POLYA TYPE DISTRIBUTIONS OF CONVOLUTIONS!

By SamueEL KArRLIN AND FrRANK PROSCHAN
Stanford University

1. Introduction. The theory of totally positive kernels and Pélya type distribu-
tions has been decisively and extensively applied in several domains of mathe-
matics, statistics, economics and mechanics. Totally positive kernels arise nat-
urally in developing procedures for inverting, by differential polynomial operators
[7], integral transformations defined in terms of convolution kernels. The theory
of Pélya type distributions is fundamental in permitting characterizations of
best statistical procedures for decision problems [8] [9] [13]. In clarifying the
structure of stochastic processes with continuous path functions we encounter
totally positive kernels [11] [12]. Studies in the stability of certain models in
mathematical economics frequently use properties of totally positive kernels
[10]. The theory of vibrations of certain types of mechanical systems (primarily
coupled systems) involves aspects of the theory of totally positive kernels [5].

In this paper, we characterize new classes of totally positive kernels that arise
from summing independent random variables and forming related first passage
time distributions.

A function f(z, y) of two real variables ranging over linearly ordered one
dimensional sets X and Y respectively, is said to be totally positive of order k
(TPy)ifforallm; <22 <+ < Tm,n <2< *++ < Ym, (rieX;y;eY) and
alll < m <k,

f(xlyyl) f(xl’yZ) ot f(xl’ym)
(1) f(xl,xz,”',xm) _ f(xz.,yl) f(xz',yz) f(xz',ym)
Yi, Y2, 3 YUnm : : .. :
F@nyy)) f(@n,92) oo f(Tm, Ym)
Typically, X is an interval of the real line, or a countable set of discrete values
on the real line such as the set of all integers or the set of non-negative integers;
similarly for Y. When X or Y is a set of integers, we may use the term “sequence”
rather than “function.”
A related, weaker property is that of sign regularity. A function f(z, y) is
sign regular of order k, if forevery 1 < 2 < - < T,y < P2 <+ < Ynm,

and 1 = m £ k, the sign of
L143L2,y " Ty
f(yl,yz, :ym)
depends on m alone.
If a TP, function f(z, y) is a probability density in one of the variables, say =,
with respect to a o-finite measure u(z), for each fixed value of y, then f(z, y)
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722 SAMUEL KARLIN AND FRANK PROSCHAN

is said to be Pdlya type of order k (PT}). The concepts of PT; and PT. densities
are familiar ones. Every density characterized by a parameter is PT;; while
the PT, densities are those having a monotone likelihood ratio [13].

A further specialization occurs if a PT) kernel may be written as a function
f(xz — y) of the difference of  and y where x and y traverse the real line; f(u)
is then said to be a Pdlya frequency density of order k (PFy).

Finally, if the subscript « is written in any of the definitions, then the property
in question will be understood to hold for all positive integers.

2. Summary of Results. From Lemma 3 below we trivially obtain the result
that if fi, fo, - - - are density functions of non-negative random variables with
each f; a PFy, then g(n, ) = fi * fo * - -+ * f,(x) (* indicates convolution) is
PF,, in differences of = for each n > 0. One of the key results of this paper is
that under the same hypothesis g(n, ) is PT} in the variables n and z, where n
ranges over the positive integers and x traverses the positive real line. That is,
total positivity in translation variables (differences of the argument) for each
density implies total positivity in the pasr: the argument and the order of the
convolution. (Theorem 1 of Section 4.)

As an easy consequence, we obtain that

hin, z) = P[ilX; = 1],

where the X,; are independent observations from the corresponding f;>
i=1,2,---,is TPy in the variables n and z. The kernel h(n, «) can be inter-
preted as the probability that first passage into the set [z, «) occurs at or before
the mth transition where the successive partial sums S, = 2.1y X;,
n=20,1,2 --- (S, = 0) describe a discrete time real valued Markov process.
If X; are not identically distributed then the process is not time homogeneous.
In this formulation the statement concerning the first passage probability func-
tion can be extended to the case of random variables ranging over the whole
real line. Thus Theorem 2 of Section 4 asserts that for Pélya frequency densi-
ties of a given order, the probability that first passage into the set [z, « ) for the
stochastic process of successive partial sums occurs at the nth transition, is a
totally positive function in the variables n, « of the same order. In this frame-
work, Theorem 1 can be deduced from Theorem 2 by employing a suitable lim-
iting argument. Further results of this sort are given in Section 4 and Section
5.

