SOME CONTRIBUTIONS TO ANOVA IN ONE OR MORE
DIMENSIONS: II

By S. N. Roy aND R. GNANADESIKAN!

University of North Carolina

0. Introduction and notation. This paper presents certain natural extensions,
to the multi-dimensional or multivariate situation, of the results contained in
the first paper [10] by the authors. We shall use the same notation as before and,
in addition, we shall use the following notation: ¢(A) will denote all the char-
acteristic roots of the matrix A, and if A is at least positive semi-definite, then
emin(A4) and cmax(A4) will denote, respectively, the smallest and the largest of
these roots; Ds(p X p) will denote a diagonal matrix whose elements are a; ,
az, -+, a,; T(p X p) will denote a triangular matrix whose non-zero elements
are along and below the diagonal; |4| will denote the determinant of a square
matrix A; and, A(p X p)-XB(g X q) will denote the Kronecker product or
right direct product [5] of the matrices A and B. Also min (p, ¢) will denote
the lesser of the two real numbers p and g.

1. Resumeof problems and results under the multivariate Model Iof ANOVA.
1.1 The multivariate Model I: Let X(p X n) = p[x1 Xz - - - X,] be a set of n
observable stochastic p-vectors such that

X'(n X p) = A(n X m)é(m X p) + e(n X p), m < n,
1. = n[A1 AD ] E[ r
(1.1.1) ) [zp] (m — T enXP) (say),
P

where, as in the univariate situation, A is the design matrix with rank
(A) = r S m = n, and A, is a basis of A with a consequent partitioning of
tinto & (r X p) and £p(m — r X p), and where

(i) &(m X p) is a set of unknown parameters;

(ii) e(n X p), whose elements are physically of the nature of errors, is a
random sample of size n from the non-singular p-variate normal N[O(p X 1),
=(p X p)]. Furthermore, we assume here that p < (n — 7).

Under this model it is seen that x,(p X 1), for< = 1,2, --- , n, are n inde-
pendent stochasic p-vectors such that x; is N[E(x;), Z], where the unknown
dispersion matrix Z(p X p) is the same for all the n vectors, and E(x;), for
1=1,2, ..+, n,is given by

(1.1.2) EX')(n X p) = A(n X m)é(m X p) = [A; Ab] I:é;]
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Here again, as in the univariate case, the assumption of normality in (ii) of
the above model is not necessary for purposes of linear estimation. In fact,
since the linear estimation part of the present problem can be easily handled
and may not be of much additional interest, we skip it and proceed directly to
the solutions of the problems of testing of linear hypotheses and the associated
confidence bounds.

1.2 Testing of linear hypotheses. The hypothesis that we seek to test, under
the model of section 1.1, is

Hy: C(s X m)t(m X p)M(p X u) = 0(s X u),

(1.2.1) or, s[lC; Cp ] £(r X p) _
r (m—r) [Eo((m —r) X p)] Mlp X u) = 0(s X u),
against
H:CiM = n(s X u) = 0(s X u),

where C and M are matrices given by the hypothesis, and hence called the
hypothesis matrices, such that rank (C) =s <r <m <nandrank (M) =u =< p
and 7(s X u) is an arbitrary unspecified nonnull matrix. Notice that s may be
greater than or equal to or less than u. One can, of course, verify that (1.2.1) is
by no means the most general type of linear hypothesis imaginable, although it
includes a wide variety of linear hypotheses in which we might be interested.
The main results follow. [12, pp. 84a-84i]

(1.2.2) All the following results are invariant under the choice of a basis
A;of A (with a consequent determination of £ and C).

(1.2.3) Whether we use the likelihood ratio criterion or the one used by the
authors, [12], we have a similar notion of testability for this situation as for the
univariate case, and the testability condition is the same as (1.3.3) of [10].
(1.2.4) The test itself is given by the following rule:

Reject H, against H if cmax(S18™) = co(u, s, n — r) and accept (do not
reject) Ho against H otherwise, where cmax(S18™) denotes the largest char-
acteristic root (necessarily positive except on a set of probability measure zero)
of 81877, co(uss, n — 7) to be called c, , for shortness, is a constant which de-
pends on the level of significance « and the degrees of freedom u, s and (n — r)
and which is being tabulated from the relation

(1.2.5) Plemax(8187") Z ¢a | Hol = o,

the distribution involved being long available [11, 12]. Here, S; is an v X u
symmetric and at least positive semi-definite matrix of rank, almost everywhere,
(i.e., except on a set of probability measure zero), min(w, s), being given by
(1.2.8) s8i(u X u) = M'XA(A1A;)7'C[C1(A1A) T CLI ' C1(AA) A1 X' M,

and S in an » X u symmetric and, almost everywhere, positive definite matrix
of rank u (necessarily), given by

(127) (n—r)8(u X u) = M'X[I(n) — A;(A\A) T ANX'M.
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We shall call the matrix on the right side of (1.2.6) the matriz due to the
hypothesis (1.2.1) and the matrix on the right side of (1.2.7) the matriz due to
error.

The reduction, to a canonical form, of the relevant distribution problem is
one in which the characteristic roots of S;S™' are the same as those of
[((n —r) /)Y, Y1(YY")™"], where Yy(u X s) and Y(u X (n — r)) have, in
general, i.e., under H, the distribution

min(u,s)

(27) ™MV exp ["71 {tr (NY+ YY)+ 2 v

=1

(128)

min(u,s)

-2 Zi (Yl)ii\/z}] dY, dy,
where v;’s (¢ = 1, 2, --- , min(u, s)) are the possibly non-zero characteristic
roots of the 4 X u matrix 5'[C1(414 ;)_IC{]_’n(M 'SM)7. It is to be noted that
the u characteristic roots of this matrix are all non-negative and ¢ of them are
positive while the rest, (« — t) in number, are zero, where t(<min(u, s)) is
the rank of 5. All the roots are zero if, and only if, n = 0, i.e., under H,, and
in this case we have, for Y; and Y, the distribution.

(1.2.9) (2m) (T2 oup [—3 tr (YY1 + YY)]dY, dY.

The distribution of cmax(S18™"), ice., of Cmaxl(n — 7/ 8)Y1¥1(YY’)7Y], on the
null hypothesis Hy , was obtained earlier [11, 12] starting from (1.2.9), and this
forms the basis of the tables, now being prepared, giving c.(u, s, » — r) when
a, u, s and (n — r) are prescribed. It may be noted, from (1.2.8) and (1.2.9),
that ¥, and Y are independently distributed.

