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By RuperT G. MILLER, JR.

Stanford University

1. Introduction and summary. In a priority queue different types of items
(individuals or elements) arrive at a service mechanism and each item has a
relative priority for order of service. Let there be K classes of items, 1,2, -- -, K.
If the service mechanism is to select an item for service, a type ¢ item will be
selected in preference to a type j item for ¢ < j even if the type j item arrived
before the type ¢ item, and within each class the “first come, first served” policy
determines the order of service. When a type j item is in service and a type ¢
item arrives (¢ < j), there are two primary disciplines for handling the priority
demand. The ‘“head-of-the-line”’ discipline allows the type j item to complete
service but places the type ¢ item ahead of any other lower priority items. The
“preemptive” discipline withdraws the type j item from service and replaces it
by the type 7 item. Under the preemptive scheme the only time at which a
type j item (1 < j) can be in service is when there are no items of types 1, - -,
j — 1 in the queue. When a lower priority item which has been preempted re-
turns to service, the preemptive discipline must distinguish two cases. The
“preemptive resume’’ policy allows the preempted item to resume service at the
point at which it was preempted so that its service time upon reentry has been
reduced by the amount of time the item has already spent in service. The “‘pre-
emptive repeat’’ policy requires the preempted item to commence service again
at the beginning. A priority queue with an indifferent server is of course a special
case of the preemptive resume discipline.

In the special case K = 2 the type 1 items will be referred to as priority items
and the type 2 items as non-priority items.

It will be assumed throughout this paper that the input process for type ¢
items, ¢ = 1, ---, K, is Poisson with arrival rate A; and the input processes
operate independently. The service time distribution for a type ¢ item (in iso-
lation) will be denoted by Fg, and unless explicitly stated to the contrary will
be assumed to be general subject only to the restrictions Fg,(04) = 0 and
E(8;) < «.Let p; = M:E(S,), and let S; be the Laplace-Stieltjes transform of
Fs, . The service mechanism consists of a single channel or server.

A. Cobham [1], [2] introduced the head-of-the-line priority queue and derived
equilibrium expected waiting times. Subsequent contributions have been made
by Holley [3], Kesten and Runnenburg [4], [5], and Morse [6]. The first published
results for the preemptive discipline were by H. White and L. S. Christie [7],
and additional results have been presented by Stephan [8]. Koenigsberg [9] has
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generalized the priority model to a continuous number of priority types with
application to machine breakdown problems.

Under various assumptions in this paper the following quantities have either
been obtained explicitly or characterized as the unique (subject to regularity
conditions) solution to a functional equation: the generating function for the
stationary probabilities on the number of priority and non-priority items (K = 2)
in the queue, the Laplace-Stieltjes transforms of the waiting time distributions,
the Laplace-Stieltjes transform of the distribution of a busy period, and the
generating function for the probabilities on the number of items serviced during
a busy period. For most of the distributions mentioned the first two moments
are computed.

2. Stationary distributions of the number of items in the queue (K = 2). For
completeness the results of White and Christie [7] and Morse [6] are summarized
briefly.

For Poisson arrivals and exponential service the queue process is a continuous
time parameter Markov process. If P is a stationary distribution of the queue
process, it must be a solution to the forward steady state equations which,
symbolically, can be represented as PA = 0 where 4 is the infinitesimal matrix
of the process. If the system of equations PA = 0 has a unique solution (subject
to the condition it be a probability distribution) and a stationary distribution is
assumed to exist, then algebraic manipulation of the equations PA = 0 will
yield a characterization of the stationary distribution or its generating function.

For the preemptive priority queue with K = 2 White and Christie employ
this method to obtain the generating function and thereby the first and second
moments. Let u; and u. denote the service rate parameters for the priority and
non-priority items, respectively. Justification of a non-priority Poisson service
process with the parameter u, from assumptions on the non priority service
process in isolation is discussed in detail in [7] with regard to the resume and
repeat disciplines and the indifferent server queue.

If py + p2 > 1, the queue will become saturated with items and no stationary
distribution will exist so the equilibrium condition p; + p; < 1 is assumed.

Let P.n be the stationary probability that there are n priority and m non-
priority items in the queue and P(s, t) = D n.m Pnms"t™. That P, is uniquely
defined is evident from inspection of the equations.

