last moment constraint.

Explicit solutions are computed for ¥ < 3, and applied to several examples.

In addition, the low order moments of d, n,, and C are computed, and the
asymptotic sampling error of C(1) = 1 — (m/N) as an estimate of sample
coverage is given.

It will be convenient before proceeding to the general problem to compute
the low order moments of d, n,, C.

2. Moments of d, n, and C. To compute Ed and Ed’, define a sequence of
random variables { ¥;} as follows: Let

Y. — 1, if jth class occurs in sample,
7710, otherwise.

Then Ed = ED 7. Y, = D74 EY;.Since EY; = 1 — (1 — p,)", we have
™) E(d) = 21— (1-p)"L.
=

Similarly,

Ed* = E( Yj)"
(8) e
.+_

E(E 1) +EEviv) =50~ (=)
§. =00 =p)" =1 =p)"+ 1= p—p)"]
Thus,

os = Ed* — (Ed)*

i -0 =p" T+ 0 -0 —=p)" =1 —p)"

I

Il

+ (1 —pi—p)"]— (]Z: h-a- pf)“'])
(9) = JZ-I [(1 - pi)x - (1 - pi)n]

+ 2#:] [(1=pi—p)" — (1 = p)Y(1 — pi)"]
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() ]
(8]
g

=10 =) = (-2
+ Z (1 —pi—p)" — (1 —p)" (1 —pp)"].

It is easily seen that the second term in og is always negative.
For,when N =1, (1 — p; — p;) — (1 — p;)(1 — p;) = —p;p; < Oimplies
N 2
(1=p)"(1 = p)" = (1= pi—p)". '
To compute En, , define random variables Z 7 as follows:

Z{" = (1, if jth class occurs r times in sample,
0, otherwise.
Clearly,
= (r) (r) N ) r N—r
E(n,) = ZIEZ;' ,  E(Z;”) = <T>P:‘(1 - ;)
iz
Hence,
) N .
(10) E(n) = 2 (r)p?u - )7
=

To find o4, and cov (n,, n,), we first compute E(n, , n,).

E(n.n,) = E <Z AR }: Z“’)

1=1 =1
N! T me N—r—s .
=z;é:jr!s!(N—r—s)!pipj(1_ a2 ifr=s
() g
=2 ( >p§(1 — )™
=1 \T
N! ‘ror —2r .
+§Jmp"p‘(l_'l)i—m)~2 ifr=s.
Thus,

cov(n,, n,) = Z_; Z ;—s— pi ;i

. <(1 —pi—p) T _ NI —p)T(1 — p»"“‘“)
N —r—9)! (N —=r)'(N —9)!

3 M r+s Ne—r—s
P s g yE A 2p;)

o N r N—r N ’ 2r AIN=2r
oh, = Z[(r)pf(l - )" - (r> p; (1 = p)” }

(12)
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N! ot
+ [y o =

- (7)2 Pipi(1 —p)" (1 = pj)""]

(1—p:—p)"™ NIl —p)" (1 —p)"”
(13) = E v)z ””( ™ =2 N —nE )

+E[( >p,(1 )" (-,)—2(—]\1,\7—'—2?10, (1-— 2p,-)"‘2'].

To compute EC, the random variables Y; are used in the computation of Ed
are again employed.
Then, we have C = Y 5y p,;¥; and

‘)N—-Zr

0

(14) EC = §1P1EY:‘= ;Pi[l —1—=-p)"=1- JZ;IP:'(I — )"

Similarly,
EC*=E (; P; Yf)2 = E(; pip; YiY;)
= gpﬁ(l - (1 —p)") + ;jpipf[l - (1 —p)"
(15) - (1 =p)" 4+ (1 = pi — p)")
gp (1 —p)" = (1 = 2p)) ]+1—2;pf(1 - )"
+ ; p: pi(l — Pi—P:‘)"V-
Thus

0 2
0% = EC* — (EC)’ = EC* — [1 - Z; pi(1 — P:‘)N]
o

16) 3 L — p)" — (1 — 2)") + Zpipi (1 —pi=p)’

- (1= p)"(1 = p)"l.

As in the case of o3, the second term in o% is always negative.

In Appendix A, it is shown that for large N, satisfactory exponential approxi-
mations may be used for Ed, En,, EC. Employing these, we obtain for Ed,
En,,and EC:

0

(17) E(d) ~ 2 [1 — ]

i=1
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(18) B(n,) ~ 5 3~ (Np,)e™
rij=1
(19) E(C) ~1— 3 pe ™.
j=1
From (16), we get
_ E(m)
(20) E(C) ~1 N

Henceforth, these approximations will be employed throughout.
It should be noted that the first two moments of n, and (20) are obtained in
papers by Good [3] and Good and Toulmin [4].

3. Prediction of number of classes observed and coverage obtained in en-
larged and second samples. From (7) and (17), we have

(21) E(d(a)) = i [L— (1 — p;)™

and

E(d(a)) ~ 2 L — &)

(22)
=E(d) + 2 [¢" — ¢ i),
J
Then
1 _ e—(a-—-l)Npi Nos

(23) E(d(a)) ~ E(d) + 2 [T‘ Npje "’]-

i D

In exactly the same manner,
(24) E(C(a)) =1— ;m(l - p)™"
and
E(C(a)) ~1 — ;(me—"""’)
(25) =1— 2 [pe ™ + pe™" — pe "]
7
= B(C) + L[t — &g,
2

Then

—(a—1)Np;

(26) B(C(a)) ~ E(C) + 5 [1%__] Np, 7.
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Formulas (23) and (26) have an interesting interpretation. The second term
on the right hand side in each case is the expected increment when the sample
size is increased by (« — 1)N; or equivalently the expected increment over
the number of classes, or coverage of the first sample, that will be obtained in a
second sample of size aN.