A different kind of characterization is given in Theorem 8 of Section 6. There
it is shown that g(n, z), the n-fold convolution of a PF; density extending over
the whole real line, although not possessing the full variation diminishing prop-
erty of a TP function, does possess a restricted variation limiting property.
Specifically, 2 71 ag(n;, x) has at most 2(m — 1) sign changes, where

m<n < - <nm,m= (k+1)/2
and the a; are real non-zero constants.’

2 The number of sign changes V (f) of a real valued function fis sup, <;<,, V(f(z:)) where
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In Section 7 we establish several smoothening properties possessed by the
kernel f(z) (the n-fold convolution of f), when it defines a linear transforma-
tion. In particular, we prove that if f(x) is PF; and g(x) is convex (concave) then
h(n) = [f " (2)g(z) dz is convex (concave ) : This fact is useful in applications.

In Sections 8 and 9 various applications of these results are noted. The inven-
tory problem discussed in Section 8 originally motivated the theoretical results of
the present paper; it is exposed here to illustrate the kind of applications made
available by exploiting the theorems of Section 4. It is possible to show with the
aid of Theorem 1 that the objective function of the inventory problem is concave,
so that its maximization becomes a relatively easy task and can be reduced to

a rather standard non-linear programming calculation.

In Section 9, a number of totally positive functions are constructed by forming
successive convolutions of Pdlya frequency densities and then applying Theorem
1. As an illustration of the theory we obtain that g(n, 2) = (z — A4,)* for
x> A,and O for x £ A, is TP, in z and n, provided A4, is any increasing func-
tion of n» and K, is any strictly increasing integer-valued function of n.

In a subsequent publication, Karlin will indicate other generalizations and
applications of the results of this paper to the theory of stochastic processes and
orthogonal polynomials. For example, we will extend the results from a, discrete
time formulation corresponding to integer convolutions to a continuous time
stochastic process structure. In this framework the present theory bears a close
relationship to some recent studies of Karlin and MecGregor [11] concerned
with totally positive kernels and diffusion processes. We will also develop further
the connections of total positivity and absorption and recurrence probabilities
for the state variable of certain kinds of stochastic processes.

In [15], Proschan has discussed in detail the inventory model described in
Section 8 with applications to some concrete examples. Theorem 1 plays a crucial
role in this study.

3. Preliminaries. Many of the structural properties of TP functions are
deducible from the following identity, which appears in [14], p. 48, problem 68:

Lemma 1: If r(z, w) = fp(x, t)q(t, w) da(t) and the integral converges abso-
lutely, then

xl’xz’...7xk
: - J]
W,

Wi, Wz« , £1<ta< e <t

(2)

xl)x2,"')xk tl,tZ)...)tk
‘P q do(ty) do(ts). - odo(te).
t11t27”',tk Wi, We,y **° , W
In particular, we secure from Lemma 1, the following useful result:
Lemma 2: If f(x, t) 4s TP, and g(t, w) 2s TP,, then h(z, w) =
ff(z, t) g(t, w)do(t) ©s TPminim.» provided o (¢) is a regular ¢ finite measure.

V (f(x:)) is the number of sign changes of the sequence f(z1), f(z2), -+ - , f(n) with z; chosen
arbitrarily from the domain of definition of f and arranged so that z; < zs < ++- < zn and
m any positive integer.
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We shall exploit this result principally in the case when f and g are Pélya
frequency densities: Therefore,

Lemma 3: If f(z) 48 PFw and g(x) is PF,, then h(z) = [f(x —t) gt) dt
18 PFrin(m.n) -

An important feature of totally positive functions is their variation diminish-
ing property: If f(z, w) is TP; and g(w) changes sign j < k — 1 times, then
h(z) = ff(x, w) g(w) do(w) changes sign at most j times; moreover, if h(z)
actually changes sign j times, then it must change sign in the same order as
g(w) as x and w traverse the real line from left to right [8] [9]. This distinctive
property underlies many of the applications mentioned above. The variation di-
minishing property is essentially equivalent to the determinantal inequalities (1).

4. Convolution of Non-Negative Random Variables. We first prove

THEOREM 1: Let fy, fz, - - - be any sequence of densities of non-negative random
variables, with each f; a PF),. Then the n-fold convolution g(n, z) =
Ji*fo* - % fu(x) is PT in the variables n and x, where n ranges over 1, 2, * - -
and x traverses the positive real line.

Proor: The proof employs induction. First note that g(n, z) is PT; since
g(n, x) = 0 for each real z and each positive integer n.

Assume now that for every sequence of densities satisfying the hypothesis,
the corresponding n-fold convolution has been proven PT,_,; for r < k. We prove
that this implies g(n, z) is PT,.

