EQUALITIES FOR STATIONARY PROCESSES SIMILAR TO AN
EQUALITY OF WALD ‘

By Suu-Ter CeEN Moy

Wayne State University'

I. Introduction. Let Q be a non-empty set with elements w, § be a o-algebra of
subsets of @ and P be a probability measure on §. Let T' be a one to one map of
onto © which, together with its inverse T~ are F-measurable and P measure
preserving. For any random variable (real F-measurable function) X on Q, let
TX be the function on @ defined by TX(w) = X(Tw) so that [TX ¢ B] =
T'[X & B] for any Borel set B. Consider an F-measurable set E with P(E) > 0.
For any we E consider the images of w under iterates of T: To, T’w, -,
T"w, - - . If ny is the smallest positive integer for which T™'w ¢ E we say that the
first recurrence time » of E is equal to n; . The Poincaré recurrence theorem
(2], p- 10) asserts that » is well defined and finite almost everywhere on E. In
fact the stronger version of the Poincaré recurrence theorem asserts that, for
almost all w & E, there are infinitely many positive integers n such that T"w ¢ E.
Let us write down these integers according to their natural order, n; , 1 + 72,
ny + ng + ns, -+ - . Then ny is defined to be the value of the kth recurrence time
i of w. Thus the successive recurrence times of E: »,, »;, - - - are well defined
almost everywhere on E. If we introduce the conditional probability measure
given E, Pz, on § by '

(1) Pg(A) = P(EN A)/P(E),

then »,, vy, --- are well defined and finite valued with Pg probability one on
the whole space Q. In [3] it was proved that {»:} is a stationary sequence under
Pg measure. In this paper we shall introduce a Pg measure preserving transforma-
tion S which associates with {»:} in a very natural way. It is shown that Sy =
v,k =1,2, -+ ,s0that the stationarity of {»:} is actually due to the P measure
preserving property of S. Let X, = T"X. It is then shown that sequences { X}
and {X,,+cqon_yt1 + -+ + Xy 4.4v,) are stationary under P measure. This
leads to equalities (13) and (15), which résemble an equality of Wald for an
independent sequence of random variables [1]. In fact, the proofs of (13) and
(15) are also rather similar to the proof given in [1].

II. The Transformation S. Let E, E be subsets of @ defined by

(2) - E= En(nl:llT-"E),
(3) E=EN (gTE)
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E may be decomposed into disjoint, countably many pieces, Dy, D, , - -- , where
(4) D,=ENT'E'N .--NT"E'NT"E

with B/ = Q@ — E. Similarly, E may be decomposed mto disjoint, countably
many pieces, Fy, Fa, --- , where

(5) F,.=T'ENT'E'N ---N TE'N E.
We shall define a one to one map S of £ onto E as follows:
(6) So =T if weD,, n=1,23 -

In other words, S is identical to 7" on D, . It is clear that D, is mapped onto
F, under S. E consists of all points of E for which there is a positive integer n
such that T"w ¢ E, therefore, has Pz measure one accordmg to the Poincaré re-
currence theorem. Applying the same theorem to T~ we conclude that E is also
of P measure one. Hence S and its integral (positive or negative) powers are
well defined with Pg probability one on Q.

LemMa 1. If A e F and A C E then Px(A) = Pg(SA).

Proor. It is sufficient to prove that P(A) = P(SA).

It

P(SA) = P[ ii{ 504 N D,.):l - 2 PIS(A N D,)] = 2 PIT™(4 N D))

S P(AND,) = P[Ql 4 nD,,)] - P(A).

n=1

For any F-measurable function Z which is well defined up to a set of Pr measure
0, SZ, S7'Z are defined by SZ(w) = Z(Sw), SZ(w) = Z(S ). Again SZ,
S7'Z are well defined up to sets of Pz measure0 and SS™'Z = S$7'SZ = Z with
Pg measure one. The following theorem follows immediately from Lemma 1.
THEOREM 1. Let Z be any random variable and Z, = S*Z,k = 1,2, 3, --- . Then
{Zi} is a stationary sequence under the conditional probability measure Px
The natural connection between S and the successive recurrence times,

v, ¥, -+, is revealed by the following theorem.