Define
27 F(c) = Yrize |
27) (@) = "o

One readily observes that F(c) is a cumulative distribution function, and since
it depends on the unknown parameters (p1, ps, :--), it is unknown to the
experimenter.

Consider y, the rth moment of F(c).

, = 2 dF
u £ & dF ()
Z (ij)r+l e-—Np,-
J
2 Npje "
7

Then, from (183, we have

(r + 1)!E(n,+1_) .

2 L~
(-‘8) 17 E(nl)
Also, from (23) and (27), we have
1 — —(a—l)r
(29) E(d()) ~ E(d) + E(n) f 1=¢  4r(x)

and, from (26) and (27}

E(C(a)) ~ E(C)+ E (ﬂ) fm (1 — ¢ %) dF (x)

(30)
~ 1 — E(\’v’/l + l_';'i(??d;)A f (1 —(a—l)x) dF(x).
Replacing the expected values by the observed quantities in (28), (29) and
(30), we obtain

_ (r+1)!np
(31) m, = ——-';h—
(32) d(a) = d + m E(e(x))
(33) Cla)=1-1 -+ e S B(y(2)

where the expected values are computed with respect to F(x) as defined by (27).
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However, since F(x) is unknown, a reasonable procedure is to compute the
supremum and infimum of the expected values using the m, as estimates of the
moments.

Since this technique, the method of moment inequalities, is of application in
other problems, we will obtain some general results relative to computation of
extrema, of expected values of functions with respect to unknown cumulative
distribution functions.

4. Method of moment inequalities. We proceed now to investigate the com-
putation of extrema of expected values. The methods used in this section are
similar to those used in Chernoff and Reiter [1] and Karlin and Shapley [6].

Let & be the class of cumulative distribution functions on [0, « ), and & that
subset of F all of whose elements have F(b) = 1.

Let g®v#e 0 (glrke - #0) he the class of cumulative distribution func-
tions on [0, «) ([0, b]) whose first ¥ moments are u; , p2, - - - , mx , respectively.
We will suppose throughout that u, , uz, - - - , s is a legitimate moment sequence,
i.e., that there exists a cumulative distribution function F(z) ¢F(F,), whose
first £ moments are u1, p2, -, M.

Let g(2) be a function continuous and bounded on [0, b].

Designate the subset of Kuclidean £ -+ 1 space, whose coordinates are
(J‘BO g(.’L‘)dF(:L‘), M1, * ", ”'k)y F e, ’ by Xk+l .

TureoreM 1. X4, is closed, convex, and bounded.

ProoF: X1 is clearly bounded.

To demonstrate convexity, note that any convex linear combination of ele-
ments of F; is an element of §, and the mapping F — (Eg(z), wa, -, m) =
T-F is linear and thus preserves convexity.

To see that X,y is closed, note that F, is compact (in the topology of con-
vergence in distribution). The conclusion follows upon application of the Helly-
Bray Theorem.

The point

<min (max) f g(x) dF (x), p1, pa, « -, ﬂk)
FeFy 0

is then easily characterized as the boundary point Z* ¢ X;4; whose first coordi-

nate is a minimum (maximum), with fixed second, third, ---, & + 1th co-
ordinates.

We also remark that X, is a £ + 1 dimensional convex body as long as g(z)
is not linearly dependent on the mondmials 1, x, «*, - - - , 2*. Henceforth, we

will assume that g(z) satisfies this condition.

TarEOREM 2. The extreme points of X1, k > 1, are exactly those points which
correspond to the moment sequences of degenerate cumulative distribution functions,
.e.,

F(z) =0, z < a,

=1, z = a,acl0b].

Il
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Proor: One can easily show that any extreme point of X,,; is the image under
T of an extreme point of F . It is easily seen that the extreme points of &, are
the degenerate cumulative distribution functions.

The points in X1 corresponding to degenerate cumulative distribution func-
tions have the form & = (g(t), ¢, £, - -+, t*), t £ [0, b].

Consider the hyperplane H(g(t), w1, -+, m) = to — 2uiby + pz = 0 where
by is fixed and ¢, ¢ [0, b].

Then,

(t—t)=th—2+ >0 L b
=0 t=t0.

Thus, 5 — 2uito + p2 = 0 is a supporting hyperplane at % = (g(t), to, t5, - ,
t6) and Z, is not attainable as a non-trivial convex linear combination of points
of X1 corresponding to degenerate distributions.

Hence for £ > 1, points in X1 corresponding .to degenerate distribulions
are the extreme points of Xy, .

CoroLLARY. If g(x) s strictly convex (concave), the set of extreme points of
X1, k = 1, are exactly those points which correspond to the moment sequences of
degenerate cumulative distribution functions.

Since #* is a boundary point of X, , it can be represented as a convex linear
combination of at most k 4+ 1 extreme points of X1, i.e.,

k k
(34) * = 2:0’\:‘50;' = Zo M(g(t), by 2y oo, 5).
1= 7=

Hence, the minimizing (maximizing) distribution is discrete with positive
probability concentrated on at most & 4+ 1 points in [0, b].

We will now show that the maximum number of points of positive probability
can be reduced still further in the specific cases of interest to us.

Since #* is a boundary point of X4, there is a supporting hyperplane at
Z*, which also contains the extreme points of X4, of which Z* is a convex linear
combination.