(a) First consider the case n; = 1. Given 1 < np < m3 < -+ < 1n,,0 <
<z < --- <z, we may write
1,ne, -+, m z p—1 Ny, Nz, *** N,
3 ) ’ ’ r) = -1 z, < ’ ’ Py )
( ) g<xl’ Loy =+, Tp ;( ) fl( )g Tiy oty Tordy Tygly *°* y X

simply by expanding the determinant on the left by its first row. Next note that
forn =2,3,---andz = 0,

(4) o, 2) = [gi(n = 1,0 — £ dg,

where gi(n — 1, £) is defined as f, * fz * - -+ * f,(£). Applying (2) in (4), we
may write

(s Yo [
Ty * 3y To—1y Tygry **° 5 Xp

0<£1<Ea<e+ o <Ep1

(5) i (nz— Lnm—1,---,n — 1)f1<x1, S Tty Typdy t Ty )
1 £1,86, ) Er1 &, &, ) b

de dgy - -+ dEa.

Inserting (5) into (3), we get immediately,
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g(l’nh""n"): fff g<n’2—1’n3'—17"',nr_1>
L1y, gy =y T ! 51:52"" 127'—1 )

(6) 0<§1<te< e+ <Ep1
2 (=1 fu(z)f (x" T Bty Byt B ) Ao dgy - dg =
=1 & ) & ) * ) &

[[] oGatr™" )

05£1<82< - <¥p1

L1y Xgy *°0 5 &
. d. "'dr—-
fi (O, AR ,Er—l) dé d& r1

But gl(n2 -1 :3 - L ?’ N 1) = 0 by the induction assumption, while
1 y S2 y "y &r—1

fl L1,%2,%3, ", Xr
0,517527"’;&—1
04 < &< -+ < &_y1.Hence

- () 2o

L1, Xoy * "y Xr

= 0 since f1 is PF; by the hypothesis of the theorem since

(b) Now suppose n; > 1. Then forany n; < n2 < --- <mpand 0 < 2, < 2,

< -+ < x, we may write, using (2) and (4):
N1y Ngy =, N\ _ nl—-l,nz—l,---,nr—-l
g .. = B
L1, Xe, *y Tr & , &2 ’ y &
(8) E1<b2<- - <ky

g (T T T ) e e . g
f‘(sl,sz, s) B d
From (8) we see that for every sequence of densities satisfying the hypothesis,
the corresponding functions g, , g satisfy

n — 1 Ng — 1, --- n, — 1 Niy Ng, * - n,)
9 ) ) ’ >0 ) 102, ) > 0.
@ (P hET T Nzosg () 20

Using (7) and (9), it follows by induction that g<Z‘ ’ ;‘”’ ’;) = 0.
1y L2y °° " y Ly

Since g(n, x) has thereby been proven PT,, we have established the validity
of the induction step, and the theorem follows.

It is important to emphasize the distinction between Lemma 3 and Theorem 1.
Under the hypothesis of Theorem 1, Lemma 3 states that for each fixed positive
integer n, g(n, ) is PT in differences of z, while Theorem 1 states that g(n, z) is
PTy in the variables n and =x.

Will Theorem 1 hold if the random variables are not restricted to be non-
negative? In general, the answer is no, as the following example shows.

ExampLe: Let fi(z) = fa(z) = -+ = (1/4/27) ¢ *", a PF, . Then

g(n’ x) =f(")(x) = (1‘/,\/2%) e-—a:2/2n'
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For 1 £ ny < ma, 21 < 7z, the second order determinant is positive for
0 < 21 < 2, and negative for z; < z; < 0. Thus g(n, ) is not PT, .

However a generalization of Theorem 1 to the case of random variables ranging
over the whole real line s possible, as developed in Theorem 2 below. In the
more general case, total positivity holds, not for the n-fold convolution, but
rather for the first passage time probabilities of the partial sum process.

THEOREM 2: Let fi , f2, - - - be any sequence of PT), densities of random variables
X1, X, , - - - respectively, which are not necessarily non-negative. Consider the first

passage probability for x positive:
n i
h(n,$)=P[ZX¢§x; 2X1~<x,j=1,2,--~,n—1:|
=1 =1

forn =1,2,---.

Then h(n, z) is TPy, where n ranges over 1, 2, - -+ and x traverses the positive
axis.

Proor: The proof proceeds in a similar fashion to that of Theorem 1. We em-
ploy induction. First we note that h(n, z) is TP; since h(n, ) = 0 by its
very meaning,.

Assume now that for every sequence of densities satisfying the hypothesis,
the associated first passage time probability function is TP, for r < k. We
shall prove that this implies h(n, x) is TP, . From this the conclusion of the
theorem will follow.