We can introduce here, just as in the univariate case, the notion of two or
more different hypotheses like (1.2.1) being testable in a quasi-independent man-
ner and can derive a set of necessary and sufficient conditions for this. In fact,
when the hypotheses differ only in their C' matrices and have the same M matrix,
so that, we have, for instance

Ho;: C,'(S,' X m)f(m X p)M(p X u)

(1.2.10) '
= 0(s; X u), fori =1,2,---,k,

against respective alternatives H;, like H defined under (1.2.1), where rank
(C:) = rank [Cy Ciz ]s; = s;,and D iy 8; < 7 < m < n, then, the necessary

r (m—r)
and sufficient condition for being able to test the k hypotheses (1.2.10) in a
quasi-independent manner is that

(1211) Cil(A;AI)_lCJ,'l = O(Si X sj)y ('L # .7 = 17 21 ) k))

which is the same as condition (1.3.7) of [10] for the univariate case.

1.3. The associated confidence bounds. Going back to (1.2.1), we observe that
n(# 0) represents a deviation from H,. The main results follow [9].

With a joint confidence coefficient = (1 — a), for a preassigned «, we have
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the following simultaneous confidence bounds:
Cobe(881) — [SCalenx(8) S Combaln’ (C2(ArA7)'C1) ')

< Cabx(881) + [scallcmmx(S);

and similar confidence bounds in terms of the same c, but of truncated 7, S,
and S obtained by going back to (1.2.1) for 5, to (1.2.6) for S; and to (1.2.7)
for S, and then (i) cutting out any row of 5’ and the corresponding row of M’,
or any two rows of %' and the corresponding two rows of M’ and so on till we
get down to just any row of »’ and the corresponding row of M’, and also (ii)
cutting out any column of 4’ and the corresponding row of C , any two columns
of #’ and the two corresponding rows of C; and so on; and finally (iii) combining
any case of truncation under (i) with any case of truncation under (ii). Thus,
with a joint probability =(1 — ), we have (2* — 1) X (2° — 1) statements
of which (1.3.1) is the first one.

As in the univariate case [10, Section 1.4], it is to be observed that, taken
together, the (2* — 1) X (2° — 1) confidence statements enable us to put con-
fidence bounds on parametric functions which are not only measures of deviation
from the total null hypotheses (1.2.1) but also on all the component parts of it.

It may be noted that if, in the Ho of (1.2.1), M (p X u) is not present, as will
be seen in the hypotheses of Section 2.4, then all the above results go through if
we replace u by p and M (p X u) by the identity matrix I(p).

(1.3.1)

2. Multivariate Variance Components.
2.1 The multivariate Model IT: Let X(p X n) = [XiX2 --- X,] be a set of n
observable stochastic p-vectors such that

X'(n X p) = A(n X m)é(m X p) + e(n X p), m < n,
k
=n[d1 Az -+ A &1 jma + e(n X ), D mi = m,
(2.1.1) =t
mymy - my | & (Mo (say),
E‘k 'n:'/k
P

where A is the design matrix of rank » < m < n, and where

(i) &i(m; X p) is a random sample of size m; from the p-variate non-singular
normal population N{u:(p X 1), Z:(p X p)lfori = 1,2, -k, and e(n X p)
and ¢’s (forz = 1,2, -- -, k) are mutually independent;

(ii) e(n X p), whose elements are physically of the nature of errors, is a
random sample of size n from the p-variate non-singular N[O(p X 1), Z(p X p)].
Furthermore, we assume that p < (n — ).

Writing

X

X'(nXp) =nxi%x - %] and x(pn X 1) = %,

Xp
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we see that, under the above model, the elements of X’(n X p),i.e., of x(pn X 1),
have a pn-variate non-singular normal distribution N[E(x), Z*(pn X pn)],
where

E(x)(pn X 1) = A*(pn X pm) [ pu-17] mi,
I‘-Icl.'l ’”.Lk
(2.1.2)
pp-1 | My
_ﬂ-lcj;']-_ 7;Lk
and where
vi(pX1) =[pa| and A*(pn X pm) = A(n X m)- X I(p)
Ma2 | =n|d 0 e 0,
J n|0 A -+ 0
Lip T
n| 0 0 --- A
m m . e e m
and
Z*(pn X pn) = E(xx') — E(x)E(x’'
(2.1.3) pn X pn (xx’) (x)E(x')

AAL- X2+ Asds- XZa+ -+ + Apdi- XZx
+I(n)- X2

if we recall and use the Kronecker product notation A - X B.
We shall, in this paper, consider, in detail, only the relatively more restricted
model wherein

(2.1.4) Zi(p X p) = oiZ(p X p),

since, as will be shown in section 2.3, the more general set-up of the model de-
fined above does not lend itself to an easy mathematical treatment. We shall
call the model defined at the beginning of this section, taken together with the
restriction (2.1.4), as the restricted multivariate Model II of ANOVA. Federer
[3] points out that models, where dispersion matrices are proportional, have
been tentatively proposed for a certain type of genetical problem so that our
restricted model might still be meanlngful in certain physwal situations.”

2 Since this paper was written up and submxtted in July, 1957 further investigation
showed that even without this (rather severe and unrealistic) restriction it was still pos-
sible to go ahead with (i) point estimation, (ii) testing of hypothesis and (iii) confidence
interval estimation, but in terms of a different set of statistics leading up to results less
sharp than those aimed at here. The mathematical tools needed are those given here plus
some further tools. Thus, from a physical standpoint, this paper might be regarded as an
indispensable first step toward handling the more realistic situation that does not involve
the very restrictive assumption of proportionality. The justification of the present paper
from a physical standpoint, in terms of a possible genetical application, is thus today en-
tirely redundant.
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Our objectives will be: (i) to estimate any estimable linear function of the
elements of w;, --- , ws and to test festable linear hypotheses on w;, - -+, s ;
(ii) to obtain estimates of, and test hypotheses on, the multivariate variance
components, ‘viz., the characteristic roots ¢(Z1), ¢(Z2), -+, ¢(Zx) and ¢(2);
and (iii) to obtain confidence bounds (simultaneous and/or separate) on
c(Zy), --+, ¢(Zk) and ¢(Z). Under the restricted Model II, of course, (ii) 1s
equlvalent to obtaining estimates of, and testing hypotheses on, «r? R
and ¢(2), while (iii) isequivalent to obtaining confidence bounds on oy, 08, ,
or and ¢(Z).