Thus, @-7* = cand @-% = ¢, € Xx41. In particular;

k
(35) 2 ait + arg(t) 2 ¢ for all ¢ ¢ [0, b]

=1

with equality holding for those extreme points of which #* can be written as a
convex linear combination. Rewriting (35) we have

Y
(36) P(t) = X ait' + appg(t) =0 telo, b).
1=0

Then, to find the relevant extreme points, we have to find the roots of P(¢) = 0,
t [0, b].

‘We note at once that all interior roots of P(¢) are multiple roots, since by (36),
P(t) = O0foralltel0,b).

Let r be the number of distinct real roots of P(¢) in [0, b].
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Define 7’ as folloivs:

(r if 0, b are not roots of P(t)
" =4r — % il.oneof 0, b is a root of P(¢)
1 if both 0, b are roots of P(%)

r -

Let 9;5") be the collection of continuous, bounded, and monotonic functions
on [0, b], whose first & derivatives exist and are monotonic in (0, b). In addition,
we require that g,ﬁ“ contain only functions not linearly dependent on the mono-
mials 1, ¢, £t

TuroreM 3. If P(t) = Q(t) + ag(t), where o is a real number, Q(t) is a
polynomial of degree k, and g(t) € 9;’“), then, there are at most k + 1 real roots of
P(t) 2n (0, b).

Proor: We proceed by induction.

When k = 0, there is clearly at most one real root of P(t) in (0, b).

Then, suppose the conclusion holds when & = =, n- = 0 for any function P(¢)
satisfying the hypotheses of the theorem.

Then, if P,(t) satisfies the hypotheses of the theorem for k¥ = n 4 1, Pi(t)
satisfies the hypotheses for k¥ = n. In addition, between every root of Py(t),
there is a root of P1(t), but Pi(¢) hasatmost n + 1 roots in (0, b), hence Py(t)
has at most n + 2 roots in (0, b).

TueoreM 4. If P(t) satisfies the hypotheses of Theorem 3 and in addition
P(t) = 0 for all { €10, b], then
L _k+1

2

Proor: Let v be the number of distinct roots of P(t) at 0 and b, i.e., the
number of distinct boundary roots.

Then v’ = r — (v/2).

By Theorem 3, P’(t)' has at most k distinct roots in (0, b). Since P(¢) has
only multiple roots in (0, b), whenever P(t) = 0, t £ (0, b), we have P'(t) = 0.

In addition, if ¢, t(ty < #) are two distinct roots of P(¢), then there exists
a t* such that P/(t*) = 0,6 < t* < t.

Hence, (r — 1) + (r —v) £k, (' + (v/2) — 1) + (v — (v/2)) =k,
r < (k+ 1)/2.

Theorem 4 provides an extension of results contained in Chernoff and Reiter
[1] and Rustagi [7]. The use of 7’ is similar to Wald’s [8] notion of the degree of
a cumulative distribution function. /

For any discrete cumulative distribution function F(z) ¢, let r'(F) be
defined as follows:

Let 1(F) = number of saltuses of F(z) in (0, b)

ZrQ(F) = number of saltuses of F(x) at 0 or b.
Then,

IIA

(37) r

r'(F) = ri(F) + ri(F).

#(F) is called the degree of the discrete cumulative distribution function F(z).
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Thus, we have seen that the degree of the minimizing (maximizing) distribu-
tion & %2 #* is at most (k 4+ 1)/2 for functions in G°.

We now employ some results due to Wald [8] to establish the following theorem:

TurorEM 5. There are exaclly two cumulative distribution functions FY(z)
and Fy(z) e T " awith o'(F) £ (k + 1)/2 where FY(z) is continuous at
b, and F3(z) has a saltus at b.

Proor: From Theorem 4, there exist at least two cumulative distribution
functions of degree <(k + 1)/2. They are the minimizing and maximizing
distributions respectively for functions in gi¥.

Let w(F) = 7/(F) if F(x) has no saltus at b

= ¢/(F) 4+ % if F(x) has a saltus at b.

Wald has shown the following:

Let F(z) and G(z) be two cumulative distribution functions belonging to .

Then, .

A) If w(F) and w(@G) are both <g¢, then F(z) — G(z) changes sign at most
2g — 2 times.

B) If w(F) and w(@) are both =g, ¢ > 1; and both F(2) and G(z) have a
saltus at @ > 0, then F(z) — G(x) changes sign at most 2¢ — 3 times.

C) If F(x) and G(z) both eF#**»***¥ then F(z) — G(x) changes sign at
least k times, unless F(z) = G(x).

Now, suppose there exist two cumulative distribution functions, F(z) and
G(z), both & F*1#2#P hoth of degree < (k + 1)/2, and both continuous at b.

Then, by A,

F(z) — G(z) changes sign at most 2’ — 2 times.
By C,

F(z) — G(z) changes sign at least k times.
But, by hypothesis 2r' — 2 < k — 1. Hence, F(z) = G(z).

Suppose there exist two cumulative distribution functions F(x) and
G(z) eFFr#2 0 hoth of which have a saltus at b, and both of which have
degree <(k + 1)/2.

Then, by B,

F(z) — G(x) changes sign at most 2¢ — 3 times..
By C,
F(xz) — G(x) has at least k£ changes in sign.

But,2¢ — 3 =2/ — 2 < k — 1. Thus, F(z) = G(z).

We note that B requires ¢ > 1, implies r > 1. However, when r = 1, the
theorem holds trivially by the monotonicity of g(x).

This establishes that there are exactly two cumulative distribution functions
e FgHE2 4 with degree < (k 4 1)/2, one of which has a saltus at b, and the
other is continuous at b. These are the minimizing and maximizing distributions.