(1 — pr — p)pe(t™! — 1)
[wal®) — M — M1 — ) — w1 — t)][1 — a(®)s]’

(2.1) P(s,t) =
where

(2.2)

cx(t) - M + )\2(1‘ - t) + M1 = \/()\1 + )\2(1 - t) + #1)2 - 4)\1l-¢1
2u1 )
The moments of the number of priority items in the queue are the same as
those for priority items in isolation; e.g.,
2P§ PL
23 E(n) = -2, E(n®) = .
(23) M=% PO =gyt a-m
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The moments of the number of non-priority items in the queue can be evaluated
from (2.1).

e HG R

5 201(\e/p1)* pa w( o \T

(24)  B(m’) = (1 = p)*(1 — p1 — p2) + A — p1 — p2)? [1 + M (l - p1>:|
+ pe(1 — p1)® + p1(Ne/w1)® + p1(1 — p1) (1 — p1 + p2) (Xz/m)

1 = p)%(1 — p1r — p2)?

For a head-of-the-line priority queue with exponential service (u;, u2) Morse
([6], Ch. 9) has derived the generating function and first moments of the sta-
tionary probabilities through the same technique.

p(l — s — p1 — p)
M1 = 8) + a1 = &) + md — s

P(s,t) =

2.5
. + Pay(8) M+ Me(1 — 2) + palln(1— s71) — (1 — £7Y)]
M = 8) + 21 = ) + welM@ — 8) +Ne(l — &) 41 — 5]’
where
Py(t) =
1 — p1 = pal\a + Ne(1 — 8) — (D1 — p2) 1+ Ne(1 — 8) + p2)
(2.6) - N m]

P+ N = 8) 4 palAapa b — (o1 — p2)t\1 4+ N1 — ) + po)
+ pe(ua(1 — a(f)) — po)l

(27) E(n) = 2 [1+2 ]
(2.8) E(m) = ,,1-)\-31 [?j o f/:]

The previous technique is not applicable for a head-of-the-line priority queue
with Poisson arrivals but non-exponential service since the number of items in
the queue no longer has the Markov property. The Markov property can be
restored by reducing the continuous time parameter process to discrete time.
This technique was introduced by D. G. Kendall ([10], [11]) and has been
utilized by others (cf. [12], [13]). A discrete time Markov process is generated
if the queue process is observed only at those points in time which are the
termination points of a service period—priority or non-priority. The state of
the queue is (n, m) where n is the number of priority and m the number of
non-priority items in the queue (at the end of the service period). Since both
priority and non-priority arrivals are Poisson the discrete time process has the
Markov property.

The behavior of the Markov chain “imbedded” in the continuous time process



PRIORITY QUEUES 89

is determined by the transition probability matrix which is expressible in terms
of p;; = probability that ¢ priority and j non-priority items arrive during a
priority service period and ¢;; = probability that ¢ priority and j non-priority
items arrive during a non-priority service period.

. 4 i
Pij = f e—(h+)\2)t ()\1 t) (>\2 t) dFsl(t)
o ¢! J!

S0
P(st) = Z Pi:‘sitj = 8i(M(1 — ) + M(1 = 1)),
%)
and
® M) (At)’
g = fo ¢ o ( ;!) (;!) dFs, (1)
80

Q(s, 1) = 2 giis't = Ba(M(l — 8) + (1 — 1)).
%
Let P{(n, m) — (n', m')} be the probability the queue moves from state
(n, m) to state (n’, m') in one transition. In terms of the p,;, ¢i;, the

P{(n, m) — (n', m")}
are
(1) P{(n,m) = (n',m’')} = 0forn’ <n —1,n > l,all m, m’,
(2) P{(n,m) = (n',m')} =0form’ <m,n = 1, alln,
(29) 3)P{(n,m)—>(n—1+14im-+j7)} = pijfors,j =0,n = 1,allm,
(4) P{(0,m) — (n,m’')} =0form’ <m — 1,alln,
(5) P{(O’ m) - (i’m -1 +j)} = q,-,-fori,j = 0’ m > O’
(6) P{ (O’ 0) - (7" .7)} = mipsj + T4 for %.7 = O’
where 71 = M/(M + A2) and 72 = Ay/(M + A2). The transition probabilities
under (6) have their special form because if the state is (0, 0) the queue is next
observed at the end of the service period for the first arrival so the probability
of the new state (n’, m') depends on which type of item was first to arrive.
The state (0, 0) is ergodic if the equilibrium condition p; + p. < 1 is satisfied.
Since the proof of this is analogous to those in [13] and [14] for different queues,
it will be omitted. The ergodicity of the state (0, 0) guarantees the existence
of the stationary distribution for the imbedded Markov chain.
The stationary probability of there being » priority, m non-priority items in

the queue will be denoted by m.. . By definition, the stationary distribution
7 = {m..} must satisfy the system of equations

(2.10) Tarm = 2 TamP{(n, m) = (n/, m')}, all n', m'.
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From (2.10)
(2.11) (s, t) = ) 2 manP{(n, m) > (', m')}s™ ™

which, when simplified, gives the following expression for = (s, £):
w(s, t) = [ro(mP(s, t) + 7Q(s, t) — £7Q(s, t))
+ m()(7Q(s, ©) — s7P(s, IL — s7P(s, O,

where m(t) = D_m momt™ is analogous to Py(t) of (2.5).