We clearly have for x positive that

f f(&) d¢ forn =1
(10) h(n,z) = 1{ _
f flz — &)hi(n — 1, &) d& forn = 2
0
where
n j
hl(n’—lrg):Pl:ZthE; ZXi<£,j=2,37'”7n—1:|'
1=2 =2
We consider first the case n;, = 1. Given 1 < n, < ng < -+ < 1y,
< 22 < --+ < z,, we may write, using (10),

h 1,ne,ms, -, N,
L1, Loy Xz, **° 5 Tr

[re+od [ st [ feto

0 0 0

_ h(’ng, x;) h(’nz, xz) v h(n2, xr)
k(n,, z1) h(n,, z2) e h(n,, )

=2 (—D"‘f filz, + O ("2’"3’ ”) dt.
v=1 0 y Lr

L1y ** 5 Ty, Lyy1,y
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Now using (10) and (2), we obtain

h(nZ:na,“' ) [
zl’ "',xv—l,xv-{-l, T, Z,
0<E1<ba<s+-<Er_1
(11) .fl<x1’ C e L1y Tyg1y tt y Tr >hl (n2 —_ ]_,ns —_ 1’ R 1>.
£11£2,"' ,gr—l £1,£2)"' ;Er—l
dé dgy - -+ dEa.
Inserting (11) in the equation above and replacing —# by £, gives

p(mmom o [
L1, Tgy X3y """y Tr

E<0ZE1<Er< e+ <Er1

nz—l,’ns—]_’...,nr_ - B
hl(él,fz,"- ) Era >y§_:( 1) fl(xy £).

X1, * 0y Ty—1,y, Tyy1, * "
fl <£1} 527 et R gr—l) dE dfl d$2 dfr—-l

=[] <&,;,r?3‘1"“:’;:: )

E<05E1<E<e v o<y

h (Zl ,‘Elxzéz. .'.','xrfr_1> d¢ df, dés. s dfa.

But h1< — L =1L, — 1) = 0 by the inductive assumption, while
1

’52 7"',57‘—1
f1<”"‘”2"" T ) > 0since t < b <k < v <ba, << crr < @,
57517527”'721—1

and fi(x) is PFy by hypothesis. Hence h( L 7, Mg, oo n,) = 0.
xl,xZ,x3) tee ,xr

The remainder of the proof parallels the corresponding portion of the proof of
Theorem 1; simply replace g by h.

It is appropriate to compare Theorem 1 and Theorem 2. For this purpose we
sketch an argument which shows that Theorem 1 is actually a limiting case of
Theorem 2. A careful examination of the preceding argument reveals that in the
case of non-negative PF; random variables, the probability of first passage at
time » into any positive interval, not only the interval [z, «], is TP . In view
of this fact we shrink the interval to a point, and it readily follows that the first
passage time probability converges to the density corresponding to the n-fold
convolution. Since total positivity is preserved under this limiting operation,
Theorem 1 follows.

We now develop a series of consequences of Theorems 1 and 2. Let F;(x) be
the cumulative distribution function corresponding to fi(z),7 = 1,2, - - - . Then
as a direct corollary of Theorem 2, we have

TaEOREM 3: Under the assumptions of Theorem 1,

h(n,x)=F1*F2*---*F,._1(x)—Fl*Fz*---*F,,(x) 18 TP];,
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where n ranges over 1, 2, - -- and x > 0. In particular, if f: = f,i=1,2, ---,
then h(n, z) = F"(z) — F™(z) is TP;.

Proor: Simply rote that

h(n,2) = P[2iaX: z 2, 215 Xi < 2]
since the random variables are non-negative.

Actually we can say more about h(n, z) in the situation where the X; are non-
negative, independent, and identically distributed random variables; Theorem 4
asserts that for each fixed x > 0, h(n + m, x) is sign regular in the variables
n = 0and m = 0.

TaEOREM 4: Suppose f(x) is PF, with f(x) = 0 for x < 0. We define h(n, z)
by h(n, z) = F" P (z) — F™(z) forn = 1,2, --- ;2 = 0, and for fized z = 0
we define

h(n, z) forn =1
c(n) =
forn £ 0.
Then c(n + m) is sign regular of order k in m = 1 and m = 1; moreover, for
l=m<n<--<n,l =2m<m< - < m,, the sign of

ny , Ny crc,M . —1)/2 m , Ne e M
c.,.( v 1) ds (—1)V2 0 aphere c.,.( > ’ ')
ml,m2,~-.,mr ml,mZ,"',mr

c(my+m) -+ e(ng+ m,)

c(n, +m) --- cln. +m,)