2.2 Linear estimation and testing of linear hypotheses. Recall that for the
restricted k-way classification the design matrix 4 (n X m) is such that, for all
i =1,2 -, k, the submatrix A;(n X m;) has one and only one non-zero
element, equal to unity, in each row, such that rank (4) = (m — k + 1).
When we select 7 individuals under this design and measure each on not one
but p variates we have a multivariate restricted k-way classification analogous
to the univariate restricted k-way classification discussed in [10]. Multivariate
analogues of the usual complete and incomplete connected designs are included
under this general case. Using a result given in [12] we can establish the following
lemma [4, pp. 96-97]:

LemMa 1: For the multivariate restricted k-way classification, the necessary and
sufficient condition for the estimability of D sm1 (1 X pwi(p X 1) is that

(1 X p) =11 Xp)=--=L(1XDp),

so that, a linear function Y s 1:(1 X p)ui(p X 1) of all theelementsofw,, - -+ ,w
which 1is estimable, and hypotheses on which are testable, is of the form
V(1 Xp)lw + - + wl, and hence, neither linear functions of the elements of
each w; nor the elements of each w; are separately estimable and linear hypotheses
on these separate functions or elements are not testable.

2.3. Estimation of the multivariate variance components. Analogous to the
univariate x2-distribution, we shall introduce, for the multivariate situation, the
pseudo-Wishart distribution a definition of which follows.

Suppose X (p X n) has the distribution

(231)  (2m)"" |72 exp [‘71 tr (X — (X — ;')] ax

where the elements of X, z;; are such'that —» < z;; < (t=1---,p)
(j =1,---,n) sothat, E(X) = {(p X n) and the symmetric positive definite
matrix Z(p X p) is interpreted as, nZ(p X p) = E{(X — §) (X' — {’)]. Then
we shall call the distribution of the symmetric at least positive semi-definite
matrix, S(p X p) = (1/n)XX’, the pseudo-Wishart distribution with degrees
of freedom 7, and the distribution is central or non-central according as ¢ = 0 or
¢ # 0, i.e., according as ¢¢’ is the null matrix 0(p X p) or not. Conversely, we
shall say that any symmetric at least positive semi-definite matrix, S(p X p),
has the pseudo-Wishart distribution (in general, non-central) with degrees of



324 S. N. ROY AND R. GNANADESIKAN

freedom =, if we can write S(p X p) = (1/n)X(p X n)X'(n X p), where
X(p X n) has the distribution (2.3.1). Further, if E(X)E(X’) is the null
matrix 0(p X p) then, and then only, will the distribution be said to be central.
In particular, if in the above definition, p < n and rank (S) = p then a pseudo-
Wishart distribution for S is equivalent to the ordinary Wishart distribution.

Starting from (2.3.1), it can be shown that the distribution of the ¢th diagonal
element, for7 = 1,2, --- | p, of XX’, where of course (1/2)XX’ has a pseudo-
Wishart distribution with degrees of freedom n, is distributed as oixtny where
. denotes the ith diagonal element of =(p X p) and where x{») stands for the
x" variate, with degrees of freedom 7, being central or non-central according as
the pseudo-Wishart distribution of (1/n)XX’ is central or non-central.

We shall next proceed to problems of estimating and testing hypotheses on
the multivariate variance components. For these purposes, by analogy with the
univariate case [10, section 2.3], we shall seek (k + 1) matrices, S:(p X p) =
(1/n)X(p X n)Qi(n X n)X'(n X p) (fori = 0,1, --- , k), where Q:(n X n)
is symmetric and at least positive semi-definite of rank n; < n, Z'f.,o n; = n,
such that
(2.3.2) (1/X:)8:, of rank <p, has a central pseudo-Wishart distribution
with degrees of freedom #n; (s = 0, 1, --- , k), where \; is a positive constant;

1
oy I
Lemma 2: If X(p X n) has the distribution (2.3.1), then a set of necessary and
sufficient conditions for So, Si, - -+, Sk to satisfy the above restrictions is given by
(a) Qi(n X n) = \Q: which is equivalent to the statement that Q; = NLiL;
where Li(n; X n)Li(n X n;) = I(n)(5=0,1, --- , k);
(b) E(X)Q:E(X') = 0(p X p);
(¢) QQ; = 0(n X n) which, taken together with (a), is equivalent to the state-
ment that Li(n; X n)Lj(n X n;) = O(n: X n;) A #j=0,1,---, k).
Proor: Necessity of (a), (b), and (c¢). Suppose that the matrices
So, Sty -+, Sisatisfy (2.3.2) and (2.3.3). Then, since

(]. /)\I)S, = (l/n,)\,)XQ,X’ = XP.'X,

(where Pi(n X n) = (1/X;)Qi(n X n)) has a central pseudo-Wishart distribu-
tion with degrees of freedom n;, therefore, by our previous discussion, the
Jth (j = 1,2, ---, p) diagonal element of XP.,X' is necessarily distributed as a
constant times x(n,) where xt.;, denotes.a (central) x” variate with n; degrees
of freedom. Now, if

(23.3) )\l So Sy, - S. are mutually independent.
0

X(p X n) = [Xi

’
Xy
°r
Xp

n
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(say) has the distribution (2.3.1) then x;(1 X n) has the distribution

]. ]. ’ !
Groyhs &P [—% (xj — &i)(x; — i‘j)J dx;,

where

dpxm=E@@Xn»=rf

tr_

n
and o;; is the jth diagonal element of Z(p X p). Using the result of [2, 6], we
have that, if x;(n X 1) has the above distribution, then, in order that the jth
diagonal element of XP.X’, i.e., X;Px; , where P;(n X n) is symmetric at least
positive semi-definite of rank n; < n, may be distributed as o;;x{.;), we must
necessarily have

Pi=Pi,ie. Qi =)\Q:.

Hence the necessity of (a).

Next, since @:(n X n) is symmetric positive semi-definite of rank n; and A,
is a positive constant, therefore, by a well-known result [12, pp. A-16 and A-17],
there exists a transformation

’)'\1_1‘Qz = nll:TI:I [T; T;]

n — ni| T
n;
If now
Yilp X n:) = X(p X n)[Th],
T.
then
! x.x =Ly, v,
NiN; n;

Thus, if (1/22:)XQ:X’ = (1/n;)Y;Y; has a central pseudo-Wishart distribu-
tion, then, by definition, E(Y,)E(Y:) = 0(p X p), ie., E(X)QE(X’") =
0(p X p), which proves the necessity of (b).

