THE ALGEBRA OF A LINEAR HYPOTHESIS!

By Hexry B. MANN
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Introduction. Let y = (y1, -+, y~) be a random vector. We consider the
following sequence of hypotheses:

A (assumption): E(ya) = 2% Paibs, a=1,---,N.
H,: Bi= - =By =0,
H.: Bsytsgttsrogtt = 00 = Boygugs, = 0,

where s; + s; + -+ + s, = s.
Fora=1,---,N,l=1,---,rweput

Pl =Paj J=s+ - Fsatl o, smt o+

(1) pl =0 otherwise

pr = (p&f

We consider the algebra 9 generated over a real field by the matrices p;pf where
A’ denotes the transpose of A. It will be seen that this algebra is closely related
to the analysis of variance of our linear hypotheses. In particular all tests of
sequences of hypotheses correspond to a decomposition of 9 into left ideals.
Thus the study of the decomposition of U sheds considerable light on the analysis
of variance appropriate to the linear hypothesis. The algebra 9 was first con-
sidered by A. T. James [1] for the important case that the matrices plpﬁ are
relationship matrices. James also pointed out that 9 is semisimple and hence a
direct sum of complete matrix algebras.

In this paper we shall first consider the general problem and show that the
tests appropriate to the sequence of hypotheses HY = Hy ,Hy = H, & H,, - - -,
HY = H, & Hy--- & H, lead to a decomposition of 9 into (not necessarily
simple) left ideals. We shall then consider the case where ¥ is generated by two

’ ’ N ’ .
generators pip; , Psp2 and where moreover (p;p;)° = u(p:p:). (Throughout this
paper Greek letters will denote scalars.) In this case we shall obtain the complete
decomposition of ¥ into principal components. This case includes in particular
all those incomplete block designs in which each block contains the same number
of experimental units while each treatment is replicated the same number of
times. We shall then be able to establish a relation between the decomposition
of U into principal components and the power function of our tests. Finally we
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2 HENRY B. MANN

shall illustrate our methods by decomposing the algebra of an s-dimensional cubic
lattice into its principal components.
In the following the term matriz will always mean a matriz with real elements.

1. General Theorems.

TurorEM 1. Let p be any matrix. There exists a matriz A such that p'pA = P/,
where p’ denotes the transpose of p. The matrix pA is moreover idempotent and
symmetric.

Proor: Let p have N rows and s columns. Consider the indeterminate N
dimensional column vector y. Put E(y) = pb where b is an s dimensional column
vector. Then for any choice of y the expression Q = .o (4o — E(ya))* must
have a minimum with respect to b. Differentiating with respect to each b, we
obtain the equation

(2) p'y = p'pb

which must have a solution since @ has a minimum. Since (2) is a system of
linear equations the b’s must be linear functions of the y’s. Hence b = Ay and
therefore

(3) p’ = p'pA.

Multiplying (3) from the left by A’ we get A’p’ = A’p'pA.
Hence A'p’ and therefore also pA4 is symmetric. Furthermore,

(pA)* = A'p'pA = A’p' = pA.

CoROLLARY: If pp’ is an idempotent matrix then p'pp’ = p’, pp’p = p.

THEOREM 2. If ay + axx + - - - + as2’ is the minimal polynomial of a symmetric
matrix then either ag # 0 or a; # 0.

Theorem 2 is an immediate consequence of the fact that a symmetric matrix
may be transformed into a diagonal matrix by an orthogonal transformation.

TuEOREM 3. The matrix pA of Theorem 1 s uniquely determined.

If ap + aix + - - - + a2’ is the minimal polynomial for p'p, then

pA = —(app’ + -+ + a(pp’)’) i a = 1.

(4) , e
pA = —(app’ + -+ +app’)”) if a=0,a =1

Letap = 1thenI = —(aip’p + -+ + a,(p'p)’) where I is the unit matrix.
Multiplying this equation from the right by A and from the left by p we obtain
the first equation of (4).