ProoF: Form = 1and n = 1, we have
(12) c(n +m) = fg(m, Eh(n, x — ) dg;

where g(m, £) = f™(£). (12) simply states that if the partial sum first exceeds
z at the n + mth stage, then this can occur by having the mth partial sum equal
to some non-negative ¢ < z, while the partial sum starting with the m + 1st
variable first exceeds  — £ at the nth stage. From (12) and (2), we get, for
l=m<m<---<n,l=sm<m<---<m,r =k,

nl’ nz’ cee, Ny _ ml,m’..-’mr
c+ —3 .o g . .
My, Mg, **, My Ely &, , &

0<§1<82< + <<z

'h(nl , N2 NEREIS (8 )d&-l’d&’...’d&,.

zT— b,z — &,z — &

(13)

ByTheoreml,g(Zl’g:z’::: ’:Em')gO.Sincethex—El,x—&,“',x—f;',
b ) y &7

are in decreasing order of magnitude it follows, invoking Theorem 3, that
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ni y N2 MR (= . D)2
h - .
(x—gl,x-—gz,...,x_£r>h35th651gn( 1) Thus

o (nl, Ng, *++, n,)
mi, My, ***, My
has the sign (—1)"""’* as was to be proved.

We prove below that ¢(n) has the property of being PF; provided f(z) is
PF; (Theorem 5). This is the property required for the analysis of the inventory
model of Section 8. In contrast, this relationship between ¢(n) and f(x) doesnot
persist beyond the second order.

TuroreM 5: If f(z) is PF, with f(x) = 0 for x < 0, then c(n) (defined in

Theorem 4) is PF, .
Proor: Let n; < np, my < me. Write

Ny, Ne
c ( ’ =
my, Mg

(a) If ny < my, then c(ny — my) = 0, so that ¢ <n1 ’ n2> = 0.
my , Mg

(b) If ny > me, we must have my < my < m < nz. Hence

-
my, Me h(ny — my1, x) h(ng — mq, x)

-1

Since £ < z, my — my < mz — My, and k(n, z) is TP; by Theorem 3, then

c (nl ’ m) > 0 and the proof is finished.
my , Mg

c(ny — my) ¢l — my)

c(ny — m1) c(ne — my)

h(ng — my, 2) h(ng — ma, x)

h(ny — mg, £) h(ng — ma,
(g — my, £) h(ng — ma, x) J(ms — ma, 7 — ©) d

h(ny — ma, £) h(n, — me, x)

6. Compound Distributions. As an easy corollary of Theorem 1, we have
corresponding determinantal properties for compound distributions composed
from PT; densities. Specifically:

TaEOREM 6: Let X; = 0 be distributed with density fi(z), a PFy 1 = 1,2, --- .
Define S, = Y11 X, where N is a random variable independent of X1 , Xoy oo,
with density d(n, ), where u is a parameter, and d(n, u) is PTy in the variables
n and u. Then r(, 1), the probability density for Sy , is PTy in the variables z > 0
and .

Proor: r(z, u) = Z:=-1 PIN =n]fixfor - * f»(x) = Z:-l d(n, p)
g(n, ). By Theorem 1, g(n, z) is PT:. Applying Lemma 2 we conclude that
r(z, u) is also PTy.

In a similar fashion, we may study transforms of g(n, z) in the variable z; the
proof is as in Theorem 6.

THEOREM 7: In addition to the hypothesis of Theorem 1 assume that ¢(z, 8) is a
PT, function. Then ¢(n, s) = Jg(n, 2)¢(x, s) dzis PT} .
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As an illustration, let ¢(z, s) = €, —o < s = 0, so that ¢(z, s) is PT,, .
From Theorem 7, we have that ¢(n, s) is PT in the variables n and s. But ¢(n, s)
is the Laplace transform of the convolution of n densities and so we have
é(n, ) = ¢1(5)g2(s) -+ - da(s), Where ¢i(s) = [fi(x)e” do,¢ = 1,2,---.1In
particular, we obtain the interesting set of inequalities:

¢1(s1)  du(s)da(s) -+ du(s)da(s)) -+ @m(s1)

¢1(.32) ¢1(82).¢2(82) e ¢1(82).¢2(82) o dm(s) [ >0

01(s2) Gr(snalsn) o+ erls)da(sn) o0 dulsn)
where s; < 8, < - <8, =0, m =k, ¢i(s) = ff,-(x)e“ dz, and f;(x) is a PF}
density with f;(x) = 0forz < 0,7 =1,2,---, k.