To determine (s, t) it is necessary to determine m(¢). This can be accom-
plished by imbedding a second Markov chain within the original imbedded
Markov chain. The second Markov chain is defined by taking cognizance of the
state of the process only at those time points which are the termination points
of a service period leaving 0 priority items in the queue. The state of the queue
is (m), the number of non-priority items in the queue. This Markov chain is
imbedded within the original chain since a trial for the second chain occurs at
the end of a service period only if there are 0 priority items left in line whereas,
previously, the termination of any service period constituted a trial.

Let P{m — m'} denote the probability of moving from state m to state m’
in one transition. For m > 0,5 = 0,

(2.12)

P{m—m —1+j} = P{m—m — 1 +j, no priority arrivals in interim}

+ P{m —m — 1 + j, priority arrivals in interim}

Fi © @ n i
= qo; + Z l:f e-(M+)\z)u (>\1 u) (>\2 u) ngz(u):I
0

1=0 n=1 n! Al

[ o a2 are ) ]

F is the distribution of the busy period (see [15] or Section 4) for priority items
in isolation and F§" is its n-fold convolution. If

P(t) = ioP{m—am — 14 4¢
1=

for m > 0, it is readily verified that
(2.13) P(t) = B(M(1l — BOu(1 — 1)) + M(1 — 1))

where B is the Laplace-Stieltjes transform of Fj .
Form =0,7 =0,

P{0 —j} = P{0—j, first arrival is priority}

o i
+ P{0 —j, first arrival is non-priority} = 1 fo e Q‘%}‘—)— dFs(u)
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J 0 © n l
+ 2 Z [:f e—()\1+)\2)u (Al ";‘) ()\2 u) dF,g,(U)]
0 n:

1=0 n=0 !

. [ fo P 8."_”); de;"(v)J ,

where F© is the distribution which concentrates its total mass at 0. If

Q) = >; P{0 — it
then
2.14) Q) = nBO(L — 1)) + rafa(a(l — BOa(l — 0))) + M1 — ).

Let my be the stationary probability of there being m non-priority items in
the queue (for the second imbedded Markov chain). Algebraic manipulation of
the system of equations

(2.15) T = D maP{m — m}, all m’

yields the following expression for #°(£) = D _meo mut™:
(2.16) 7(t) = mQ(t) — P — P

3 determines the normalization for the distribution #°. If the second Markov
chain is to be viewed as imbedded within the first, the proper normalization is
7y = me which implies 79 = mom for all m. Hence,

(217) m(t) = mlQ(t) — £P(OIIL — P
In conjunction with (2.12), (2.17) yields
7(s, ) = mo[l — s7P(s, )] {nP(s, t) + 7Q(s, t) — £Q(s, t)
+ (t7'Q(s, 1) — sTP(s, )L — TPWOITRE) — TP®)]}

7o is determined by the restraint (1, 1) = 1; 7m0 = 1 — py — p2.
The first moments of » and m (and also higher moments) can be calculated
from (2.18).

(2.18)

Ailr E(81) + 2 E(83)]

(219)  E(n) = nilps + p2) + 200 = o)

.

E(m) = 1’2(p1 + Pz)

(2.20) + Nelr1 E(S1) + 72 E(S3)] l:)\z(m + w) + p1(1 — oy — Pz)]
T om (I —p1— p2)(1 — p1) ’

From (2.18)-(2.20) it is apparent that (2.18) does not agree with (2.5) when
the service times are exponentially distributed. As more complex queues are
studied, it becomes clear that the stationary distributions for the imbedded
Markov chain and general time ¢ are identical only for the simpler queues. For
example, a similar discrepancy is noted in [13].
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It might be hoped to duplicate this analysis for the preemptive priority queue.
However, there does not exist a natural imbedding procedure for the preemptive
queue. The only method of avoiding incorporation of an additional time quantity
into the definition of the state would be to observe the process just at the termina-
tion of service of a non-priority item. But this is a one-dimensional queue and is
of no significance.