Finally, if (1/%)So, -+, (1/A:)Sx are distributed mutually independently

in pseudo-Wishart forms with respective degrees of freedom n,, - - - , 7, then,
necessarily, their Ith (I = 1, 2, ---, p) diagonal elements, viz.,
X;POXZ, ,X;kaz,

where P; = (1/X2;)Q:(¢ = 0, 1, ---, k), are distributed as constant multiples
of mutually independent x° variates with respective degrees of freedom no,
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71, - -+ and n, . Hence, from (2, 6], we necessarily have
P{Pj = O(n X n) or Qin = O(n X n)

fori#j=0,1, .-,k which proves the necessity of (e).
Sufficiency of (a), (b), and (¢). We shall now assume that So, Sy, -+, Si
satisfy (a)}, (b) and (c), so that

%Qi(n X n) = Li(n X n:)Li(ns X n)

where L;L; = I(n;) fort =0,1,---, k and L;L; = 0(n; X nj) for1 % j =
0,1,---,k, and, also, E(X)Q:E(X’') = 0(p X p) fori =0, 1, ---, k. When
Ly, Ly, ---, L satisfy these conditions, it is well known that we can find a
completion L*((n — D_i-on;) X n) of the matrix

Lo

L,

Li
such that the completed matrix

Lin X n) =L

is orthogonal. Let us now make the transformation
Y(pXn)=plVo¥uv- Vi  ¥*  1=X(pXn)lo L Li L¥),

Mo My mlnm — D, ms

1=0

so that, the Jacobian of the transformation is unity. Notice that

k k
=Y VY4 rrYr =) )\lXQ,- X' + XL¥L*X'.

=0 1=0 N\g

Starting from the distribution (2.3.1) of X(p X n), we therefore have for the
joint distribution of Yy, -+, Y and Y*

(() )-Pn/? [2!_"/2 exp [___ tr E—l \Z (Y - "h)(Y - "')

k
+ (Y* — 9*)(Y¥ — n*’)}] X [T ay.-dv¥,
=0
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where
ploo m -+ m n*k I=¢(pX n)lLo Ly --- Ly L¥),
Mo Ny * - - nk(n -_ Zn,)
1=0

so that, E(Y;) = 7:(¢ = 0,1, --- , k), E(Y*) = n*. The elements of each ¥
matrix, of course, vary between — « and . Integrating out over Y*, we have
for the joint distribution of Yo, ¥, - - - , Y,

=p(ngt-+ny) noteetny
(27) 2 1IZ] ~ 2
(234) 1 . A
* exp [—2‘ tr E‘I{Z (Yi — 9)(Y; — m)f] aYy---dY,,
1=0
where, of course, E(Y;) = #; and E[(Y; — m)(¥£ - n:)] = n:2(p X p) for
t=0,1,---, k From (2.3.4), it follows, by definition, that
(23.5) lyvi-lxpinx - L xox-ls,
n; n; Y )\i

fori = 0, 1, - -+, k, has a pseudo-Wishart distribution with n; degrees of free”
dom. Also, if E(X)Q:E(X') = 0(p X p), then, since \; is a positive constant’
(1/ME(X)QE(X') = E(X)L:LE(X') = E(Y)E(Y?) = na = 0(p X p)-
Hence, again by definition, the pseudo-Wishart distribution of (1/X:) S;
(¢=0,1, ---, k) is central. Finally, from (2.3.4), we observe that ¥, , ¥, , - - -
Y, are mutually independent, and, hence it follows from (2.3.5) that

(1/20)8So, -+, (1/N) S,

)

are mutually independent.
Hence the sufficiency of (a), (b) and (c).
Lemma 3: If X(p X n) has the distribution

(2.3.6) (2m)™""* 12| ™ |B|™" exp[—} tr (X — {)BN(X' — )] dX,
—o < x; < oo,

where B(n X 1) and Z(p X p) are symmetric positive definite, then, a set of necessary
and sufficient conditions for Sy, Sy, -, Si (defined immediately before (2.3.2))
lo satisfy the conditions (2.3.2) and (2.3.3) is given by

() Q:BQ. = \Q:, i=0,1,--,k;
8)  E(X)QE(X') =0(p Xp), i=01,--,k; and
(v) QBQ;=0(nXn), i%j=01,---,Fk

Proor: Since B(n X n) is symmetric positive definite, therefore, there exists
the transformation

B(n X n) = T(n X n)T"(n X n),
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so that,

B—l = (T/)—IT—I
Writing Y(p X n) = X(p X n) (T") ", or, X = YT",and 6(p X n) = ¢(p X n)
(T")™, wé have the Jacobian of the transformation to be |T'|” = |BJ?".

Then we notice that (1 / nA;) XQ, X' = (1 / n\) YT'Q; TY’, and, from (2.3.6),
the distribution of Y(p X n) is

(2m)7"" |27 exp [~ tr ZT(Y — 8)(Y' — 0)]dY, —w <y; < o,

which is of the same form as (2.3.1). Now applying Lemma 2 to the matrices
(1 /n:\)YT'Q; TY' (notice that rank (7"Q,T) = rank (Q:) = n;), we obtain
that a set of necessary and sufficient conditions for these matrices to satisfy
(2.3.2) and (2.3.3) is

() 7'Q:TT'Q.T = \T'Q.T, or, Q:BQ: = \Q: (¢=0,1,---,k);

B)  EY)T'QTE(Y') = 0(p X p), or E(X)QE(X') = 0(p X p),
(¢=0,1, .-+, k); and, finally,

(v) T'Q.TT'Q,T = 0(n X n), or, Q:BQ; = 0(n X n),
(Z#] = O’ 17 e ’k)

Hence the lemma is proved.
Next, under the general multivariate Model II, we have noted that
has the distribution

X
x(pn X 1) = |
xP
(2m) 7?2 ¥ 712

(237) o, I =)
exp | —5 (%1 %) —E(x1---%,)] Z* | =F] dx,
X, X,

where
X
Eix)=£] :
Xp

and =* are defined respectively.in (2.1.2) and (2.1.3). In order that this distribu-
tion of X(p X n) be, essentially, of the same form as (2.3.6), we should be able
to express the exponent in (2.3.7), except for a constant factor (—1) /2, in the
form

tr M3' (X — ¢) MY (X' = ¢),



ANOVA IN ONE OR MORE DIMENSIONS: II 329

where My(n X n) and Mz(p X p) are symmetric positive definite matrices and
where E(X) = ¢.