6. Convolution of Random Variables Ranging Over the Real Line. We have
seen on the basis of the example following Theorem 1, that the n-fold convolution
g(n, z) of a PF; density whose possible values extend over the whole real line, is
not necessarily PT} . Thus, in generalizing Theorem 1 to densities whose possible
values extend throughout the real line, it was necessary to formulate the problem
in terms of first passage probabilities rather than n-fold convolutions. However,
the question remains: what smoothening properties are possessed by the n-fold
convolution of a PF; density, which has possible values ranging over the full real
line. We can answer this query in terms of a weakened version of the variation
diminishing property possessed by totally positive functions. Recall that if
p(z, w) is TPy and ¢(w) changes sign j < k — 1 times, then

r(z) = [p(e, w)g(w) dF (w)

changes sign at most j times; moreover, if r(z) actually changes sign ;7 times, then
it must change sign in the same order as does ¢(w) [9]. This variation diminishing
property may be compared with the following result.

TurEOREM 8: Let f(x) be a continuous PFy, , with f(x) not necessarily 0 for x < 0.
Let rm(z) = Doty ag(ng, z), whereny < ng < -+ < fm,m =< (k+ 1)/2, and
the a; are real non-zero constants. Then rn(x) has <2(m — 1) sign changes.

Proor: We proceed by induction. The theorem trivially holds for m = 1.

Assume the theorem holds for the case of a sum consisting of mq — 1 terms,
where my = (k + 1)/2. Write

mo mo
Tmo () = ; a;g(n;, z) = Zzai f g(n; — nq, 0)g(ni, x — 0) do

+ a; lim | ¢z(0, 8)g(n1, x — 9) db,

R-—>c0

where

b=v] S

f 0<6=
72(0, 0) = R for <60=
0 otherwise.
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Factoring, we get
mg
(14) 1) = lim f{z; a;g(n; — m1, 0) + a1gz(0, 0)} g(n, z — 6) df.

By the inductive hypothesis, Y 7% a.g(n: — ny, 6) has at most 2(my — 2) sign
changes as a function of 9. With R sufficiently large, a,gx(0, 8) can introduce at
most 2 additional sign changes. Thus for sufficiently large R,

mo
Z aig(ni - M, 0) + algR(O, 0)

has at most 2(mo — 1) sign changes. Since g(n;1, x — 0) isa PF; , and therefore,
variation diminishing, we obtain that the integral of (14) possesses at most
2(mo — 1) sign changes as a function of z. Taking the limit as B — «, the number
of sign changes cannot increase, and thus the number of sign changes of rmy() is

Applying induction, we conclude that the theorem holds for m = 1, 2, -- -,
(k + 1)/2 and the proof is finished.

7. Preserving Convexity and Concavity. Let X; = 0 be independent random
variables distributed according to f(z), & PF: . We now describe some further
smoothening properties possessed by the transformation which maps functions
into sequence, viz.

h(n) = ff(")(x)g(x) dz forn=1,2, ---.

We show first that the property of convexity is preserved under this trans-
formation. Explicitly, we prove that convexity in g(z) is carried over into con-
vexity in h(n). This will be demonstrated not only for the ordinary notion of
convexity, but for a type of convexity of higher order, which notion is made
precise below. Similar results hold for concavity. )

Assume f(z) is PF; and g(x) is convex (of order 2). Let u; = fx'f(x) dz,
1 = 1,2, .- represent the moments of X. Note that for arbitrary real constants
ao and a; ,

f {9(2) — [(ao/m)z + al}f”(2) dz = h(n) — (aon + ).

Since g(z) is convex, then g(x) — [(@o/u1)z + ai] has at most 2 changes of sign
and if 2 changes of sign actually occur, they occur in the order + — 4 as =
traverses the real axis from — « to + «. Since f is PF;, then by Theorem 1,
™ (z) is PT; in the variables » and z.

By the variation diminishing property of Pélya type functions, we infer that
h(n) — (am + a1) will have at most 2 changes of sign. Moreover, if
h(n) — (amm + a1) has exactly 2 changes of sign, then these will occur in the
same order as those of g(x) — [(ao/u1)x + a;], namely + — 4. Since ao , a; are
arbitrary, we easily infer that h(n) is a convex function of n.
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In a similar fashion we can show that higher order convexity is preserved under
this transformation as follows: A function g(z) is said to be convex of order r if
for an arbitrary polynomial p(z) = axt™" + @™ + --- + a, of degree
r—1,g9(z) — p(x) has at most r changes of sign, and if  changes of sign actually
occur, they occur in the order + — 4 -