For those one-dimensional queues in which the arrival distribution is general
and the service exponential the natural imbedding considers those times at which
a new arrival enters the queue. For a priority queue with general arrival distribu-
tions this imbedding pattern leads to a non-Markov process unless the time to the
last arrival of the other type item is incorporated into the definition of the state.
The addition of this extra time variable prohibits any simple analysis.

3. Waiting time distributions. The waiting time of an item is defined to be the
length of time the item must wait in the queue before it is taken into service. The
time an item spends in service is not included in the waiting time. For a priority
queue with head-of-the-line discipline the time in service of an item is just the
length of its service period, but for the preemptive discipline the term “time in
service”” will mean the total time from the moment the item first enters service
to the moment it completes service including those periods of time in which it is
waiting for reentry into service after having been preempted.

The equilibrium condition 1 — p; — -+ — pg > 0 will be assumed through-
out this section so that it is meaningful to discuss stationary distributions. The
discussion for general time ¢ also applies to the transient case.

The method introduced by D. G. Kendall for the single class queue can be
applied to derive the Laplace-Stieltjes transform of the steady state waiting
time distribution for a priority item in a head-of-the-line priority queue (K = 2).
Suppose an item has just completed service. Since the queue is assumed to be
operating in a state of equilibrium, with probability = the item was a priority
item and with probability 7, the item was non-priority. If the item was a pri-
ority item, the number of priority items remaining in the queue must be the
number which arrived during its waiting time and service period. If the item
was non-priority, the number of priority items in the queue is just the number
which arrived during its service period. The probability there are n priority
items remaining in the queue is 2 m—o Tam SO

mz=:0 Tam = T1 j; e—)‘lt _(_A_:_L_!tl_ dFW1 * Fﬂx(t)

(3.1) .
+r fo et 2L i, (1),

where F, is the waiting time distribution for a priority item and Fw, * Fg, de-
notes the convolution of Fw, and Fg, . From (3.1)

=y w((n—8)/M,1) — 728:(s)
(3.2) Wi(s) = AO)

?
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where W, is the Laplace-Stieltjes transform of Fy, . Substitution of the value
of #((M — 8)/M\1, 1) as given by (2.18) gives

The moments of W can be calculated from (3.3). In particular,
ME(SY) + e E(S3) .

(34) E(Wl) = bl
2(1 - Pl)
2y _ ME(SD) +ME(S) | MESDME(SD) + M E(SH)]

The transform of the non-priority waiting time distribution can be obtained
by adaptation of the results of L. Také4cs [15]. For a simple, single class queue
with Poisson arrivals (A) and general service distribution Fs Takécs established
that the Laplace-Stieltjes transform W (s; t) of the waiting time distribution at
time ¢ is given by

-~ t -
(36) W(s;t) = gfler0=560! [1 —s f g NS g (ot ) du] ,
0

where S(s) is the Laplace-Stieltjes transform of Fs and Fy(0+; u) is the
probability the queue is empty at time u. The Laplace transform of F w(0F; u)
is related to B(s), the Laplace-Stieltjes transform of the busy period distribu-
tion, by

° 1
8% +, —
(37) [ e Fn05w du = gy
The transform of the steady state waiting time distribution is
0 1 a1 —=2E(S) .
(3.8) W(s) = %1:2 W(s;t) = T = 5@V

The waiting time of a non-priority item is the sum of two waiting times, Wi
and Wi*. W3 is the time required to service all priority and non-prioritgr items
already in the queue at the arrival of the non-priority item, and Wi is the
time consumed in servicing all subsequent priority arrivals which precede the
entrance into service of the non-priority item. As far as the waiting time of the
non-priority item is concerned, the following queue discipline could be in effect
at its arrival. Service all priority and non-priority items in the queue ahead of
the non-priority item at its arrival. Any priority arrivals occurring during this
time interval are refused service until the items initially in the queue have
been serviced—even if this means servicing a non-priority item in preference to
a priority item. After the initial group has been serviced, commence service on
the by-passed priority items and continue service until the queue has been
emptied of priority items. At this moment the non-priority item whose waiting
time is in question may enter service. W+ is defined to be the service time for
the by-passed priority items.
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If n priority items arrive during the W3 units of time, the distribution of W3™
is the same as the distribution of B, where B, is the length of a busy period
(see [15] and Section 4) for a one-dimensional queue with only priority items
in which there are n priority items initially. Thus,

(39) P{W, <z} = jo [i;o e—xlyﬂl;??;)fpwn <z-— y}]dP{Wz* <y,
and
(3.10) Wa(s) = Wi(s + M(1 = Bi(s))).

