## NOTES

## A CONSERVATIVE PROPERTY OF BINOMIAL TESTS1

By H. A. DAVID

## Virginia Polytechnic Institute

Consider n independent binomial trials with common probability of succuss  $\pi$ . We shall be concerned with the three binomial tests of the null hypothesis  $H_0$ :  $\pi = \pi_0(0 < \pi_0 < 1)$  corresponding to the alternative hypotheses (i)  $_1H_1$ :  $\pi > \pi_0$ , (ii)  $_2H_1$ :  $\pi < \pi_0$ , and (iii)  $_3H_1$ :  $\pi \neq \pi_0$ .

There are many situations when the probability of success does in fact vary from trial to trial, being  $\pi_i$  for the *i*th trial  $(i = 1, 2, \dots, n)$ . One may then wish to test the modified null hypothesis  $H'_0$ :  $\pi_0 = \pi_0$ , where  $\pi_0$  is the mean of the  $\pi_i$ .

It is the purpose of this note to show that the ordinary tests of  $H_0$  are conservative tests of  $H'_0$ . More precisely, letting  $S_n$  denote the number of successes in n trials, we shall prove that the inequality

(1) 
$$\Pr\left(S_n \geq a_n \mid H_0\right) \geq \Pr\left(S_n \geq a_n \mid H_0'\right)$$

holds for any integer  $a_n$  such that  $n\pi_0 + 1 \le a_n \le n$ . This result is relevant to case (i). At the ordinary levels of significance the fact that  $a_n$  has to exceed the expected value of  $S_n$  by at least one is no limitation. The corresponding result for case (ii) follows by symmetry, viz.,

(2) 
$$\Pr\left(S_n \leq b_n \mid H_0\right) \geq \Pr\left(S_n \leq b_n \mid H_0'\right),$$

where  $0 \le b_n \le n\pi_0 - 1$ . Since (2) implies

$$\Pr\left(S_n > b_n \mid H_0\right) \leq \Pr\left(S_n > b_n \mid H_0'\right)$$

it may be noted on taking  $a_n = b_n + 1$  that the inequality in (1) is reversed if  $a_n \leq n\pi_0$ . Adding (1) and (2) we obtain the inequality appropriate for the two-sided alternative (iii).

These results are obtained in the course of an ingenious but complicated argument by Hoeffding [2]. The proof given here may, however, be of interest in view of its relative simplicity.

To prove (1) we proceed by induction. For n = 2,  $a_2$  must equal 2 and

$$P \equiv \Pr(S_2 = 2 \mid H_0') = \pi_1 \pi_2$$

Received August 28, 1959; revised January 8, 1960.

<sup>&</sup>lt;sup>1</sup> Research supported by Office of Ordnance Research, U. S. Army Contract No. DA-36-034-ORD-1527 RD.

is a maximum for  $\pi_1 = \pi_2 = \pi_0$ , i.e., under  $H_0$ . Suppose next that (1) is true for n-1 trials. Then

(3) 
$$P \equiv \Pr(S_n \geq a_n | H'_0) = \sum_{x_n=0}^{1} \Pr(S_{n-1} \geq a_n - x_n) \Pr(x_n),$$

where  $x_n$  is the characteristic random variable describing the *n*th trial and taking the values 1 and 0 with probabilities  $\pi_n$  and  $(1 - \pi_n)$ , respectively. For simplicity of writing we omit showing the dependence of the right hand side of (3) on  $H'_0$ . With this understanding it follows that

$$P = (1 - \pi_n) \Pr (S_{n-1} \ge a_n) + \pi_n \Pr (S_{n-1} \ge a_n - 1)$$
  
=  $\Pr (S_{n-1} \ge a_n) + \pi_n \Pr (S_{n-1} = a_n - 1).$ 

Since  $a_n > (n-1)\pi_0 + 1$ , we have by hypothesis that  $\Pr(S_{n-1} \ge a_n)$  is a maximum, for a given value of  $\pi_n$ , if

(4) 
$$\pi_1 = \pi_2 = \cdots = \pi_{n-1} = (n\pi_0 - \pi_n)/(n-1) = \pi^*$$
 (say).