Assume that f(z) is PF,.+1 and g(x) is convex of order r. Note that [/ (z) dz
=E(X:+ - + X,)* = uin* + lower powers of n. It follows immediately
that for an arbltrary polynomial ¢(n) = agn™™ + am”? + -+ + a,, of degree
r — 1, there exists a polynomial p(z) = ba™" + bz™> + -+ + b,_; of degree
r — 1 such that [p(z)f™ (z) de = ¢(n), and hence [lg () — p(2)}f'"™(x) da
= h(n) — g(n) with ahy > 0. Since f(z) is PF,,1, then by Theorem 1, ' ()
is PT,4, in the variables n and z and again by the variation diminishing prop-
erty of Pélya type functions, we obtain that A(n) — ¢(n) will have no more
changes of sign than ¢g(z) — p(z). But g(z) — p(z) has at most r changes in
sign since g(z) is convex of order r; and so h(n) — ¢(n) has at most r changes of
sign. Moreover, if h(n) — g(n) actually hasr changes of sign, then they will oc-
cur in the same order as those of g(x) — p(z), namely + — + --- . Thus h(n)
is convex of order r since ¢g(n) was an arbitrary polynofmal of degree r— 1

Similar results apply to concavity of higher order. A function g(z) is concave
of order r if for an arbitrary polynomial p(z) = a™™ + az™> + -+ + @, of
degree r — 1, g(z) — p(z) has at most r changes of sign, and if r changes of sign
happen then they occur in the order — + —

An application may be made to the mventory model discussed in [2], p. 227.
The probability density of demand for each period is f(£), a PF;. The policy
followed is to maintain the stock size at a fixed level S which will be suitably
chosen so as to minimize appropriate expected costs, or is determined by a fixed
capacity restriction. At the end of each period an order is placed to replenish
the stock consumed during that period so that a constant stock level is main-
tained on the books. Delivery takes place a periods later. The expected cost for a
stationary period as a function of the lag is

L(a) = _/08 k(S — 2)f“(2) dz + f: p(z — 8)f(2) dz

where 8 is fixed.
Assume now that A and p are convex increasing functions with A(0) =
p(0) = 0. Then we may write L(a) = fr(z)f(“’(z) dz, where
h(S — 2) for 028
r(z) =
p(z—8) for 8 <z
Then r(z) is a convex function. Using the preceding results, we conclude that

L(a) is a convex function. Thus, if the length of lag should increase, the marginal
" expected loss increases.



POLYA TYPE DISTRIBUTION OF CONVOLUTIONS 733

Similar results hold if p and h are concave. Also, if we assume f is PF4; and
p and h are convex (concave) of order k, we may conclude that L(a) is convex
(concave) of order k.

8. Application to an Inventory Problem. We wish to determine the initial
spare parts kit for a system, which maximizes assurance of no shortage whatso-
ever during a period of length ¢, under a budget for spares ¢, . We consider only
essential components, and assume that a failed component is instantly replaced
by a spare, if available. Only spares initially provided may be used for replace-
ment. The system contains d; operating components of type 7,7 = 1,2, -- - , k.
The length of life of the jth operating component of the 7th type is an independent
random variable with PF; density f;;,7 = 1,2, -+ -, d;. The unit cost of a com-
ponent of type 7 is c; .

Our problem is to find n;, the number of spares initially stocked of the ith
type,7 = 1,2, .-+, k, such that H’,Ll P;(n;) is maximized subject to

k
Zlniciéco and n;=0,1,2, .- for 1=1,2,---,k,
where P;(m) = probability of experiencing <m failures of type i. (See [3], [15]
fora detailed discussion of thismodel and itsapplication to reliability; our present
treatment is confined to aspects of the problem relevant to the present paper.)
In [3] and [15], methods are given for computing the solution when each
In P;(m) is concave in m, or equivalently, when each P;(n — m) is a TP, sequence
in n and m. To show P;(n — m) is a TP, sequence in n and m, we note:
1. ¢;;(n), the probability of requiring n replacements of operating component
1, J, is a PF, sequence in 7 for each fixed ¢, j by Theorem 5 above.
2. pi(n), the probability of requiring n replacements of type i, is a PF, se-
quence in 7 for each ¢ by Lemma 3, since p;(n) = ci1 * €2 * - -+ * cia;(n).
3. P;:(n — m) is a TP, sequence in n, m for each 1, since

0

Pi(n) = 2 pi(n — m)g(m),  where g(m)

M=00

(a) {1 for m=0,1,2 ---

0 otherwise,

(b) q(m) is a PF, sequence.

(¢) The convolution of PF sequences is PF; , by Lemma 3.

Thus when the underlying densities for the life of components are PF,, the
methods given in [3] and [15] for obtaining optimal kits are applicable.

9. Generating Totally Positive Functions. In this section we give a series of
examples of the above theorems. These theorems are written in terms of real
valued random variables but it should be emphasized that all our results are
equally valid for integer valued random variables. The underlying densities
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are assumed to be the appropriate PF sequences. The first few illustrations
involve integer valued random variables.