W3 is obtainable from (3.8) with the identifications A = A; = A; -+ A: and
S(s) = 85 (s) = 718:(s) + 78:(s). To a non-priority item arriving at the queue
the distinction between previously arrived priority and non-priority items is
immaterial. All are serviced ahead of the non-priority item and could just as well
be viewed as having the average service time distribution S: (s). Hence,

1 —p1— p

VT’f&(S) = 2 .
(3.11) Z::l N1 — 8i(s + M(1 — Bi(s)))]
' ST N = Bi)

Moments of W can be determined from (3.11) and the results for B(s) in
[15] or the next section.

' _ ME(SD +NE(S)
(3.12) E(W2) 2(1 — Pl)(l — p1 — p2) ’
B = MBS + M E(S) M E(ST) + N E(SD)Y

3(L = p)*(1 — pr—p2)  2(1 = p))*(1 — pr — p)*

M E(ST) M E(S1) + M E(83))
21 — )L — 1 — p2)

Kesten and Runnenburg ([4], [5]) have obtained an alternative characteriza-
tion of W, and W, . The first two moments as computed by their method agree
with (3.4)-(3.5) and (3.12)-(3.13). In addition, Kesten and Runnenburg have
derived a characterization for the transform of the steady state waiting time
distribution of any type j item for a priority queue with general K.

The method employed to characterize W(s) above can be extended to charac-
terize the waiting time transform of the lowest priority, type K item for arbi-
trary time ¢ and in equilibrium. Let Wg(t) denote the waiting time for a lowest
priority item if it were to arrive at time ¢. Wg(?) is the sum of two components,
Wix(t) and Wx*(¢), which are defined analogously to W and Ws*. The same
argument verifies that

PWk) s o) = [ [ T gty )™

RN ] nyi

(3.13)

+

(3.14) .
. g y)™ !

nx_ll

. IJ{BK—I:n1~-~nK_, =zr-— y}] dp{ﬂ/';(t) <y,
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where Bx_1.n,..-nx_,; 15 the length of a busy period for a priority queue with just
K — 1types1, ---, K — 1 which commences with n; type ¢ items, ¢ = 1, - - -,
K — 1, in line initially (see Section 4). In terms of Laplace-Stieltjes transforms
(3.14) becomes

(3.15) Wx(s;t) = Wr(s + Axa(1 — Bxa(s)); 1),
where Bx_;.:(s) is the transform of the busy period distribution for the K — 1
dimellsional priority queue which commences with a single type ¢ item in line
and B:_l(S) = Z:;_ll TiBK_l‘,'(S). AK—l = )\] + e + )\K—-l a,nd T = )\i/AK—-l ,
i=1,---, K — 1.

Bx_1,:(s) and Bx _1(s) will be characterized in the next section, and W ;(s; t)
can be obtained from (3.6) with the identifications

AN=Ax=MN+ -+ X,
(3.16) 8(s) = 8k(s) = nSi(s) + -+ + 7aSx(s),
B(S) = E:(S) = Tlgxl(s) + e + TngK(S)-
In the limit as ¢t —

(3.17) Wk(s) = lim Wx(s;t) = Wa(s + Axa(1 — Bxi(s))),

where
- 1—p— - —
ia) = — e
(3.18) 2N = Si(a)]
] —=
(64

Moments of the steady state waiting time can be computed from (3.17)-
(3.18) and the results of the next section.

K
Z N E(SY)
(319) E(Wx) = =1 N
2(1 - ; m)(l - Zl:ﬂz)
K
Z VACH
B(W}) = =

(-E (£
[i )\q-E(S?):r [i ma(s%)] [Ai x,-E(S%)]

(1 RO ()

This technique can also be applied to the preemptive ‘“resume’ priority queue
to characterize the waiting time distribution for any type item at general time

(3.20)

+

+
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t and in equilibrium. Let there be K priority classes and W;(t) be the waiting
time for an item in the jth class if it were to arrive at time &. The distribution
of Wi(t) is the same as for type one items in isolation since priority items pre-
empt any lower class ltems in servme The Waltmg time W;(t), 7 > 1, consists
of two components, W} (t) and W7 (t). WZ(t) is the time required to service
all items of priority <j which are in the queue at time ¢, and its La,place—Stlelt]es
transform is given by (3.6) and (3.7) with A = A;, 8(s) = §;(s), and

B(s) = Bi(s) = nBa(s) + -+ + 7:Bii(s).