LEMMA 4: A necessary and sufficient condition for this is that
(2.3.8) I*(pn X pn) = Mi(n X n)- X My(p X p).

Proor: Sufficiency of the condition. If =* = M,-X M, then it is known [5]
that =¥ ' = M7'-z M7'. Now, let

l'mﬁ) miy mi?]
(1) (1) (1)
Mma1”  Ma2 s Man
M7'(n X n) = _ , m = miy,
md md m}
and
[mff) my - mg)‘l
(2) (2) (2)
ma1 Ma2 cee Mep
2 (p X p) = ] m = mg?.
Lniﬁ’ mii J
Then,
, , — E(x)
x1 — E(x1), -+, xp,— E(x;)]=*"
- E(xp)
y 4
= > [xi — EG)I M (n X n)-m7 [x; — E(x;)]
X3 —_— E(Xl)
= tr M3 : M [x — E(xy), -+ , X, — E(%,)]
4 4
x, — E(x;)

=tr M7' [X — E(X)] M{'[X' — E(X")].

Hence the sufficiency of the condition (2.3.8).
Necessity of the condition. Supposing now that

‘ X3 - E(Xl)
[x1 — E(x1), -+, X, — E(x,) 2%} :
X — E(xp)

=tr M7' [X — E(X)] MT* X’ — E(X")],

and writing M1 and M3" as before, we can argue backwards in the proof of the
sufficiency of the condition and obtain that =*™* = Mi'- X M3', so that, =* =
M, - X M,.
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Hence the lemma is proved.

Further, we can establish that for Z*(pn X pn), defined in (2.1.3), under the
general Multivariate Model II with a perfectly general design matrix, to be
expressible as M; - X M, we have the necessary and sufficient conditions

Zi(p X p) = oi Z(p X D), (E=1,2-,k),

which yield the restricted Model II. That these conditions on Z;(p X p) are
sufficient is easily verified. That they are necessary can be demonstrated as
follows where, for simplicity of argument, we assume that p = 2.

Suppose Z*(pn X pn) = Z*(2n X 2n), since p = 2, here,

= My(n X n) - X My(2 X 2),

where M; and M, are symmetric positive definite matrices. Then, from (2.1.3),
we have

AAL X S+ o LA X S+ I(n) X 2
From this we obtain the equations
4141 [of? — aoi?)] + Aad: [0l — cos?) + -

+ AAp [611 - 61622)] + I(n) [on — ci02] = 0(n X n),

M, - X M.

(2.3.9)

and
A,A] [0§ - 02612)] + A4, [611 - 02012)] + -
+ ArAx [011 - 02012)] + I(n) [ou — cwo12] = 0(n X n),

where ¢; = (2‘12)11/ (Mz)zz, C = (Mz)u / (]lfz)lz, (]‘[2)1‘,' is the ’L]th ('L,] = 1, 2)
element of M.(2 X 2), and where

GG
o11 012

2(2X2) = l: ) (i)]
a2 022

fori =1,2,---, k and
2(2X2) = ["“ "”].

g12 02

For the equations (2.3.9) to hold we must have either,

oif /o2 = oit / off = =aif /o =on/on =01,
and

o /o =oid )on = =on /oy =on/on=c,
or,

A,A: = aJ(n), ('L = 1; 21 R k)

where a; is a scalar constant. These latter conditions on the submatrices of the
design matrix are too restrictive and unrealistic, so that, for a perfectly general
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design matrix, the former conditions hold necessarily if =* = M; X M,, and
they are verified to be equivalent to the conditions, 2; = ¢i2, fors = 1,2, -- - , k,
where o} are certain positive constants. The proof of the necessity of the condi-
tions for general p follows exactly along the same lines.

We have thus set up, for reasons of easier mathematical treatment, the
restricted multivariate Model II mentioned in section 2.1, and under this re-
stricted set-up we have, for X(p X n), the distribution

"\ (—pn/2) (—n/2) (—p/2)
(23.10) (27) 13|

k
Zl ot A A7 + I(n)

- exp [— %tr =X — B(X)) (g A AL+ I(n))"(X' - E(X'))] X,

since |2*] = [Mi(n X n) -X Ma(p X p)| = |[M:|*| M:|" by [5].

Next, suppose that Q; (n X n) (¢ =0, 1, - - - , k). is a symmetric at least posi-
tive semi-definite matrix of rank n; (=n) such that E(X)QE(X’) = 0(n X n);
then, we have, under the multivariate Model II,

A (p X p) = %E(X@X’)

7 7
X Qixy, -, X1Q: X,
1

’ ’
X Qi Xy, X Qi X,

(2.3.11) =_F
e
xPQixl)“';prixP

k
= ;’:— [2:1 tr (Aj A; Q,) Ej -+ (tI’ Q,) E] y
i =
by using Lemma 3 of [10] and simplifying,

k
L [Z i tr (4; 4] Qi) + tr Qi] 2(p X p),

- N Lj=1
for the restricted multivariate Model II.

Also, if (1/A)8: (p X p) = (1/n;) XQ:X' has a central pseudo-Wishart
distribution with degrees of freedom n; ( = rank of Q;) then, under the restricted
Multivariate Model IT where X(p X n) has the distribution (2.3.10), we have

E(8:) = M2 = Ai (p X p),
so that, from (2.3.11),
i
(2312) A= —1- [E d? tr (A] A]’ Qw) + tr Qz] .

n; Li=1

Again, under the restricted multivariate Model II, if we apply the conditions
(@), (B), and (v) of Lemma 3 (remembering that B(n X n) of (2.3.6) is now
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k
replaced by E or A AL + I(n)) to the (K + 1) matrices (1/X)So, ---

(I/A) Sk, and then require, as in the univariate case discussed in [10,
Sectlon 2. 3], that these matrices satisfy the conditions («) and (y) for all
o, -, 0, we have, after some simplification,

Q; AzA;Qi = I:nl tr 4, A, Qi:, Q:,
(2313) l = 1) 2: yk) (7’ = 0} 17 T 7k)}
2 |1 ) )
Qi - [E tr Qz:l Qz [
and
(23.14) Qi4:41Q; = 0(n X n), 1=1,2---,k Q@ =0(n X n)

fori=j=0,1,-.---,k.