We can now obtain the following theorem.
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THEOREM 6. The degree uf the minimazing (maaximizing) cumulative distribution
function,

(38) r(F¥) ==

i=1,2,

P* gk, Bk
i (x) & Jlg He ),
U?Llcsb‘

(-]
. &
we = min (max) ¥ dF (x).
FeFp(Bibge by ) Jo

Proo¥: If in Theorem 5, we replace k by k — 1, then since 2 ¢ G* ", there
are exactly two cumulative distribution functions e F*** " **=V with degree
=<k/2, and these distributions have the property that they determine the ex-
trema of u for F(x) e Fgriwe #e-v,

Hence, we may conclude that if ' (F) < (k + 1)/2 and F(z) e FF 2%,
then u is an extremum of E(X*), where the extremization is over all
F(z) e g > *=V Thus, the inequality of Theorem 4 is an equality, whenever
we 18 not an extremum determined by w;i, p2, -, pr—1 .

COROLLARY. The max(min) me,, v > 0, for F e S 2 * is altained by
choosing F(zx) to be one of the two cumulative distribution functions with v'(F) =
(k + 1)/2, one of which has a saltus at b, and the other of which is continuous at b.

Thus, we have shown that this technique will enable us to obtain the sharpest
possible bounds on higher moments given the first ¥ moments.

If an extremizing cumulative distribution function is of degree <(k + 1)/2,
we will call the moment sequence (u1, pe, « -+, ux) a degenerate moment se-
quence.

We can now characterize the two extremizing distributions as follows:

TueoreM 7. If (w1, ms, -+, we) S non-degenerate and the two extremizing
cumulative distribution functions are Fy (z) and F3(x) respectively,

a) if k = 2¢ + 1, q a non-negative integer,
then,

Fi(z) has saltuses at k+1 points in (0, b)

2

E—1
2

F¥(z) has saltuses at points in (0, b) and at both 0 and b.

b) if k = 2q, then,
F¥(z) has saltuses at g points in (0, b) and at O

F¥(a) has saltuses al % points in (0, b) and at b.

Proor: The proof is immediate from Theorems 5 and 6 and by noting that
these are the only ways in which cumulative distribution functions of degree
(k + 1)/2 can be obtained.
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We note that whether Fi (z) will be a maximizing or minimizing distribution
depends on the particular choice of g(z) & G&*.

We now extend the preceding result to cumulative distribution functions in
g(l‘llﬂz,"',ﬁ‘k)‘

THEOREM 8. If (m1, s, - -+ , ux) 18 non-degenerate, and g(z) £ G, then

sup (inf‘)) fow g(z) dF (x)

FeF(rpe..

s obtained by one of the following:
(39) [ o@) art), FH(z) e gorrar s
0

where F(x) has saltuses at (k + 1)/2 points in (0, ) for k = 2¢q + 1, q an
integer 20, and Fy (z) has saltuses at k/2 points in (0, ») and at 0, for k = 2g;
or, i
(40) })im ; g(z) dF5(z), Fh(z) g grmemo
where Fay(z) has saltuses at k — 1/2 points in (0, b) and at both 0 and b +f k =
29 + 1, and F3,(x) has saltuses at k/2 points in (0, b) ond at b for k = 2q.

Proor: For any cumulative distribution function F(z) e F*'*2" " *¥ and
any by > 0 we have [5, 2 dF(z) < w and b, [, dF(z) = [3, = dF(z). Hence,
[5, dF(z) = w/bi. Therefore by choosing b, sufficiently large, we have for any
e> 0, [5,dF(z) < e

Further, Wald [8] has shown that if p, we, -+, u is a legitimate moment
sequence, we can find a discrete cumulative distribution function with no more
than k& + 1 saltuses in [0, ) which has these moments. We suppose the last
saltus is at by. Choose b > max (b1, b:). Then since g(x) is bounded, i.e.
|g(x) | < M, wehave [ g(x)dF(z) < Me for all cumulative distribution func-
tions in §**#2 " #P_ Hence we can employ Theorem 7 and the conclusion follows.

THEOREM 9. limp.w Fap(z) = F3(x), where F3 (z) s the extremizing cumulative
distribution function FY (z) computed for k — 1 moment constraints.

Proor: From Theorem 7, for every b, F3,(x) is uniquely determined.

Further, as b — «, Fa(b) — Fa(b — 0) = 0(1/b"), since otherwise ux — .

Thus limp.w [0 &' dFs(z) = wi, =1, 2,--+, k— 1. Let

. . (F’{b(x), z <b,
1";‘1,(113) =
F3(b7), z

v

b.

Then, as b — «, F3(z) converges to Fi(x), computed for k¥ — 1 moment
constraints. This is readily seen, as follows:

F%(z) converges at all continuity points to a limit function F¥(z), which is a
cumulative distribution function, ' (F5(x)) = k/2, and satisfies k — 1 moment
constraints, hence must be F7(2) computed for & — 1 moment constraints.
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CoROLLARY. [§ g(z) dFf(z) = limp.» [ g(z) dFss(z) where Fay is com-
puted for one more moment constraint than Ff(z).

We now obtain the following theorem due to Wald [8], as a consequence, of
the preceding results.

TuaroreM 10. If (ui, p2, -+, k) 28 @ non-degenerate moment sequence, then
for (uy, e, -+, urs1) to be a legitimate moment sequence, it is mecessary and
sufficient that

1
M1 = ]o‘ IIJH dFik(x) = ,u;:+1-

If equality holds, then (u1, pa, -+, met1) 28 @ degenerate moment sequence.