B;i(s) and Bj(s) for the preemptlve resume discipline will be characterized in
Section 4. The distribution of W (¢) is unaffected by the presence of lower
prlorlty items because of the preemptive discipline, and since an item ‘‘resumes”
service after preemption, the priority discipline among the 1tems of types1, -+, J
could just as well be abandoned as far as the distribution of W7 (¢) is concemed
WI*(t) is the time required to service all arrivals of priority <j which arrive
after ¢ but before the type j item can enter service, and it is given by a convo-
lution of busy periods Bj_;,;,¢ = 1, -+, j — 1, where the degree of the convo-
lution is determined by the number of arrivals in the time interval (0, W; (2)).
Hence,

P{W;(t) <z} = .£ [,. DO )™ | ay)™

(321) e n! N1!
PBrsmnmes S = 3) | 4PV 5 0),

and

(3.22) Wils;t) = Wis + Aia(1 — Bia(s));0).

For the stationary case
323)  Wi(s) = limW;(s;1) = Wis + Aa(1 = Bia(s))),

where
1 — A;E(SY)

1— A; (———1 - f’?‘(“)).

The first two moments of W ; are given by (3.19) and (3.20) with K replaced
by j.

The quantity T';, the “time in service” of a type j priority item, is S; only
for j = 1 under the preemptive resume discipline. For j > 1

RN Y n1! nj—ll

(3.24) Wie) =

(3.25)
’P{Bj—l:nl.-.nj_l é xr — y}] dFs,(Z/)
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)
(3.26) Ti(s) = 8i(s + Aja(1 — BiLi(s))).
The first two moments of 7'; are
Y rpy E(S)
(3 27) E(IJ) = fj{rﬁ7
’ 1 - El Pi
E(Sf) E(S;)IME(S]) + -+ 4+ N E(ST0)]

+

(3.28)  B(T}) = o= e —
O RN

The preemptive priority queue with indifferent server is a special case of the

preemptive resume priority queue so the above results apply as well to the

indifferent server queue. The waiting time questions for the preemptive repeat
priority queue are for the most part still unsolved.

4. Busy period distributions. A queue is said to be “busy” or “empty”’ depend-
ing upon whether or not there is an item in service. The length of a busy period
is the length of time between the arrival of an item at the empty queue and the
first subsequent moment at which the queue is again empty. The technique
which will be used to characterize the busy period is an adaptation of that
introduced by Takécs [15] to solve the busy period problem for the simple queue
with a single class, Poisson arrivals (\), and a general service distribution Fg .
Takécs established that B(s), the Laplace-Stieltjes transform of the busy period
distribution, satisfies the functional equation

(4.1) f(s) = 8(s 4+ M1 = f(s)))
and is in fact the unique solution to (4.1) which satisfies in addition
(4.2) (i) f(s) analytic for Re {s} > 0, (ii) lim f(s) = 0.

8 real

Consider a priority queue with K priority classes and head-of-the-line disci-
pline. Bx; is the length of a busy period which commences with the arrival of
a type ¢ item, ¢ = 1, ---, K. Fp,; will denote the distribution function of Bg;
and Bgi(s) the corresponding Laplace-Stieltjes transform. Bk is the average
busy period in which the priority class of the initial arrival is not specified.
Fop = 1iFpg, + -+ + 7xlogg, and Br(s) = nBr(s) + -+ + rxBxx(s).

The equilibrium condition 1 — p; — .-+ — px > 0 will be assumed so that
Fpy, is a bona fide distribution. With modification the discussion applies as well
to the transient case.

Arrivals at the queue constitute a Poisson process with parameter Ag, and
given that an arrival has occurred the probability it belongs to priority class j
is 7; . At the end of the service period of the initial arrival there will be ny , - - -,
ng items of types 1, ---, K, respectively, in the queue. The busy period will
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be prolonged by the amount Bx..,...., which denotes a busy period commencing

with ny, -+, nx items of types 1, - - -, K, respectively, in line initially. How-
ever, the distribution of B.,...ng is just a convolution of the distributions
F§L, -+, FEE where Fiy) denotes an ni-fold convolution of ¥y, . Hence,
z 0 n '

P{B; Szl = f [Z Pt < (Axy) E _nl

(4:.3) 0 n=0 n! npeaag Ml ng!
: (Tl)m’ . (TK)"KI){BK:np..nK é T — :’/}:] dFS;((y);

and

where Fsp = nFs + -+ + 7xFg and Sk is its transform.
Bx(s) is the unique solution to the functional equation

(4.5) f(s) = 8x(s + Ax(1 = f(s)))

which satisfies the regularity conditions (4.2). The proof of this assertion can
be obtained from the proof for the simple queue [15] with the appropriate identi-
fications, but an alternative proof is presented below. This proof represents a
simpler proof of the result for the single class queue.