P now takes the form

$$P = \sum_{r=a_n}^{n-1} \binom{n-1}{r} \pi^{*r} (1-\pi^*)^{n-r-1} + \pi_n \binom{n-1}{a_n-1} \pi^{*a_n-1} (1-\pi^*)^{n-a_n},$$

and may be regarded as a function of  $\pi_n$  only, n,  $a_n$ ,  $\pi_0$  being specified. We have

$$\frac{dP}{d\pi_n} = \sum_{r=a_n}^{n-1} \left[ -\binom{n-2}{r-1} \pi^{*r-1} (1-\pi^*)^{n-r-1} + \binom{n-2}{r} \pi^{*r} (1-\pi^*)^{n-r-2} \right]$$

$$+ \binom{n-1}{a_n-1} \pi^{*a_n-1} (1-\pi^*)^{n-a_n}$$

$$- \pi_n \left[ \binom{n-2}{a_n-2} \pi^{*a_n-2} (1-\pi^*)^{n-a_n} - \binom{n-2}{a_n-1} \pi^{*a_n-1} (1-\pi^*)^{n-a_n-1} \right]$$

$$= -\binom{n-2}{a_n-1} \pi^{*a_n-1} (1-\pi^*)^{n-a_n-1} (1-\pi_n)$$

$$+ \binom{n-1}{a_n-1} \pi^{*a_n-1} (1-\pi^*)^{n-a_n} - \binom{n-2}{a_n-2} \pi^{*a_n-2} (1-\pi^*)^{n-a_n}$$

$$= \frac{(n-2)!}{(a_n-1)!(n-a_n)!} \pi^{*a_n-2} (1-\pi^*)^{n-a_n-1} F,$$

where

$$F = -(n - a_n)\pi^*(1 - \pi_n) + (n - 1)\pi^*(1 - \pi^*) - (a_n - 1)\pi_n(1 - \pi^*).$$
By (4),  $\pi^* = 1$  gives  $n\pi_0 = n - 1 + \pi_n$ . But
$$a_n \ge n\pi_0 + 1 = n + \pi_n$$
,

which leaves n as the only possible value of  $a_n$ , so that  $\pi^* = 1$  does not lead to a zero of  $dP/d\pi_n$ . The case  $\pi^* = 0$  is discussed below.

Turning to the zeros of F we note that this is a quadratic in  $\pi_n$ , viz.,

$$(n-1)F = -n(\pi_n - \pi_0)(\pi_n - n\pi_0 - 1 + a_n).$$

The condition  $a_n \ge n\pi_0 + 1$  ensures that the root  $\pi_n = \pi_0$  corresponds to a local maximum of P, a continuous function of  $\pi_n$ . The derivative  $dP/d\pi_n$  vanishes also at  $\pi^* = 0$ , i.e., at  $\pi_n = n\pi_0$  and, for  $a_n = n\pi_0 + 1$ , at  $\pi_n = 0$ . Since  $\pi^* \ge 0$  implies by (4) that  $\pi_n \le \min(n\pi_0, 1)$  it follows that  $dP/d\pi_n = 0$  at  $\pi_n = \pi_0$  and possibly at extreme values of  $\pi_n$ . Thus the local maximum of P must be a true maximum, so that by (4) P is a maximum for  $\pi_i = \pi_0$  (all i), which proves (1).

The question of what approximate corrections to make to the probabilities under  $H_0$  to obtain the corresponding probabilities under  $H'_0$  has been considered by Walsh [3]. He also points out the known results (Cramér [1]) that  $S_n$  is asymptotically normal provided  $\sum_{i=1}^n \pi_i (1-\pi_i)$  diverges as  $n\to\infty$ . In this case, therefore, since modifying  $H_0$  to  $H'_0$  leaves the expectation of  $S_n$  unchanged but reduces its variance, the above three results are to be expected in large samples.

I am grateful to the Editor for drawing my attention to references [2] and [3].

## REFERENCES

- HARALD CRAMÉR, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946, pp. 217-218.
- [2] Wassily Hoeffding, "On the distribution of the number of successes in independent trials," Ann. Math. Stat., Vol. 27 (1956), pp. 713-721.
- [3] JOHN E. Walsh, "Approximate probability values for observed number of 'successes' from statistically independent binomial events with unequal probabilities," Sankhyā, Vol. 15 (1955), pp. 281-290.