Let ao = 0, a; = 1, then p'p = — (as(p’p)” + - -+ + a;(p'p)*) and we obtain
the second equation of (4) by multiplying left by A’ and right by 4.

CoROLLARY: The matrix pA of Theorem 1 lies in the algebra generated by pp’.

We now consider the sequence of hypotheses H,, H; & H,, ---, H & H,
& --- & H,. Put
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Pi=p+p2+ -+ pr,

(5) P,=p+ -+ pr,
P, = p..
We solve
(6) P; = PiP.A;.
The vectors Y = P;A; are the regression values corresponding to the

hypotheses H, & H, & --- H;, (¢ = 1 --- r). The decomposition
2 =y (I — PA)y + y (Pid; — Pods)y + - -
+ yl(Pr—lAr—l - PrAr)y + y’PrAry

where I denotes the identity is the proper decomposition of the sum of squares
for testing the hypotheses H, & --- & H; [2, p. 33].

If the parameters 8; of our linear hypothesis are subject to restrictions and if
there exists a solution b = A; y satisfying the restrictions then since P;4; is
unique by Theorem 3 the decomposition (7) will still be the appropriate de-
composition for the analysis of variance, although the degrees of freedom will
have to be adjusted. Thus all our results will remain applicable to this case.
If the least square equations’ are solved by the method of Lagrange operators
the existence of solutions of the least square equations which satisfy the restric-
tions means that the Lagrange operators may be ignored. A very important case
of this type is treated in Theorem 4.4 of [2].

Corresponding to (7) we have, as we shall show, a decomposition of % U I
into left ideals.

We have

I = (I — Pi4)) + (P14, — P24s) + -+ + (P4, — PA) + PA, .
We have piP,{ = pip: for ¢ = 7 hence from (6) we get

(7)

(8) pip: = ppiP,A; = PApp: for 12 .

Now by Theorem 3 P;4; is a polynomial in P ,~P;~ = > i 'p,fpz . Hence for
i = j we have P;A; P;A; = P;A; P;A; = P;A; and thus the idempotents ¢; =
PiA; — PipAipn(i =0, -+ 1, PbAo = I, P,11A,41 = 0) are a set of orthogonal
idempotents. Hence [3, p. 147, Problem 4] the decomposition A = Uses + - - - +
e, is a representation of U as a direct sum of left ideals. These left ideals are
however not always simple left ideals.

TuaeoreM 4. The algebra N generated by p,-pﬁ 2 = 1 --- 7 has the unit element
P,A, . The matrix PyP; has an inverse in 9.

Equation (8) shows that P4, is the unit element of . Equation (4) may
be written

P4, = PIP{('—alPIAl - 02P1P; + - —as(Plpi)s—-l)
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if PlPi is nonsingular and
PiA; = PyP{(—aPiAy + -+ —a(PiP)T)

if P\P; is singular.
Let now ¥ be generated by one matrix pp’. We assume first that pp’ is a

diagonal matrix. Let A1, -+, A, be its distinct characteristic roots. Then
1 0 --- 0
0 -
g @ =Dy =MD _ L
9) A1 — Ag) oo (M — Aa) : 0 ’

o o)
(pp’ = MI)---(pp’ = N D) (pp” = Nin D) -- - (pp’ — MaT)
M= N it — M) Qg — M) (N — N9

are orthogonal idempotents and the decomposition
(10) A=AE + -+ + UE, = {mB} + -+ + {mEs}

is a decomposition of ¥ into principal components.

If pp’ is not diagonal let T be an orthogonal matrix such that T'pp'T’ is a
diagonal matrix. The isomorphism pp’ — T pp’ T’ is a faithful isomorphism.
Hence the decomposition (10) with the E; given by (9) is still a decomposition
of ¥ into principal components.

In considering the general problem we may therefore assume that the matrices
p,p, are idempotent. We shall also assume r > 1. Let ¥ be generated by the
idempotent matrices PpL, DePay - s DADr -

TueoreM 5. If for G # 0, G € U, G1 ¢ A we have ppiG = uG, ppiG1 = mGh
forv=1"- rthenp—1G1=aG

We have p,p,G = (p,pl) G = uG = 4G Wlth P14, defined by (6) we have
by Theorem (4) P14;G = G hence u > 0 and ' = pimplies u = 1.