THEOREM 2. 8"y = , with Py measure one fork = 1,2,3, -- - . For any posi-
tive integer k and any k positive integers ny , ng , -+ , mg, 8¢ = Tmimtt oy
the set [vi = My, vo = M2, -+ v, = M.

Proor. For any k positive integers n, , nz2, --- , nx , let

D”l-"z,'",nk = FEnN T—lEl n-.--nN T—(nl—l)E/ n T ™EnN T_.(nl_l_l)E,
n...Nn p-mtreDpn p-tmte) pa p—(ataeth g
N ... Qb gy etk gy
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Then
Dyyingyooony < Day s
T"anl Myt Mk < D"z ’

..............................

T"l+n’+"‘+nk—1Dn1,n3""»"l¢ cC an .
Hence if w & Doy g i
Sw = TMwe Dn; 3 .
Sw = SSw = T"8w = T "y ¢ D,,,

Skw = SSk_l(J)l — Tn‘ksk—lw = Tn1+n2+‘n+nkw'

Weobserve that [lll = n] = Dn a,nd [V1 =Ny, V2 =MNg, ",V = 'nk] = D”l'nz"“v”k’
Therefore the second half of the theorem is proved. The first half of the theorem
will be proved only for the case k = 2. The general case can be proved similarly.
In the following, two sets are equal if they differ at most by a set of P measure
0. From the definition of S, »

) S'% =T "w if weF,, n=123, .

Hence for any positive integer 7,

(Sn =1 = 870w = 41 = U 7770 Dy

=UTHT*EN T*E'N---NTE'NENTE'N---N T VE'N TE]
k=1 !

0

=UENTEN---NnT*PENT*EN D g
k=1 . n . n T—(k+f—1)E, n T,—(k+j)E]
= U [n="Fkn=7=[k=4

Hence Sy, = », with Pz measure one.

III. Two Equalities for a Stationary Sequence. Let X be any random variable
and let

(8) | : X, = T'X, n=12--.

Then {X,} is a stationary sequence under the measure P. For any positive in-
teger k define X,, +...4y, by (9).

+eoe b,
(9) Xoptotng = Xnpgorogmy = T

on the set [ = ny, - -+, » = ni]. Then X, ..., are well defined with Pr meas-
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ure one. By Theorem 2, 8*X = T™*“*™X on the set [y = n1, « -+, m = ml.
Hence

(10) SX = Xyt -

More generally, for any positive integer =, let fo(2:, - -+ , 2.) be a Borel measur-
able function defined on the n-dimensional Euclidean space. Define

Zyy = [o(Xppertmpytt s Xopeortmmriz s 00 Xopgoeatny)
as follows:
(11) Zi = fur(Fnyteetmp_r1 s Xngtoodm_gt2y =0 5 Xngoootng)

on the set [v; = m1, --- w = m]. Then Z;, Z;, --- are well defined with Pz
measure one. We shall show that

(12) Zyyr = SZs, k=12 .-
with Pr measure one. First,
8Z(0) = Zi(8w) = fapi[Xngiooames1(80), =+ Knpivgimg 1 (Sw)]
if Swel[n =mng, v =ms, -+, n = M or, equivalently, if
wEve =Ma, v3 = Ng, *+* Vg1 = Npya].
However, Sw = T™w if w & [11 = ni]. Hence, for
weEl =N, 1o =N, + o, Ve = Mgy,
8Zi(0) = farps(Xngieeoampen (T™0), + o+ ) Xngporogmy 1 (T"0))
= forer(Xngingtoeamt1(@), * o+ 5 Xoggngtordng 1 (0))-
= Zp(w).