Proor: Let wp = [¢ 2" dFY(x), Fi(z) eF* >  Since Fi(z) is a
unique extremal solution, it determines 2r quantities, z;, N\i; ¢ =1,2,---,r
such that Mzl + Nzi+ - F Mt = (=1, 2,---, k) and 0 Sz <
< o <2 < o, Ay 20, D.iesA; = 1. From Theorem 9,

F;";,(x) 8‘51(,“'"2 ----- k1)

satisfies
Mot 4 Men 4 Nar  Aab’ = (i = 1,2, k1)
where >\,/~ — A, ; — z;, and A1 = 0(1/b*) as b — .

Since Ff (z) provides an extremum of u;; , and we have shown the construc-
tion of Fas(z), and since Mb* = 0 we can conclude pmpyr = pivi, with
equality if (1, pe, -+, meq1) is degenerate.

On the other hand, by choosing b sufficiently large, we can produce a dis-
tribution Fa,(z) for any choice of uris = pits -

Many of the above results may be extended to other unbounded functions by
similar limiting arguments.

6. Computation of extremizing cumulative distribution functions on [0, =)
fork = 0,1, 2, 3. To find the extremizing cumulative distribution functions,
we have to solve the following system of equations:

Mt N+ o N =

Ml N o+ AaE = e
(41) e
Mzt 4 Mk 4 e 4 Nl =

0, 2 A=1, 0
7

Assuming throughout that (u:, g2, -+, m) is a non-degenerate moment se-
quence, we can then apply Theorem 8.
When & = 0, we have trivially

v
A

A ETS =2 < .

0, z <0,
Fi(z) =

IIA
&

1, 0
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(42)
0, z < b,
F;b(x) =
1, b=z
Fork =1,
0, r < u,
(43) Fi(z) =
1, u=suz

To determine Fa(z), applying Theorem 8, (41) becomes Ab = p.
Hence

0, z <0,
(44) Fi(z) = b;ﬂ M 0<z<b
1, bz

When k& = 2, to determine Fi(z), we consider Aoxz = m1, and AeZTs = .
Thus

2 2

2 M1 M1 2]

Al = ‘_‘—_._‘.‘_, AZ == — x2 = -

M2 M2 M1
0, z <0,

2
M2 — M1 M2
* 0=z <=
(45) Fi(z) = e u’
1, B2 <y
M

For Fsy(z), we solve (41), which becomes:

Mz b =, AT+ AbE = g

obtaining
N o= (I-ll - b)2 N = M2 — Mi
(1 — 5 + (2 — pi)’ (ur — ) + (u2 — i)
_ b —
I -————b E—_— .
Hence,
0, Y- L
b — M1
(46) Fa(x) = (w — b)? mb — p _
— = b
(= 0 + (u2 — ud)’ b= =S

1, b

A
8
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Note that as b — @, Ay = 1, A2 = 0, 7, — u, Ab — 0, and Ab* — wp — 43,
and F3,(z) is Fy(z) for k = 1 with the addition of the infinitesimal mass at =.
When k = 3, for Fi(z) consider

(1) MZy + Ay =
(2) )\le + >\217§ = M2
(3) T A+ Nl = s
From (1) and (2) we have
AN = (#12"' x2)2 —, Ao = #z; - #21, —,
(1 — 22)" + (w2 — p1) (1 — 22)" + (w2 — ui)
%=&*%rﬁm,
Substituting these in (3), we get
(e — 22) + (w2 — u)}’ (42 — pi)zs

(i — z){( — 22)" + (o — ud)} (1 — 22)* + (p2 — pi) s

Setting w1 — 22 = y and p, — ui = o’, we have

(y + ") | d"(u—y)° _
yly* + 08 -yt

M3 .

Thus
—o'y' + (4 + 3uo” — w)y’ + o (Bue’ + 1’ — ws) + o° = 0.
Setting p; = p3 — 3us” — u°, we have
(47) F(y) = 0% + wy’ + o*usy — o* = 0.

From (41), it follows that ¥y < 0. Thus we are interested in uegative real
zeros of (47). From Descartes’ Rule of Signs, and the observations that f(0) < 0
and f(— ) > 0, there is exactly one negative real root.

We proceed to find the root. First, observe that

fly) = & + %) (y2 + I;—‘—zy — 02).

Hence, the unique negative root y, is given by
_ = — (s’ + 40"

Yo = 20?2
which provides the complete solution:
2 2
= _ Yo =_7
NEgee MU e
2
xl = M y x2 — u — yo,

Yo
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and
2
[O, x < M te ,
Yo
48 F* = 2 2
(48) y(z) ygil-llt_)az #y°;0§x<n—yo,
1, b= Y = .
To obtain F3(x), the system of equations
A2 + 7\3() = M1
M2y + A = pa
kzxg + ’\31)3 = M3
is easily solved, yielding
N = (td — )’ N = Pibs — B3
(I-lzb - Ms)(ll-l b2 — 2#26 + Il-a) ’ b(ll-l b2 — 2#2b + Il-s) ’
M=1— 2t — A, x2=”_2§’_:ﬁ3,
#1b — M2
(0, z <0,
1 — N — s, 0§x<*iz;‘53,
— M
(49) Fh(z) = e
1 -, b = b oy oy,
Mlb — K2
1’ b é x.

As b— o, it is easily observed that Fy(z) — Fi(z) for k = 2, with the

addition of an infinitesimal mass at .

6. Application of Extrema Computations to ¢(z) and ¥ (z). First note that
¢(x) satisfies the hypotheses of Theorem 4 for all k, in fact ¢(z) is completely

monotonic. We can see this as follows:

" (z) = ‘Z?

1=0

(2

— x—(v+l)(_1)vv!(1 _ e-—(a—l)x) + Z

=1

Thus
¢(v) (x) ( -1 )v+lxv+le(a—l)z

v!