If B is any element of % we may write

= ZaiBi

E."'-—‘-‘

where the B; are monomials in pip1, -+ , p.p» and
(11)  BG =af; a= Do

Since % is generated by symmetric matrices, A ¢ ¥ implies A’ ¢ % and so
(12) G'G =)\G.

For any matrix M 0 we have M’M 5 0 hence in (12) X 5 0 and (12) shows
that @ is a symmetric matrix. Thus GiG = oG = o*G1. If & = 0 then in the
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representation of G; by monomials we have Y a; = 0 and therefore G = GiGi=0
whence G; = 0 = 0G. If o* ## 0, a #* 0 we have G; = a/a* G. This proves
Theorem 5.

If G = \G we may replace G by G/\. Hence we may assume that G is idem-
potent and decompose 2 into

(13) A= (A—-AG) + AG = (A — AG) + {aG}.

The one dimensional two sided ideal {«G} is a principal component of % and
in A — AG the element O is the only element G, for which p.p.Gi. = G .

2. Algebras generated by two idempotent generators. If plpl has an inverse in
A then plpl P1A, and the algebra becomes trivial. Hence we may assume that
p1p1 and therefore also plpl pzpz plpl are singular.
THEOREM 6. Let the algebra A be generated by two idempotent generators plpl,
I’ﬂ’ﬁ Let Ty = pip1 pop2 pip1, T = paps pip1 pops and let M (z) = z(z — M)
« (x — An) be the minimal polynomial of Ty . Put

' (Ty — M)+ (Ty — )

F1= P11 (—1)")\1"'>\ )
Ty — \)-- (T - M )
F = '( 2 1
2 P2P2 ( 1)@\1
() T(Ty — \)---(Ty — )\a—-l)(Tl — Nat1) - (Th — \a)
(14) ! Naha — M)~ e — Aa1) hae — Aatt) - - - hae — An)

o To(Tys — M)+ (T — Mac1) (T — Aagr) -+ - (To — \p)
? Mo — M) (e — Aa1)ha — Aagt) - (e — )

fa = eia) e G \ z:fxa = 1’

(42 = 47y .
a8 ) Ao # L.
/ ad =) i e

Then

(1) A = AF, + AFs + Dy Ufa is the decomposition of U into principal com-
ponents. (One or both of the components AF,, 2[[*'2 may reduce to 0.)

(ii) ppiFy = Fy, ppiFy = 0, popsFy = 0, popsFs = Fy, pipiG = popsG = G.

The algebras UF, , AF,y , UG are complete 1 X 1 matriz algebras or zero.

(iii) For Ao # 1 the algebras B, = Af, are complete 2 X 2 matriz algebras.

Proor: It is clear from (9) that Fi, Fy, &%, &® are idempotents.

Furthermore Flplpi = plp;Fl = F, Flplpipgp;plp; = 0. By Theorem 1 we
have from this Flplp{pz = 0, and so

(15) Fippipeps = Fipopz = 0,

and by transposing pgplel = (. Hence F, and similarly F, are in the center of .
That F; , F. and the f,. are orthogonal follows from the following Lemma.
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LemMmA 1: For any polynomial H(x) = zy(x) we have
i H (pepspipipeps) = H(pipipepapipr) peps -

This follows easily since the relation
’ ! ’ I'\m !’ ’ '\m !
P1p1(Pepepip1pep2) ™ = (P1p1p2p2pipr) "Pape -

holds for every m > 0.
If \g = 1 put @ = G, and G: = .
We have (T; — 1)G1 = (T, — 1)G: = 0
Hence

(16) TG =G, TG =G,.

Puttinge = G, — Glpzpé wefind from (16) ¢¢/ = 0, hencec = 0 and G; = G’lplp(
= Glpgp; and similarly G, = Gzplp{ = Ggpzpé . Hence by Theorem 5 G, = G, = G,
where @ satisfies the relations of Theorems 5.