It is seen that these conditions, (2.3.13) and (2.3.14), are exactly the same as
those obtained for the univariate problem [Cf. (2.3.4) and (2.3.5) of [10]]. Thus,
for a given design matrix A(n X m), the same @y, Q:, - -, Qx which satisfy
(2.3.4) and (2.3.5) of [10] for the univariate case, also satisfy (2.3.13) and
(2.3.14) under the restricted multivariate Model II set-up. Also, for given
Qo, Q1, -+, @, the same design matrix A(n X m), which satisfies (2.3.4) and
(2.3.5) of [10] under the univariate Model II set-up, also satisfies (2.3.13) and
(2.3.14) under the restricted multivariate Model II set-up.

We shall next present a tie-up, for the multivariate restricted k-way classifica-
tion, between the analysis under Model I and the analysis under Model II.

2.4. Tue-up between the analyses under the multivariate Models I and II for the
restricted k-way classification. We recall from section 1.2 that, under the multi-
variate Model I, we can obtain k¥ matrices due to the k testable hypotheses of
equality of the row vectors of £:(m; X p) (¢ = 1,2, -+, k), which can, by
analogy with (1.2.1), be written as

Hoi : C((m: — 1) X m)E(m X p)

=[Ca Ca lg where 7 = rank(A)
1] m —r = m — k —I— 1
k
(2.4.1) wdm=§m,
I S 1) 0 —1
ookuwl 0 —1,0 |---]0|-¢
= (mi —_ 1) I | . .
\‘100 1 -1
my My - m; oo My

= 0((m; — 1) X p),
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so that rank (C;) = (m; —1) (¢ = 1,2, --- , k). As in section 1.2, we can obtain
k matrices due to the I hypotheses Hy, , Hos , - - - , Hoy. , viz.,

(24.2) XA (A7A7)7'Ci [Ca(ArAr) 70l ™ Ca(Ar4,) " ALX!

fori = 1,2, --- , k, and these matrices are symmetric and at least positive semi-
definite of rank, almost everywhere, min(p, (m; —1)). We have, also, the matrix
due to error

(2.4.3) X[I(n) — Ai(AA) T AX!

which is symmetric positive definite (almost everywhere) since we assume in
the model that p = (n — r), where for the restricted k-way classification r =
(m — k+1).

Now, under the multivariate Model I1, in the notation of section 2.3, suppose
we take noSy = XQoX’ as the matrix due to error given by (2.4.3) with ny =

(n—r)=m—-—m-+Lk—1),and n;8; = XQ: X', forz =1,2, ---, k, as the
malrices due to hypothesis given by (2.4.2) with n; = rank (Q;) = (m; —1).
Notice that Z n; = (n — 1) < n. Itisseen that these @,, 7 = 0, 1, , k,

are the same as those for the univariate case [Cf. section 2.4 of [10]]. We may
verify that all these @.’s are such that E(X)Q.E(X’) = 0(p X p) under the
multivariate Model IT and hence we can obtain that

] !
(2.4.4) Ai(p X p) = EE(XQiX )

= V; Ei + E,
for the general multivariate Model II, where

- 2 sum of the elements a,lolng and below the diagonal of
Com — 1) [Ca(Ar Ap)7'Cul™
= (vio; + 1)Z,
for the restricted multivariate Model I1, (+ = 1,2, --- , k), and

1
Ao = ——-E(XQO X’) = Z.
o

Therefore, under the restricted multlvarlate Model IT, we have, for the above
Q:(n X n), that

(2.4.5) N=vor 41, i=1,2 -, kand A = 1

If now, under the restricted multivariate Model 11, we apply the conditions («),
(B8), and (y) of Lemma 3 to the set of matrices (1/Ao)So, (1/A)Si, -+,
(1/A) Sk, taken as above, we notice that they all satisfy (8) so that their dis-
tributions are all central (if they are pseudo-Wishart at all). Furthermore,
(1/X)Ss = 8o (by 2.4.5)), where 7Sy, the matrix due to error, can be seen to
have the central pseudo-Wishart distribution (in fact, the ordinary Wishart
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distribution, since S, is positive definite here) with degrees of freedom 7, , and
to be also distributed independently of (1/X;)S; for ¢ = 1, 2, --- , k. Also, by
applying (a) and (y) of Lemma 3 to (1/A:)8; (¢ = 1, 2, -, k), we observe
that they are distributed mutually independently in central pseudo-Wishart
forms with respective degrees of freedom ny, ns, - - - , ni , if and only if,

(246) CalArdnTCa= i—i[l(mf — 1) + J((m: — 1) X (m; — 1))],

and
Ca(A1A1)7'Ch = 0((m; —1) X (m; —1)),
(7'#.7 = 1’27 7k),

where we recall that /(p) denotes the identity matrix of order p and J(p X q)
denotes a matrix of p rows and ¢ columns all of whose elements are equal to
unity. The conditions (2.4.6) and (2.4.7), which are independent of the un-
known variance components, are the same as (2.4.5) and (2.4.6) of [10] for the
univariate case.

Recalling the remarks toward the end of section 2.3, we observe that these
conditions, (2.4.6) and (2.4.7), are both satisfied by the multivariate analogues
of the usual univariate complete block designs.

Finally, it may be seen from (2.4.4) that we can take (1/».) (S: — S,) as
an unbiased estimate of Z; (p X p), fori = 1, --- , k, and Sp as an unbiased
estimate of Z(p X p). We may, therefore, use c[(1/v;) (S: —So)] as estimates
of ¢(Z;) and ¢(8p) as estimates of ¢(Z).

2.5 Tests of hypotheses on the multivariate variance components. The usual null
hypotheses may be stated as

(2.5.1) Ho: Zi(p X p) = 0(p X p), or, equivalently, ¢(Z;) = 0,
fore =1,2, -+ k.