. . di
(v> x——(v——1+l)( _ l)v—a(v _ ’L) ! E_' [1 _ e—(a—l)z]

> ol(=1)"(a — 1)°
’l:! e(a—l)zxv—-i-H *

u x‘(a - 1)'] _ e(a—l)z

1%

=0

2!

Since the right hand side is always negative, we have
¢ (z) < (>)0,

forallz £ [0, «).

v odd (even)
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Since (30) may be written

E(C(a)) =1 — fo 7 4R (),
we observe readily that e “ ™% also satisfies the hypotheses of the theorem,
and in fact is also completely monotonic.

When k = 0, Ff (z) provides the maximum of E{¢(x)} and Fy (x) provides
the infimum. From Theorem 9, we conclude that the situation is reversed for
k=1, ie, FY(z) is a minimizing distribution and Fs (z) provides the supre-
mum. In general, we note this alternation every time an additional moment
constraint is added. Further, the extremum which is attained for any value of k
is not improved by the addition of the ¥ 4+ 1st moment constraint.

When k = 0, Fy(z) provides the minimum of E{y(z)}, and F5 () provides
the supremum. Thus the solutions for ¢(z) and ¥(z) are identical for every k
upon interchanging supremum and infimum. :

It is also interesting to observe the behavior of the upper and lower predic-
tors for d(a) and C(a) as @ — «. From the alternation property noted above
and from Theorem 8, since the supremum of E{e(x)} has a mass point at zero
for all k, the upper predictor for d(a) — « as a — «. Similarly, we can ob-
serve, that as @« — «, the lower predictor tends to a limit. This suggests the
following interpretation: the upper predictor tends to infinity since, regardless
of the sample size, there is no way for the experimenter to establish the non-
existence of an arbitrarily large number of classes each with negligible proba-
bility; the lower predictor tends to a limit, since there is no way for the experi-
menter to conclude that he will not observe all classes eventually.

Similarly, one can readily see, that the upper predictor for C(a) — 1 as a —
o, and the lower predictor tends to a limit ¢, 0 < ¢ < 1. This has a similar
interpretation to the corresponding result for d(ca).

7. Historical remarks. Problems of this type have previously been investi-
gated in papers by Corbet, Fisher, and Williams (2], Goodman [5], and Good
and Toulmin [4].

The Corbet, Fisher, and Williams paper employs a parametric hypothesis
as follows:

It is assumed, that for any class, the number of representatives in the sample
has a Poisson distribution with mean m, where the values of m are distributed
according to a I'-type distribution. Then the expected number of classes ob-
served is given by ‘

(50) E(d) = —Alog (1 — )
and

- M
(51) E(N) = -

where M\ is independent of N, the sample size, and v/(1 — v) is proportional
toN.
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Then, if the sample size is augmented to aN, or a second independent sample
of size aN is observed, we have

(52) o ~
1 =9
and

A
E{d(a)} ~ —\log {a—I\T-i-—“X}
where ) is determined from (50) and (51). Since

e - - aN + A
(53) E{d(a)} ~d 4+ A\ log{N T )\},

we conclude, that for large N, the Corbet-Fisher-Williams hypothesis implies
that the number of new classes to be observed when the sample is augmented by
(a — 1)N is approximately A log a. ‘

Goodman considered the following problem:

A population with a known finite number of elements is partitioned into an
unknown number of disjoint classes. The classes are assumed to possess no
natural ordering. A random sample is drawn without replacement and we wish
to estimate the number of classes in the population.

It is easily seen that this problem is identical to the problem of predicting
the number of classes that will be observed in the case of an augmented sample.

Goodman has shown that in general, an unbiased estimator of E{d(a)} will
not exist. However, if the maximum frequency of any class in the enlarged sam-
ple is known to be less than N, then the following estimator is unbiased.

N

(54) doy(a) = Z} Am
where

Al = a,

A: = (aN)(i) _ Al’i(C\'.N _ N)(i——l) B Az'l:(aN _ N)(i_?)

i N® (N — 1) SN = 2)6D -
o G-D _
. _ AaiT (aN = N) fori > L

GC— DN —-—724+1)°
Since dg, () may give unreasonable answers, da,(a) was proposed by Good-
man,

d, (‘?Gl(a) <d,
(55) da,(a) = {de,(a), d = ds,(a) £ aN,
aN, aN < (iq,(d).
Goodman also proposed
d, aN — a(#xN——l_l) ny < d,
(56) daa (a) = ( N 1
aN — a—a——_-) Ny, otherwise.

N-1



540 BERNARD HARRIS

Good and Toulmin have obtained the following predictors.

(57) d(a) =d = 3 (~Di(a = D'n,
and
(58) Ola) =1 = & 3 (= 1) ina = 1)

We present here, an alternative derivation of (57) and (58), which will ex-

hibit their development from the moments (31).

Since ¢(z) is completely monotonic in [0, « ), it is a Laplace transform with
respect, to a monotonic non-decreasing function of bounded variation in [0, « ),

ie.,
o(z) = f e dG (1)

where G(t) is non-decreasing and G(») < . Hence

fow o(z) dF(z) = ‘[’fom ¢ " dG(t) dF (z)

where F(z) is a cumulative distribution function. The inverse Laplace trans-

form is easily seen to be

¢ 0
G(t) =

a—1,
Hence

) ® La—1
[ e@ar@) = [ [ = aar).
0 0 Jo
Interchanging the order of integration, we have
L) a—1
[ e@are = [ M_)a
0 0

where M _,(¢) is the moment generating function of (—X). Since

EXT ~ £L+ 1)! Nr41
m
we have

M) = B EV G+ Dna
r=0 n
Upon integrating M_,(¢) term-by-term, we get

0

° 1 — e—(a—l)x r r+1
nlf — = dF(z) = 2 (1) nala — 1)
0 x

r=0

from which we obtain (57).