Now let Ao # 1. We have

! (@) (@) ! (a) (@) /
P1p1 a” = a” , D22 6" = & YLV

(17) /
(a) (a) ! (a) ( 4
P2p2 e = & y DP1p1 6" = éla)p:»pz s
Ti 6% = g eia), Ty & = Ag &®.
Thus

(
a” 6” 6 = o €

and
(a)
€ .

Fappt = Ppifa = 62, fapaps = Pap2fa =

This shows that f, is in the center of . Moreover T1f(a) = Aa 69 Tofu = Naes®.

Using these relations one easily finds f2 = fa. We show next that the direct

sum AF, + AF, + D Uf. contains the algebra 9. From Lagrange’s interpolation
formula we have setting Ao = 0,

M(x) _
2 (x — N)M' (\a) 1.

Substituting in this identity 7T, for z and P14, for the unit element and multi-
plying by pip: we get
‘ Zfaplpi + F. = pﬂ);
and similarly

> fupeps + Fo = pops .

Hence AF, + AF, 4+ D Uf. contains both generators of ¥ and therefore ¥
itself.



ALGEBRA OF LINEAR HYPOTHESIS 7

Every element of the algebra Af, = B. may be written in the form ase® +
26 + ane?e® + anes®ei®. The elements

f ei(x) _ e;a)eia) f e;a) _ eia)eéa)
n = ——F——7/">-" 2 = ——F/——(——
I —h L=
f a”e” — Naes” f a6 — A el
12 = ————/—— 21 =
]. - Aa ’ ]- - Aa

satisfy the condition fiifix = fu, fifse = 0 forj = k.
Hence we have the isomorphism from 8B, onto a complete two dimensional

matrix algebra
1 0 00
fu e ’ foaa s
00 0 1

el el ]
12 0 0 ] f21 1 O .

This completes the proof of Theorem 6.

CoroLLARY: If the scalar field of U is real then the principal components of A
are real.

This follows since 7 is a symmetric (even positive semi definite) matrix.
Hence its characteristic roots are real (even non-negative).

In applying Theorem 6 to concrete situations it is often of advantage to re-
place the matrices plp, by pz;o, — G@. In the algebra A — @ obtained in this way
one then has A, & 1 for all a.

3. Relations to tests of hypotheses If f is a principal idempotent of the
algebra A generated by plpl, ceey p,p, then f” is also an idempotent of the
center of . Since f’f # 0 we must have f’f = f, hence f is symmetric. Since
every idempotent of the center is a sum of principal idempotents it follows that
all idempotents of the center are symmetric.

The significance of the decomposition into principal components is pointed
up by the following theorem.

THEOREM 7. Let P1A, = I, + I, where I, , I, are orthogonal symmetric idem-
potents of A. The idempotents I, , I, belong to the center of A if and only if for every
matriz P such that PP’ ¢ U, the relations

(18) P,PA =PI, PIIIPBlzPlll, P,IQPB2: P,Iz
mply
(19) PA=IIPBI+12PB2.

Proor: By Theorem 3 we have PA ¢ Y. If I; is in the center of A we get
from (18)

(20) P'I, = P'PAI, = P'I,PA.
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Because of the uniqueness of the regression values (Theorem 3) this implies
(21) I,PA = I,PB,
and similarly I,PA = I,PB, if I, is in the center of 9. Hence
LLPA + IL,PA = P\APA = PA = I,PB, + I,PB,

if I, I, are in the center of .

To prove the sufficiency of (19) put P = p; . Multiplying (19) from the left
by I, gives I)p;A = Ip;B;. The matrices p;A and I,p;B; are symmetmc by
(18) (see Theorem 1). Hence I;p;A = p,AIl Moreover piA = ppi (see the
corollary to Theorem 1), and therefore I 1p.1). = p,p,I 1 . Since this relation holds
for every value of 7, the matrix I; and similarly I, are in the center of .