Hence (12) is proved and Z;, Z,, --- form a stationary sequence under Pg
measure, _

For special cases of {Z;}, we have (a), (b), (¢).

(a) Letf,,(x; y Ty x,,) = n, then Zy =n , Zy = Vo, *

(b) Let fa(z1, *++, Zs) = Tn, then Z; = X,,, Zy = X, 4, - -

(e) Let fa(@1, +++, 20) =21+ -+ + 24, then Z; = X; + -+ + X,;,
Z2?Xv1+1+"'+le+v2,"'- . .

TurorEM 3. Let X be a P integrable random variable and let X, = T"X, n =
1,2,8, ... . If T is ergodic then X, + --- + X,, is Pg integrable and

f(X1+ o+ X,) dPg = (ledP><fv1dPE>

= [1/P(B)] ( [x dP).

Proor. It has been proved in [3] that, if T is ergodic, then », »;; - - - are well

(13)
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defined with P measure one, and lim;.., (1 + ++- + w)k™ = [I/P(E)] with P
measure one, and also [ » dPg = [1/P(E)]. Let @ be the set of all w for which
we have simultaneously ’

lim () + - + (@) = 1/P(B)]
and
lim [X:(o) + -+ .X,.(w)]n"l = le dP.

Then P(2') = 1. Hence the following equalities are true on @'.
lim [(Xl + -+ Xxf;) + et + (Xv1+-n+vk_1+1 + IR o X11v+-~-+vb)]k.—l

k>0
' D O R . O R
14 =1 L k.
(14) kl-fg nt o+ k '
- [ [ x. dP]-[l/P(E)]‘
if X is non-negative with Pz measure:one, then X, r..45_;41 + -+ +
Xo4eodm k=1,2, .-  are non-negaqive with Pz measure one. The conclusion
of Theorem 3 follows easily from the fact that X, + --- + X,, , Xyyu + -+ +
X,i4v, +-+ , form a stationary sequence under Pr measure and the following

statement. If non-negative functions, g , gz, - - - form a stationary sequence and
limg,e (g1 + -+ + gr)k™ = g with probability one with g integrable, then g,
is integrable and the integral of ¢; is equal to the integral of g. This statement
can-be easily proved by the ergodic theorem. If X is not non-negative apply
Theorem 3 to | X |. Thus we have that | X;| + -+ + | X,, | is Pg integrable
and, therefore, X; 4+ - -- 4+ X,, is also Pg integrable. The ergodic theorem again
implies (13). o

TaEOREM 4. Let random variable X be Py integrable and let X, = T"X, n =
1,2, - . If T is ergodic then X, is Py integrable and

(15) [ % aps = [ x ap,.
Proor. For any subset A of Q, let I, be the real valued function define on 2 by
Idw) =1 if wed
= 0 otherwise.

Then T"Iz = Ir-ng. Let X’ = XIzand X, = T"X’,n = 1,2, -+ . Then
[X'dP = [ XdP = P(E) [ X dPg, so that X’ is P integrable. Applying
Theorem 3 to the sequence X1, X3 - - - , we have

f(X{ 4 o 4+ X)) dPs = [1/P(E)] [/ X’ dP] - fXdPE.
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However
Xit+ o+ X, =X I+ o+ XpIrnz = Xo, .

Hence X,, is P; integrable and [ X,, dPs = [ X dP5.
CoroLrLARY 1. If T s ergodic, so is S.
Proor. Let X, X, , X » be as in Theorem 4. Applying (14) to {X.}, we have

lim (Xi+ -+ X))+ Kpeetmgst o 4 X )
- [ f X! dP] [1/P(E)] = f X dP;

with Pg measure one. However, by (10),
X:l+"'+’k—l+1 + fee + X:l+"‘+'h) = Xyl+...+1h = SkX.

Hence
(16) lim (SX 4 -+ + XK = fX dPs
k»»

with Pz measure one. Since (16) is true for any Pg integrable random variable
X, the conclusion that S is ergodic is thus proved.
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