It is sufficient to show that (4.5) and (ii) determine f(s) uniquely for real
s > 0 since by (i) this determines f(s) in the whole half-plane. Suppose there
exist two functions fi(s) and f»(s) which satisfy (4.5), (i), (ii) but fi(s) & fu(s)
for real s > 0. Let s, > 0 be a point for which fi(s)) > fa(s) > O.
Since lim,.,, fi(s) = 0 and f, is continuous, there must exist an s, > s such
that f1(s1) = f2(s) = c. But this implies that there exist two different values,
namely s, and s , which satisfy ¢ = 8x(s + Ax(1 — ¢)) which is impossible
since the right-hand side is a strictly decreasing function of s.

This proof can be extended to characterize Fgk(+ ) in the transient case.

Moments of Bx can be computed from (4.4).

: ooty _ BSx)  _ nB(S) + - 4 r=B(Sk) .
(4.6) E(Bx) = | = ARB(SE) T —
E(S%) nE(SH) + -+ + rxE(Sk)
47 E(BY) = : = :
@ BB = RS T A== = e
The characterization of Bk; will be constructed recursively. Assume that
Fag_,:;yi =1, -+, K — 1, and the corresponding Bx_i ; have been determined.

As far as the distribution of the busy period is concerned, the priority discipline
can be disregarded. If the busy period commences with the arrival of a type ¢
item, the queue discipline could just as well stipulate that after this item has
been serviced no other type ¢ items will be serviced until the queue no longer
contains other type items. Let Hg; be the distribution of the time required to
empty the queue of items other than type ¢ (including the service time of the
initial ¢ item). If in the time required to clear the queue of non-type ¢ items
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n type ¢ items arrive, the busy period is prolonged by an n-fold convolution of
busy periods Bx; . Hence,

48 Fae) = [ S O e o] atrai),
or

(4.9) Bri(s) = Hxi(s + M(1 — Bri(s))).

But Hg; is given by

o) = [[Z 0 £ 8 0 Sotmiianieion

Ni—1 Nip1

Ca)™ )™ )™ Oey) ™
N ! Nyt ! Nit1 ! Nk !

(ny) (n ) ( ) (ng)
Fyt “K— *. F’; ‘K—-ll t—l*lrzgkﬂl l tee P‘Lgle—l K(?/ - Z)] : dFS,;(z)’

(4.10)

where ;Bx_; ; denotes a busy period for a queue with K — 1 puouty classes,
the ith class of the original K classes being absent, and a type j item in line
initially. (4.10) implies

(4.11) Hri(s) = Bi(s + ibra(l — Bii(s))),
where ;Ax_y = Ax — A, Br = Zj,é,»)\j Br_1,;/:Ax_r . (4.9) and (4.11) to-
gether yield
Bri(s) = 8Bi(s + \(1 — Bxi(s))

+ iAxa(l = Bra(s + M1 = Bri(s))))).
Bk, is in fact the unique solution to the functional equation (4.12) subject

to the regularity C()lldltlonb (4.2). The proof of uniqueness is analogous to the

previous proof for Bx .
The moments of Bx; are derivable from (4.12). In particular,

E(S:)
L—p— o = px’

E(SH[1 - ; o] + E(Si){];i NE(SD)

%]

The distribution of the busy period for a preemptive resume priority queue is
identical to the busy period distribution for the same queue with head-of-the-line
discipline. The order of service is immaterial to the busy period as long as pre-
emption does not increase the time spent in the service mechanism which is the
case for a resume discipline. Hence, all the previous results for head-of-the-line
discipline apply as well to the preemptive resume queue. The indifferent server

(4.12)

(4.13) E(Bx;) =

(1.14) E(Br) =
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queue is included as a special case of the resume discipline. A similar identifica-
tion cannot be made for a preemptive repeat priority queue since the length of
time a lower priority item spends in the service mechanism is no longer equal to
the service time in isolation. To date no characterization has been obtained for
the busy period of a preemptive repeat priority queue.