Theorem 7 shows that it is sufficient to study the tests of linear hypotheses
for each of the principal components separately.

We return now to the case of two idempotent generators.

Every vector a = (a1, - -, @.) can be decomposed uniquely into two parts

(22) a = a(I — PlAl) + a,PlAl

THEOREM 8. If aQ = a for some element Q of the algebra U generated by pip1 ,
peps then @ = aP1A; and hence a(I — P14,) = 0.
For we have a(I — Pi4,) = aQ(I — PA,) = 0.

DEriniTION: A form ax, @ = ay, -+, ay, & = &1, +--, Zy 15 called totally
confounded or confounded with coeﬁment 1 mWAifasz=(0,:-,0)and
(23) ap1p1 = ap:ps = a,
it is called confounded with coefficient N #= 1 if
(24) a(ppi — pop2)’ = (1 — Na.

If A = 0 then a is called unconfounded. The rows of @ are all totaily con-
founded. The rows of F; and F, are unconfounded. The rows of f, are confounded

with coefficient A, . ,
Multiplying (24) by pip: from the right we get

(25) appIPpyPipT = Aapip
and similarly
(25a) apPPPIPDs = Napaps .

THEOREM 9. Let a be any vector then
(26) a=ao+am+azo+a1+z;,aa

where
i) aop1p1 = apep: = 0,
(ll) aloplpx = Qu , ampzpz 0,
a20p2p2 Qo azoplpx =0
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(iii) aq s confounded with coefficient Ao, @ = 1,
where the N, are the distinct characteristic roots of plplpgpgplpl and \; = 11if 1 4s
a c.r. The decomposition (26) is unique.

Proor: We have the decomposition

(27) =I—P1A1+F1+F2+f1+§f.,.

Multiplying (27) by a we obtain (26).

That the decomposition (26) is unique follows from Theorem 8 and from the
following two lemmas.

LemMmAa 1: If a is confounded with coefficient X then X\ = N, for some o and a = af
where we set fo = F; + F..

Lemwma 2: If aplpi = @, apzp; = 0 then a = aF,.

Proor or LEMMA 1: Since a is confounded it follows from Theorem 8 that
a(I — P1A,) = 0. For A, # 1 we have

- L=
af = (plpll - ){sz) fomal T2 g

Hence af, = 0for A £ A\, . For A # 1 we have

_ (Pl Zh - pzpz)
aG = a '—1‘_‘—5\—'—”—' = 0.
Hence since a 0 we must have A = A, for some « and multiplying (27) by a

we find @ = af..
ProoF or LEmMMA 2: From Lemma 1 we have a = afy = a(F1 + F»). Multi-
plying from the right by pip1 we have appr = a = aF;.

Theorem 9 shows that the rows of f. span the space of all those linear forms
which are confounded with coefficient A, . The rows of Fi(¢ = 1, 2) form the
space of all those forms ax which are unconfounded and for which ap,p,x = ax.

We shall now consider the power of the tests of our linear hypotheses and it
will be necessary to assume that the reader is familiar with the theory of testing
linear hypotheses and with the power functions associated with these tests.
For the concepts and results that will be used in the following the reader may be
referred to [2] Chapter IV, pp. 22-30 and Chapter VI. It will be seen that the
power of the tests is closely related to the confounding coeflicients.

Suppose that we have observed a set of linear forms Qy where @ is an idem-

potent matrix of the center of X and y’ = (y1, - -+ , y»). In testing the hypothesis
B = = B5, = 0 under the assumptlon E(y) = pB8" + 8%, where
B(D, = (61 y Ty 631 [} ) ‘ 0) B(Z)' (0 0 6314'1 y T B"l+"2) and the

other assumptions of a linear hypothesis as stated on page 23 of [2]; using the
forms Qy we first have to solve the equation

(28) (pr + p)Q = (p1 + p2)Q(p1 + p2)Bi.