IIA

S a—1,

a—1<1
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Similarly, we can obtain (58), by noting that

fon 1 —y¢(2)] dF (2) = fom[ e " dH(t) dF (z)
where

0, t<a"_l’
H(t) =
1, t2a—1,

so that, by interchanging the order of integration, and introducing the moments,
we have

fom L= y(@)]dF(z) = > W0+ Dnepla — 1)

r=0 - m

Then, from (33) we get
1 < r v
E(C(a)} ~1— 5 Zo (=1)(r + Dnppa(a — 1),

Whenever « = 2, the Good-Toulmin formulas depend heavily on the higher
moments, which the experimenter knows with less precision. However, in the
Good-Toulmin paper, this difficulty is largely circumvented by transforming
the series, so that a sum can be obtained from any of several methods for sum-
mation of divergent series.

8. Numerical examples. Three examples have been chosen to illustrate the
methodology of this paper. The first is artificially constructed. The second
appears in Good and Toulmin [4], and the third appears in both Good and
Toulmin and Corbet, Fisher, and Williams [2].

Example (i). One hundred observations were taken from a multinomial popu-
lation with 100 equiprobable cells. The data are summarized in Table 1.

TABLE 1
T Ny
1 41 m 9268,
2 19 my = 1.0244,

(o8]

~
v

L

The upper and lower predictors for the number of classes, employing the first
k moments, dx(a) and di(a) are given in Table 2.
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TABLLE 2
@ FRE) dy(a) 4 () dy(a)
2 108 67 93.7 94.4
3 149 67 104.3 107.9
4 190 67 108.5 116.8
5 231 67 110.2 124.2
10 436 67 111.2 157.7
o oo 67 111.2 w®

In this case we are unable to proceed to ds(a), since m; does not satisfy the
conditions of Theorem 10.

We also note that di(a) exceeds 100 for a > 2. Since E(d) = 63.4 and the
observed value of d was 67, it is clear that our predictors should give answers
which are a little high in this case.

The predictors of the coverage, Cx(a) and 5k(a) ai‘e given in Table 3.

TABLE 3
« 6ol Cola) ) C2(a)
2 1.00 .59 .838 .820
3 1.00 59 .936 .896
4 1.00 .59 .975 .921
5 1.00 59 .990 .930
10 1.00 .59 1.000 .934
w 1.00 .59 1.000 .934

@) = .59.

Iixample (ii). This example is due to Good and Toulmin [4]. 1000 words from
“Our Mutual Friend” by Charles Dickens were tabulated and the results are
given in Table 4. It is to be noted that the method of sampling, i.e., choosing
the last words of lines on pages congruent to 5 modulo 25, is not random sam-
pling; however, the data will nevertheless suffice to illustrate the method.

TABLE 4

T Ny T ny

1 404 6 3 my = .2822,
2 57 7 0 my = .3564,
3 24 8 3 ms = .9505.
4 16 29 15

5 6

= 528
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We obtain as predictors for the number of classes the results shown in Table 5.

TABLE 5
@ }o(a) éo () él (@) jg(a) Qt(a)
2 932 528 880 893 889
3 1336 528 1145 1221 1188
4 1740 528 1345 1539 1438
5 2144 528 1497 1854 1648
10 4164 528 1846 3423 2286
[ © 528 1960 © 2737

Good and Toulmin have computed d(5) using their predictor and get 1683.
The upper and lower predictors employing three moments are 1854 and 1643.
The predictors of the coverage are given in Table 6.

TABLE 6
a &l Co@ bil@ tolO) LX)
2 1.000 .506 .695 .661 .674
3 1.000 .596 770 .679 727
4 1.000 .596 .827 .684 i
5 1.000 .596 .869 .686 .808
10 1.000 .596 968 .686 920
® 1.000 .596 1.000 .686 1.000
Ca) = .59.

Example (iii). This example is due to Corbet, Fisher, and Williams [2]. 15,609
Macrolepidoptera were caught in a light trap at Rothamsted and classified by
species. The data are summarized in Table 7.

TABLE 7
r "y r nr
1 35 6 11 my = .6285,
2 11 7 5 me = 2.5714,
3 15 =8 139 mz = 9.6000.
4 14
5 10 d = 240
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The upper and lower predictors for the number of classes employing the first k
moments, di(a) and di(a) are given in Table 8.

TABLE 8

« dola) do(a) di(e) 32l

2 275 240 266.0 270.9

3 310 240 279.8 300.6

4 345 240 287.2 330.2

5 380 240 291.2 359.8
10 555 240 295.5 507.9
© 0 240 295.7 L]

Note that here, as in Example (i), we are unable to proceed to ds(a), since ms
does not satisfy the condition of Theorem 10 and hence-only m; and m, are realiz-
able as moments of a cumulative distribution function on [0, «).

The corresponding predictors of coverage are given in Table 9.

TABLE 9
a ol Cote) i@ Cale)
2 1.0000 .9978 .9988 .9981
3 1.0000 .9978 .9994 L9981
4 '1.0000 .9978 L9997 .9981
5 1.0000 .9978 .9998 .9981
10 1.0000 .9978 1.0000 .9981
® 1.0000 .9978 1.0000 .9981
C@1) = .9978.

Employing the parametric hypotheses of Corbet, Fisher, and Williams, we
have Ed(2) ~ 267.9.