6. Distribution of number of items serviced during a busy period. Takécs in
[15] characterized the distribution of the number of items serviced during a
busy period for the simple queue, and this method can be adapted in a fashion
analogous to Section 4. As before, the equilibrium condition 1 — py — «+- —
px > 0 will be assumed so that all the distributions which will be discussed have
total variation one. The reader can easily modify the discussion to cover the
transient case.

Consider a priority queue with K priority classes and head-of-the-line disci-
pline. Let fx:(j) be the probability that a total of j items, irrespective of class,
are serviced during a busy period commencing with a single type ¢ item in the
queue, andlet fx(7) = nifs(j) + -+ + 7xf2x(j) be the probability of servicing
a total of j items where the class of the initial item is unspecified. fx:(s) and
fr(s) will denote the generating functions of {fx:(7)} and {fx(j)}, respectively.
For a specific class 7 let fx:(j) be the probability of servicing j type ¢ items in
a service period which commences with a type ¢ item in line initially. fx:(s) will
denote the generating function of {fx:(j)}.

The determination of ﬁ(s) will be treated first. Let pg.s,....g be the proba-
bility that during the service period for the initial unspecified item n; type j

items, j = 1, - -+, K, arrive. Since the initial item is type 7 with probability 7;,
" age (Ag)™ o, "
(51) pK:np--nK = f [ Z e Axt -(—'—Ii——' (Tl) .. (TK) K] dFs}(t),
0 Ny ng Ny *Ng.
and
I)K(sli ’SK) = E pK:nl-nnstl"'S;LKK

LSTIRRN (3 ¢

(5.2) K
ST{ (Ax (1 b Zl: T3 S,;)) N

By an argument analogous to that employed in Section 4, the fx(j) and fx:(5)
can be shown to satisfy the relations

f;(l) = Pk:...0,

@) = X prmesx 2 fa() o

(5.3) LEVIRRNLY ¢ JieJRng
0<Zn;Si—1 Juate s HiRng=i—1

Sr1(Gin) - Sr(im) - Fre(Grng),  d
This yields for the generating function

(5.4) Fa(s) = sSx(Ax(l — JE(s))).

Il

v
o
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f%(s) is the unique solution to the functional equation
(5.5) () = sBr(Ax(1 = f())), ls| =1,
subject to the regularity conditions

(1) f(s) analytic for | s| = 1,
(ii) f(0) = 0.

The proof of uniqueness is omitted since it follows either from the simple queue
proof [15] or from an argument similar to that for the busy period in the pre-

vious section.
The moments of Nk , the total number of items serviced during a busy period,

are obtainable from (5.4). In particular,

1 1

(5.6)

* .
(5.7) B = = AESH 1T—p— - —px’
' « _ AXE(SY) 2Ax E(Sx) 1
EWN=) = G- mmey T 0= s ESH: T 1= A BSH

The property that the number of type ¢ items serviced during a busy period
is independent of the priority discipline makes it feasible to obtain a functional
relation for fx:(s). Let pxi.» be the probability that n type 7 items arrive during
the time it takes to service the initial type ¢ item and then clear the queue of
other type items without admitting any type ¢ items into service.

(58) Prim = fo i e‘“‘(—%x AH (1),
and
(5.9) Pri(s) = 7& Prins" = He(Ni(1 — 8)),

where Hg(t) and Hg;(s) were defined in (4.10) and (4.11). Under the disci-
pline of servicing the initial type ¢ item and then clearing the queue of the
other class items the fx;(j) must satisfy

fxi(1) = priw,

(510)  ful) = Tpmn | fel) Sl 722
SO
(5.11) Fri(8) = s Hea(M\i(1 — fri(s))).

The proof that fx:(s) is the unique solution to (5.11) subject to the regularity

conditions (5.6) is omitted.
The first two moments of Ng; , the number of type ¢ items serviced during a
busy period commencing with a type ¢ item, are determinable from (5.11).
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E(Ng) = — 3% .

NEWSH[1 — ; pi] + N E(S:) [20 NE(S))]
1 - ; pil*

I

(5.12) E(Nx:)

20,1 — ;pj] 1= 2 p;

i
BT Y=

The distributions of the total number of items and the number of type 7 items
serviced when the initial arrival is of type j can be determined by forming the
appropriate convolutions of service periods and busy periods with the distribu-
tions already determined in this section.

As in the case of the busy period distributions the above results for head-of-the-
line discipline apply equally as well to the preemptive resume priority queue.
This also includes as a special case the priority queue with indifferent server. The
corresponding distributions for the preemptive repeat priority queue still remain
to be determined.
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