(2.4.7)

It is easily seen, from (2.4.4), that for the restricted k-way classification Hy; is
equivalent to A«(p X p) = A(p X p) (¢ = 1,2, --- , k), or, for the restricted
multivariate Model II, to the hypotheses A; = N (¢ = 1,2, - -+, k). The alter-
native to this last form is taken to be Hi;:  A; > o . Assuming that the restricted
k-way classification has matrices like (2.4.2) and (2.4.3) which satisfy both
(2.4.6) and (2.4.7), we have, by definition of the pseudo-Wishart distribution,
that XQuX' = Yo(p X n0)Yo(ne X p) and XQ.X' = Yi(p X n)¥'(n: X p)
(¢ =1,2,---, k), where Y, and ¥, have the joint distribution

const. exp [—% tr 3! {il‘ Y, Y, + )\l Y, Yﬁ}] dYodY,
0 i

and where E(¥,Y) = n\= and E(Y.Y!) = n.Z.
Consider a’ (1 X p)Yo(p X m) and a’ (1 X p)¥i(p X n;) for all nonnull
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a(p X 1). Then, (l/no)E(a’YoY(',a) = Ma’Za and (l/ni)E(a’YiY,'-a) = \a'Za.
For testing A\; = A against A; > Ao we may take as critical region

a’Yi Y: a / n;

v s > .
Yo Ve e 2 Fo(n; ,m),

Wia : Fo(ni,mo) =
where F, (n;, n) is the upper 100a % point of the central F-distribution with
n; and no degrees of freedom. Taking, w; = Mawi., as a critical region for the
hypothesis (2.5.1) we obtain that

W;:  Cmax (SiS(_)_l) = C:x (p, n;, no)

which is seen, from (1.2.4), to be the critical region of the test, at a level a*, for
the hypothesis (2.4.1) under the multivariate Model I discussed under Section 1
of this paper.

It must be noted that the above arguments for deriving a test were made
solely to obtain, for the customary null hypotheses under the restricted multi-
variate Model II, if possible, a critical region which is the same as the one for
the customary null hypotheses under the multivariate Model I. The use of the
union-intersection principle to obtain w; from w;, is rather artificial since we do
not have Hy; itself as an intersection of hypotheses Hy;, .

2.6. Confidence statements. We shall first assume that we are dealing with
restricted k-way classifications that have matrices like (2.4.2) and (2.4.3) satis-
fying both (2.4.6) and (2.4.7). As observed before, the multivariate analogues
of the usual univariate complete block designs satisfy these requirements. Under
the restricted multivariate Model II, we shall then obtain simultaneous con-
fidence bounds on o3, ---, of and ¢(Z). Next, we shall relax the condition
(2.4.7), i.e., we shall not require that the pseudo-Wishart distributions of the
matrices like (2.4.2) in our analysis be independent. Under this relaxation, we
shall obtain an alternate set of confidence bounds for the individual
os (i=1,2,---, k).

If (1/A)8:(p Xp)=(1/nx)XQX',fort=0,1, --- ,k, haveindependent
central pseudo-Wishart distributions with respective degrees of freedom 7o, 7,
- .- and n , then, by definition, we have (1/n;)XQ.X’ =

(1/n)Y: (p X na) Yi(ni X p),
fort = 0, 1, ---, k, where the joint distribution of Yo, Yy, ---, Yy is
k
—[p(r—D]/2 | |—(n—-D/2 _a -1 v .
(2.6.1) (2m) 2| exp[ z tr2 {12;0 Y, Yl}i' dY, ay,,

— o < all elements of V; < «,
1=0
and where E( Y,-Y;) = n;Z(p X p) and > ni= (n — 1). It is well known
k
that, for the symmetric positive definite matrix Z, there exists an orthogonal
matrix, T(p X p), such that Z(p X p) = I'D,T, where the p (non-zero) ele-
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ments of the diagonal matrix D, are the p (positive) characteristic roots of =.
Now making the transformation

(2.6.2) Dyyy TYi(p X n:) = Zi (p X ni), (=01, ---,k),

we can verify that the Jacobian is |Z| “ ™", so that, the joint distribution of
Zo,le, ,ZkiS

k
' o)~ PB-DIE [_; " { Z: Z:}] dZ, --- dZ
(263) (2r) R A ;0 ’ ©

— o < all elements of Z; < «.

From (2.6.3), it can be seen, by analogy with the methods used in [8, 9, 12],
that we can obtain constants, i (P, ni, i) = pa (say) and pu(p, n:, a;) =
uiz (say), forz = 0,1, - - -, k, such that the statement

(2.6.4) pia £ Cmin(ZiZi) S Cmax(Z:iZ:) £ pas

has probability (1 — ;) and the probability of statements like (2.6.4) holding
simultaneously forz = 0,1, --- , kis (1 — a) = H'Lo (1 — a;). We note that
ZoZs = (no/No)Dyvy TSeIDyvy , where noS, (p X p) is the matriz due to
error given by (2.4.3) and is symmetric positive definite. Therefore, starting
from (2.6.4), with £ = 0, and reasoning exactly as in section 1 of [9], we obtain
the confidence statement

(2-65) @Cmux(SO) g cmax(z) g Cmin(z) ; @cmin(SO)
Kol Ho2
with confidence coefficient =(1 — ay).
Next, forany ¢ = 1, 2, -- - , k, we note that (2.6.4) is equivalent to

(2'6~6) Mi1 = ;—Licmin(Dll‘y FSz F,) é ;1@ cmax(Dl/‘yI‘SiI‘l) é K2 -

However, it is known that the non-zero characteristic roots of A(p X ¢q)
B (g X p) are the same as those of B(q X p)A(p X q) and that cmi.(4:)
Cmin (Ag) = all ¢(A142) £ Cmax(A1) Cmax (A2) where A; (p X p) is symmetric
positive definite and A,(p X p) is symmetric at least positive semi-definite.
[Ct. pp. A-5 and A-7 of [12] for proofs.] Using these two results we have

?min(ﬁi) cmax(Si)

T - I d max I‘gz I‘,D / = < )
cmin(z) an ¢ ( ' 1/7) - cmax(z)

Canin(T8S: 1" Dyyy) =

50 that, (2.6.6) implies the statement

i Cunax(S))

N\ < Ecmin(si)
M2 cmax(z) - ¢

2.6.7 =
( ) M1 cmin(z) ’

which, therefore, has a probability = (1 — «;).
Tuking the statement (2.6.5) together with all statements like (2.6.7) for



ANOVA IN ONE OR MORE DIMENSIONS: II 337
i=1,2, -,k we obtain the simultaneous statements
o Mo
- Cmin(SO) é cmin(z) é cmax(z) _S_- —_ cmax(SO)
Ho2 Mo1

ﬂ cmax(Sl) < n cmin(Sl)

= )\l _S_ - =
(2.6.8) Hi2 Cmax(Z) Mi11 Cmin(z)

ﬂcmax(sk) < )‘k < ﬂ cmin(Sk)