The quadratic form

(29) y'(Q — Q(pr + p2)B1)y = Qa
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divided by its rank &, forms the denominator of the statistic #. We then com-
pute the regression value of @ under the assumption and the hypothesis
H,:8, = -+ = B, = 0. That is to say we have to solve the equation

P;Q = P;QmBz .

Since Q is in the center of U this equation can be solved by putting B, = P2 (see
the corollary to Theorem 1). Hence

Qp:B: = Qpips = Qpp:Q.
We then put
(30) Y (Q — QmB)y = Q,, Y@y =0Q — Q.

The matrix Q,_, is orthogonal to Qp:p:Q (see the paragraph following equation
(8)) and so by Theorem 1

(31) P2QQr_0 = 0.

Hence if instead of the forms Qy we substitute in @, — @, their expectations
Q(pB® + ps8%), under some alternative hypothesis HY we obtain

(32) BV p1Qr_pBY = 257

where o° is the variance of one observation and & is the quantity denoted by A
in formula 6.37 of [2]. If @,_, has the rank &; then the power of the F test is a
monotonically increasing function of §/h; and of hy. (See formula 6.37 of [2]
and the paragraph following it. To avoid confusion with the confounding coeffi-
cients we have written & instead of \.) Moreover, if hs is fairly large the increase
in power obtained by increasing k. is negligibly small. We shall therefore call
28/h1 = p the power index w1th respect to H i,

If @ is not orthogonal to pzpz a certain amount of power is lost in eliminating
the parameters By, 41, * - * , Bs,+s; - L0 measure this loss we consider the power
index of the test of the same hypothesis H; but under the assumption 8,41, - -,
Bsy+s, = 0. This will result in another power index p*. The ratio

(33) e =

)
2l

1s called the efficiency factor of Q with respect to H T,
Now let fo be an idempotent of the center of ¥ with confounding coefficient
. (If Ae = 0 let fa = F;). Testing the hypothes1s H, under the assumption

E(y) = plﬁ“’ + lpaﬁ gives Qra = fa — fapzpz
Hence 26°5 = () (plfapl - plfapzpzpl)ﬁ Now plplfap2p2271171 = kapxmf aPlPl
and on account of Theorem 1 we obtain

(34) p;f apﬂ);pl = )\ap;fapl
so that
(35) 26% = (1 — )8V pifepiB?.
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On the other hand if thle assumption is changed to A & H, then the matrix
of @, becomes f, — f.p1p1 and the matrix of @, is f, and hence

(36) 20%5* = BV pifapiBY.

For A = 1 we have f, — f,,,mpé = 0 so that no test is possible. For A = 1
we have

(37) PD1(fa — fapep2)Pipr = (1 — Ao)fapit

which shows that rank (f. — fapgp;) = rank (faplp;) so the efficiency of the
matrix fo is 1 — A, . Hence

TaEOREM 10. If f, is a principal component with confounding coefficient N, = 1
and if for Ao = 0, faplp{ = fo then the efficiency of f. with respect to every alterna-
tive hypothests H Tis1 — Ag.

From (37) we also have

TaeorEM 11. If N is any confounding coefficient then 0 = X\ < 1.

PROOF: fa — fapeps as well as fapipr are symmetric idempotent matrices and
therefore positive semi definite. Also f“plp{ # 0. Hence (1 — A,) = 0. Similarly
(34) implies A, = 0.

If we increase the size of the sample by replicating the experiments, then the
quantity 2¢°6/h, will be increased in direct proportion to the increase in sample
size. If we neglect the increase in power do to a corresponding increase in hy
we can interpret Theorem 10 as stating that A, is proportional to the amount
of money spent in eliminating the parameters 8,41, * - , Bs;+s, - In a situation
where the inhomogeneity of the second parameter set could be eliminated at a
given expense the confounding coefficients A, could therefore be used to decide
whether the elimination of inhomogeneity is really worthwhile.