Good and Toulmin obtain d(2) = 261.9.
Williams (in Corbet et al) noted that doubling the sample size would approxi-

mately halve the proportion of the population not represented in the sample.
In Good and Toulmin, €(2) is given as .9991.

APPENDIX A
In Section 2, the following approximations are employed
(1) 11— =p) T2t =™
j=1 j=1
= N r N—r 1 - r —Npj;
(2) 2 pi(1 — p)" = 2, (Npy)e
i=1 r Trej=1
(3) 1= 2 p(l=p)" 1= 3 pe™.
=
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We will show that the approximations are satisfactory for large N. We first

establish (1).

Consider
21— =p)" = 21—
=1 =1
> — V7
=1
where 0 < p; < land D> ;p; = 1.
It is easy to see that if a;, b; > 0,7 = 1,2, --- ; and ao/bo = sup; a;/b;, then
) 2.
@ 5 2 .
bo = 2 b
Thus
-] _ _ . N _ 0 _ -Np.
jgl 1 (1 p;) ] ]Z.,; [1 e 7] < sup e — (1— p)N
© = 1—e??»
1 — ¢ 7
;[ e 7]
Since
(1 _ p)N — eNlog(l—p)
- —_ Ny’ <: <
—exp[ Np 2(1_5)2] 0=¢=
we have
2
—Np _ _ Np
T —a-p" _° (1 P [ 201 — z)=]>
1—e™r a 1 — e
—Np _ _ sz )
< ° <1 P [ 2(1 — P)z]
= 1—eVe )
If p = 1/A/N, then
e’ — (1 —=p)¥ < P < Pk
1 — e Tl—e¢V T 1 - V¥

which clearly tends to zero as N — . For p < 1/4/N,

—~Np N —Np —a(Np2/2)
e - (1 - e 1—e
( p) é (1 — e—Np ) —_ hN(p)

1 —er

where « = N/(v/N — 1)
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Ditferentiating hy(p) and equating to zero, we have

(1— &™) (=Ne™™) + (Wape™ ") (1 — &™)
(1 —_ e—-Np)z

hN(P) =0

whence, we have
—(1 — &) L ap(e VY (] — ) = 0,
Thus
—1+ "1+ apll — ™)) =0
or, since p < 1/4/N
log (1 + ap(l — ¢7]) ~ apll — ¢
we have

Aap

+oapll — e ~0 and 1 —e ™~ 28,

Thus, we c¢an establish that the maximum of hy(p) occurs when p ~ 1.6/N.

However,
1.6 e’ —(2.560/2N)
hN(N>N1——e“-6(1—e )

which clearly tends to zero as N — . If p; = 1 for some j, then all other terms
in both sums in (1) = 0, and the approximation holds trivially. If p; = 0,
for some j, neither sum is increased, and hence we have established (1).

In considering (2), we suppose r* to be very small compared to N. We shall
show that the approximation is satisfactory in the following sense; either both
sides of (2) are negligible for sufficiently large N ; or the ratio of the error to the
expected value of the number of cells with r elements is small.

Thus, since
(1)~ el 5]
r) " T OP 2N

and
(1= ~ew| -0 =np = B oy <,
we have
—Npj Ll .
Z (NPJ) e " Z(N) pi(1 — ) Z (NPJ NP
7=0 j=0 j=0

4 -
o rlr=1) (N-=r) _'l
\1 exp[rp.? 21\r D) D .

-
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First consider those indices j for which p; = 1/N*®. Then
(Np;) —-Np,- {1 — exp [ij _ T('I’— 1) _ (N hd ’I') pz _ ...]}

p;z(1TN2/3) T 2N 2

(NP:) NP,

pinGmarny 1l

A

For N sufficiently large,

(Np )r —Npj N(r+2)/3 e-—-N‘“

= T! ?

pjz (1IN213) r!

which is negligible for sufficiently large N. The approximation holds trivially
for the case p; = 1 for some 7, and 0 for all other indices j.
Now consider,

(Np;) e [ r(r=1) (N—=r) o ]
D B sl M 7P

(Npi)r NP
pi<(1IN213) 7!
r —Np —_— J—
(Np) fl_exp[rp_r(r 1) _ (N r)pz__“]}
< sup —\ 2N 2
T p<N2/3) (Np) e'”
SRt
_ ) _r(r=1) _ (N—=1) 2 _ ]
= By L TP [”’ 5N 5 P

0(1/N1/3)
=1—=¢% .

The discussion of (3) is almost identical with that of (2) and will not be pro-
duced here.

APPENDIX B

Asymptotic mean square error of C(1). In Section 3, we established
C(1) =1 — (m/N). It is clear that E[C — ¢(1)) = E(D — (m/N))?
where D = 1 — C. From (14) and (15) in Section 2, we have

= 12;1’4'5(1 —pi—p)" + ZjP?[(l - p)" = (1 —2p;)"].
From (11) in Section 2, we have

nl 1
E-N—z NzEnl+N22

2), pipi(1 — pi — pi)"™"

00

1 N! N2
NIZ (N 2),?1(1 2p]) .

j=1
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Then, to find E(Dn;), we introduce two random variables

X; = {1' if jth cell does not occur in sample,
0 otherwise,
Y, = {1) if jth cell occurs once in sample,
0 otherwise.

Then D = D, p;X;,nm = 2 Y;. Thus
’ 7 J

;;jN ppi(l — pi — p))" "
= ;Npmj(l —pi—p)" 7 = 5_;‘1\’1»?(1 — 2p))"

Hence, upon introducing the exponential approximations, we have

E _@2~__2E"’2 Eny
N N2 Nz
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