1277 cmax(z) 12751 Cmin(z)
with a joint probability = (1 — &) = JTio (1 — aj).
Recalling now, from (2.4.5), that A\; = vo: +1(=1,2 ---,k), and using
the leading statement in (2.6.8), we obtain the further statements implied
by (2.6.8)

™ nin(80) < Cain(Z) S Cmux(Z) = 2 Crux(iSo)
o2 Mo1

1 [nl Kho1 Cmax(S1) _ 1] < 2 1 [m Moz Cmin(Sl) _ I:I

(2~6-9) ;I Mo K12 cmax(SO) =7 ;1 7—7;) ;1_1 Cmin(So)

IIA

IIA

1 [nk Mo1 cmax(sk) _ 1] < 2 1 [nk Ho2 cmin(‘sk) _ 1]

— | =% I8 TmaxA R/ < o1 | ==
Vi L0 Mi2 Cmax(So) Vi LT0 Mk1 cmin(SO)

which, therefore, are a set of simultaneous confidence bounds on 01, 08,
o and all ¢(2) with a joint confidence coefficient = (1 — «), for a preassigned a.
These simultaneous confidence bounds on the set of ¢(Z) and of, ---, ok
are obtained on the assumption of independence between (1/X;)S;
(for¢ = 1,2, -- -, k). If this assumption were relaxed we would still be able to
obtain individual confidence bounds on o}, ---, ot and the set of all ¢(Z),
although the simultaneous confidence bounds in this situation would be far more
difficult to obtain.

We shall next obtain the alternate set of separate confidence bounds for
oi, 05, - and of . -

If Yo(p X no) and Yi(p X n;), where p < no but may be Z n;, are such that
rank (YY) = p and rank (Y,Y:) = min(p, n.), and further if ¥y and ¥ have
the joint distribution

(2.6.10) (2m)~ 2ol | 5 —(rotnd 2 gunl 1ty Y Yo + Y YdY,dY

where Z(p X p) is symmetric positive definite and E(Y,Yo) = noZ, E( YY) =
n;Z, then, Rao [7], in continuation of the work of Bartlett and Wald, has shown
that, for large m;, —m; log.A; has the central x’-distribution with pn; degrees
of freedom, where

|Yo Yol

2.611 A’\i = N U UT
( ) YoV + Y,V

p+7%i+l:]

and m; = I:no + n; — 5
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Hence, we can find xi., and xia ; such that the statement
(2.6.12) Xia; < —milogA; £ Xia, ,
or, equivalently

Me; S A S K2, [:U'la,' = exp(—%xgai), K2a; = exp("%x‘fa,,)l,

has a probability (1 — «;) for a preassigned «; .

Under the restricted multivariate Model 11, for a restricted k-way classifica-
tion, if we take the matrices (1/A0)So, (1/A1)S: , ooy (1/M) 8k as in Section
2.4, then we have seen that (1/A).S, is distributed in the central Wishart form
with no degrees of freedom and it is distributed independently of (1/A\)S,, - -,
(1/M)8i . We have, also, by (2.4.5), that A\; = via> + 1 (z=1,--+, k) and
Mo = 1. Further, if (1/A)S1, ---, (1/M\)S, satisfy the condition (2.4.6), so
that they have central pseudo-Wishart distributions with degrees of freedom
n, -+, m (even though these may not be independent), then, by definition,
we can write noSo = Zo(p X n0)Zy(ne X p) and

(ni/N:)Si = Zi(p X n)Z.(n; X p).

The joint distribution of Zy and Z; is then of the same form as (2.6.10), and, by
analogy with the statements (2.6.10) — (2.6.12), we can find, for large m;,
constants (depending on a central x’-distribution with pn; degrees of freedom ),
#1a; and paq, , such that the statement

(2.6.13)

or equivalently,

L Z [6:8: 87 + I(p)l = 1 ,
#lai M2,

(2.6.14)

where {; = (n;/n\;) > 0, will have a probability (1 — ;). If rank (8;) =
min (p, n,) = s; (say), then (2.6.14) is seen to be equivalent to
RS Z ()" 1, (8 857) 4+ (60" tre,a(S: S5Y) + - -
(2615) M

(S ST 12 L

M2,

where tr,(4) denotes the sum of all sth order principal minors of A. Using
certain matrix factorization theorems given in [12, pp. A-15-A-17], we can
prove that tr,(S:Ss') = tr, [a symmetric at least positive semi-definite matrix|
> 0 for s = s;. Hence, all the coefficients of powers of ¢, in the middle part of
(2.6.15) are real and positive. Next, since |{:8:85" + I (p)| > 1, in order that
the bounds in (2:6.15) may be non-trivial, we should have 1/us,;, > 1.
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Considering now the equality signs in (2.6.15), we obtain the equations

) 1
(£:)" tre, (85 85") + -+ + ¢atr (SiSg") — <7 - 1) =0

(2.6.16) I
(€)% trs,(S: S5 + -+ + ot (8: 85" — (_ - 1) = 0.
la;
From well-known results in the theory of equations, it now follows that the
equations (2.6.16) each have one and only one positive real root. Let these posi-
tive real roots be denoted by 6., and 6., . Then it is seen that (2.6.14) or
(2.6.15) is equivalent to

(2.6.17) olai g g‘z ; 02a¢

with a probability (1 — «;). Recalling that {; = (n:/ no\;) and \; = vio; + 1,
we see that (2.6.17) is equivalent to the confidence interval statement

(2.6.18) 1—[ L —1]§a‘:§gl[ T —1]

Vi nf)ola, 4 4 714)0201,'
with a confidence coefficient (1 — «;), for a preassigned ;. We thus have, for
i =12, ---,k, separate confidence interval statements for each of 01,05,

and o7 , but, due to the complexity of the distribution problem involved, it would
be far more difficult to obtain simultaneous confidence bounds on o3 , o3, - - -,
and o} by this method. Nor would the difficulty be appreciably reduced, under
this approach, even if we assumed that (1/X\:;)S/s (for¢ = 1,2, ---, k) were
independent as we did under the first approach.

2.7 Concluding remarks: After the work presented in this paper and in [10]
had been completed, it was brought to the attention of the authors that Bose
[1] has, for the univariate case, given a general treatment, using slightly different
methods, of a mixed model with one set of random components. A very recent
paper by Zelen [13] also has some results, for the univariate case on a mixed
model with one set of random components as applied to Incomplete Block De-
signs, which are contained in [10].
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