4. Applications. A. T. James [1] has considered the important case in which the
coefficients p,; are either 0 or 1 and where with S; = s1 + --- 4 s, we have
8y
Pai = 1, a=1---,N, l=1,---,r.

j=8;_1+1

The matrix p,p; = T, = (T%) consists in this case of ones and zeros only.
We have T4 = 1if for some j we have pa; = ps; = 1 otherwise %3 = 0. Such
matrices T, are called relationship matrices since TS = 1 if and only if the
ath and Bth plot (experimental unit) receive the same treatment from the Ith
set of treatments. Applying the matrix T'; to the vector y = (y1, -+, yn)’
will replace every y, by the total of those observations which receive the same
treatment of the lth set as y, .-If every treatment of the lth set is repeated the
same number say k; of times then applying the foregoing remark to the columns
of T, itself we get T3 = kT, so that T;/k; = t, will be idempotent. The matrix
t; applied to y replaces every observation y, by the mean of those observations
which receive the same treatment as y. .

A.T. James has given the decomposition for balanced incomplete block design.
If the design is asymmetric, r > k, then one obtains three one dimensional and
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one 2 X 2 complete matrix algebras as principal components of the algebra
(% U I). If the design is symmetric then one of the one dimensional algebras
(the algebra AE, of [1] p. 1000) reduces to 0 since in this case BTB= (r — \)B
(Mod. @). It may be left to the reader to obtain this decomposition from
Theorem 6.

In the following we shall decompose the algebra of an s dimensional cubic
lattice design into its principal components. This example exhibits all the features
of the general case and at the same time does not present any computational
difficulties. :

6. The principal components of an s dimensional cubic lattice design. In an
s dimensional cubic lattice design m’ treatments are arranged into s sets of
blocks each containing a complete replication. The blocks are formed in the
following way. The treatments are distinguished by a set of s indices and are
written ¢;,...;, , 1 < 4 < m, 1 £ 4, < m. In the first replication the blocks are
formed by keeping the indices %, - - - , 7, fixed and varying the first index. In
the ath replication the blocks are formed from all treatments with indices
@1, ", Gact, Gag1 - * - @ fixed. Thus every replication contains m*™ blocks of
m treatments each. For instance for s = 2, m = 3 we have the blocks

(tu, ta, ta), (tu, te, ti3),
(he, taa, t2),  (tn, b, t),
(tis, tas, bss), (fa1, a2y Us3).

The values observed for the treatment f,...., in the ath replication will be
denoted by (a)Za,...q, - By (@)ar . a* we shall denote the sum of all observations
with 4st index a;, 7ond index a., - - -, 7,th index a, and we shall call such a
quantity a class total. The assumption reads

E((0)%ay..a,) = tayeeay + (0)ba;. 00— 100y1---as +

(Usually the restriction ) q,.....a,fa;..., = O is imposed and a general mean
intreduced, but since by Theorem 4.4 of [2] the Lagrange operator for this re-
striction is 0 we may ignore it and add the general mean to the block effects.
By Theorem 3 this does not affect the regression values.)
We form according to Section 3 the matrices T relating two plots with the
same treatment and B relating two plots from the same block.
From Section 3 we have
B((1)Za,...a,) = (2l %, = 2 (Daaila,,
ay
B((a)%ay...a,) = (@)Tay. o oy s

TB((a)%ay...a,) = 2 (@)a; Gt iat 2, .
a

Thus we have
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ProrpostTioN 1: If (1)xs). %, = (a)za,. e, = Za,.. s, then
(38) TB(()za:"%,) = 2 @ay: “a:‘.“:tai, a -
A class total (a)x ’;' 18 called confounded if & % 1;,5 = 1 --- u. Let

Z "% denote the sum of all confounded class totals with s — & 1ndlces chosen
out of a;, -+, a,. For instance

S = (Dat + (D2 + (2)a + (2)28 + (3)2s + (3)21 .
ProposITION 2: For k < s
(39) TBY 7% = mky "% 4+ kY iy ®
Proor: We put (a)zs,..%, = D& ""* and apply proposition 1. We obtain

(40) TBZ:L Zbl Zblaz ‘a4 sz Zalbza:,...a.... + st Z,,m as_iby

In the lth sum every class total not containing the upper index ! occurs m
times. Therefore since there are k upper indices missing in every class total
occurring in any sum Y_* "’ every class total with k upper indices missing and
s — k lower indices chosen out of a1, - -+ , a, will occur mk times on the right
of (40) giving rise to the first term on the right of (39). The class totals with
k + 1 upper indices missing arise from those terms of the Ith sum which contain
the upper index ! but do not have the prefix ! (since terms with prefix and upper
index [ are not confounded). Hence each such term arises from exactly k of the
terms in the right of (40). This proves (39).