ExampLE 1:

(a) Let

q for k=0
f(k) =<p for k=1, where p + q = 1.
0 for other &

then f(k) is a PF, sequence by direct verification. Alternately, we may appeal
to a classical result of Schoenberg and Edrei which asserts that a sequence is a
PF sequence, if and only if its generating function is of the form

e"TIT {1 + a8)/(1 — B)}, v 20, 20,8 2 0; 2o and DB,

convergent. (See p. 305, [6].) Applying Theorem 1, we obtain that the binomial
density g(n, k) = f™ (k) = (Z) p'q" " is PT., . It follows that (Z) is TP, in the
variables n and k.

A direct proof, in this case, is easy. For some of our further examples the result
is less apparent

(b) Let
1/(1+p") for k=0
fi(k) =3p°/(1 + p*) for k=1
0 for other k,
2=1,2, --- . As pointed out in (a) above, each {f;(k)}s~o,1,... is 2 PF, sequence.

Hence, by Theorem 1, g(n, k) = fi * fo % - -+ % fu(k) is PT. . But g(n, k) is
simply the coefficient of s* in the generating function [[7: [(1 + p’s)/(1 + p%)]
of the n-fold convolution. Using the Gauss identity

I+ =2 [:L] p" ",
1=1

pe==l

where, by definition,

[F]= == amp /= - =)

for v =,

we find that the coefficient of s* in []7=i[(1 + p’s)/(1 + p?)]is [Z] p®*Ho /

I+ p'). Since p“‘"”‘”2 is a function of & alone while []i-: (1 + p°) isa
function of n alone, we conclude that I:Z] is TP, . Note that [Z] is a type of

generalization of the binomial coefficient (Z) since for p — 1, [Z] — (Z) .
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(c) Letf(k) = ¢'p,p +¢= 1,k =0,1,2, --- ; f(k), the geometric density,
is the probability that the first success in a sequence of Bernoulli trials occurs
following & successive failures. The corresponding generating function is
p/(1 — gs). By [1], p. 305, f(k) is PF,, . Now

o, ) =12 = (" E T e,

so that g(n, k) represents the probability that the nth success occurs at trial
n + k in the sequence of Bernoulli trials. By Theorem 1, g(n, k) is PT, . Since
p" is a function of n only, while ¢* is a function of % only, we obtain that
(”“g - l)is TP, .

(d) Next, let fi(k) = ¢*(1 — ¢*),k =0,1,2,---,4=1,2,--- . As noted
in (c¢), each {f:(k)}s=0,1... is a PF, sequence. Hence

g(n, k) = foxfo % - % fulk)

is PT» by Theorem 1. But g(n, k) is simply the coefficient of s* in the generating
function []7w [(1 — ¢°)/(1 — ¢'s)]. Using the Heine hypergeometric relation,
6], p. 8,

o i _w[n+1][n+2]”’[n+k]k
1y 00 —d9 =2 —pm g — *

where the symbol [m] is defined equal to [(1 — ¢™)/(1 — q)]. We find that the
coefficient of s* in the generating function is

Yooyl +2 - n+
{Ia-o |ttt

Since J]7-: (1 — ¢°) is a function of n alone, we obtain that

Kk — 1] -+ [1] is TP, .

Next we consider an example of the application of Theorem 1 to continuous
densities

(e) Let
_ j (x — @) e " /7 (k;) for z = a;
filz) = 1 0 for z < a;,
where k; is a positive integer, a; = 0,7 = 1, 2, - -- ; thus f;(z) is a translated

gamma density. Then the characteristic function of f;(z),

0

ei(t) = f ¢((z — a))" e T /T (k) da = &%/ (1 — i)™

T



736 SAMUEL KARLIN AND FRANK PROSCHAN

Defining g(n, ) = fi * fo % - -+ * fu(x), we have for its characteristic function
exp [ i al/(1 — it)Z:21 %3 and consequently

_ [ (z— 4A)" ¢ ") /T(K,) for zZ A,
g(n, 2) _{ 0 for z < 4.,

where A, = D i a;and K, = 7k, . This means that g(n, ) is also a trans-
lated gamma with parameters corresponding to the sum of the individual
parameters.

Since each f; is PF,, , we may conclude that g(n, z) is PT, in the variables n
and z by Theorem 1, or equivalently, factoring out ¢ and e*"/T'(K,), that
(z — A.)™ " is TP, . Note that by appropriate selection of the a; and the k;
we may achieve for A, any increasing function of n and K, — 1 may likewise
denote any strictly increasing integer-valued function of =.
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