Let = denote the transformation which replaces (a)a, %, by Z¢'""*. We have

TB = z,,
(TB)? = TBZ; = mZ; + 2 = mTB + 2,.
Suppose we have shown that fork < s — 1

(41) TB(TB —m) --- (TB — kmm) = k! Zpy1 .
We multiply (41) by TB and get

(TB — (k + 1)m)k!Zppn = (B + 1)1Zk42.
Hence we have proved
(42) TB(TB — m) -+ (TB — km) = k'Z4a for k= s— 1.

Since D_e""* = z = sum of all observation we get

1 ... 1
. =1: ‘]l =G say.
1 .- 1



14 HENRY B. MANN

and from (42) fork = s — 1
(43) TB(TB —m) - (TB — (s — 1)m) = (s — 1)!G.
Dividing (43) by (ms)® we get

(44) (m(w_g)”(w_szl)zgg

where ¢, b, g are the idempotents corresponding to 7, B and G.

Remembering the effect of TB we see that one application of TB can delete
only at most one upper index in a class total. Hence s applications of TB are
needed to produce a term with all indices deleted. On the other hand
(TB)*zs,.s, for k < s involves terms which are not involved in (TB)*zs. %, .
Hence a polynomial in TB of degree less than s cannot vanish nor be a multiple

of G. Thusif weputt — g = t,b — g = bi then

(45) t1by (tlbl — l) <t1b1 -z 1) =0
S S

is the minimal equation of ¢b; .
From (45) and Theorem 6 the decomposition of the algebra of the s dimen-
sional cubic lattice can be obtained without any effort.

6. The case r > 2.
A part of Theorem 6 carries over easily to the case r > 2. If there is a matrix
G ¢ U satisfying the conditions of Theorem 5 we may write

A=A—-AG + AG.

If there is no G # 0 satisfying Theorem 5 we shall put ¢ = 0. To exclude
trivialities we also assume that pip; is singular. Using these conventions we
can state

TueoreM 12. Let

Q; = P, — i,
(46) ’ ’ ’
T: = pp:QQipip: -
Let N’ ,i=1,--+,7, a=1---n; be the distinct non 0 characteristic roots of
T,’ . Let
(T: = N°) - (T = N)
Fi = ) ) pipi,
(47) (=1DmN? - A
ei=pipi — Fi — @
and let B be the algebra generated by e, , - - - , e, . Then
. rn _ JF: for ¢ =7 _JF; for =3
(I)W"'Ff”{o for 435’ F"Ff‘{o for %]

(i) A = AG + AF1 + --- + UF, + B.
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(iii) G, Fy, -+ -, F, are annulled by B and are principal one dimensional com-
ponents of A or are equal to 0.
(iv) The equation

(48) 6¢2 6;’B,’ = é;
7=
has a solution B; ¢ B.
Proor: From
(49) TF;, =0

we get multiplying by G, (r — 1)GF; = 0. Hence GF; = 0.
From (49) we get on account of Theorem 1

(50) QiF: = 0.
From the definition (1) of p; we find
(51) pQ:i = pp; for j i,

and so from (50), pjng,- = 0 for ¢ 5 j.
From (9) we see that F, is idempotent, so that (i) is proved.
The statements (ii) and (iii) are immediate consequences of (i). By (47)
we may write mod. G
e;=Ti(awPiAdi+aT:i+ - G T?—l) =€ (Z ef) B;

175
with B; ¢ 8. This completes the proof of Theorem 12 since ¢; G = 0.
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