TESTS FOR REGRESSION COEFFICIENTS WHEN ERRORS ARE
CORRELATED ‘

By M. M. SippiqQuil
Boulder Laboratories, National Bureau of Standards

1. Summary. In a previous paper [6] the covariances of least-squares estimates
of regression coefficients and the expected value of the estimate of residual
variance were investigated when the errors are assumed to be correlated. In this
paper we will investigate the distribution of the usual test statistics for regression
coefficients under the same assumptions. Applications of the theory to the cases
of testing a single sample mean, the difference between the means of two samples,
the coefficients in a linear trend and in regression on trigonometric functions will
be discussed in some detail under an assumed covariance matrix for errors.

2. Introduction. Several authors have studied the effects on common tests of
significance when one or another of the ideal conditions is not satisfied. The
effect of correlation between errors on ¢ and z tests for means has been investi-
gated by Daniels [3]. Box, in a series of excellent papers, including [1] and [2],
has studied the problem of unequal variances of errors and correlations between
them in analysis of variance situations. In continuation of these investigations,
it seemed desirable to study in some detail the distributions of common tests of
significance, or their variations, for regression coefficients in the usual cases of
interest. The results contained in this paper may be considered an extension of
Daniels’, Box’s and Welch’s [7] work.

3. Test statistics for regression coefficients. Let y = 2’8 4 A be the observa-
tion equation, where y and A are N X 1 column vectors, 8 is a p X 1 column
vector, z is a p X N matrix and a prime is used to denote the transpose of a
matrix or a vector. It is assumed that N > p, z is non-stochastic and of rank p,
and A is a N(0, ¢°P) vector variate, where O is a zero vector and P is a positive
definite correlation matrix. The notation N(a, D) is used for the normal dis-
tribution with mean vector a and covariance matrix D. P will be assumed to
have a specified structure, given by (3.8), and to be known. Although, in princi-
ple, a non-singular transformation on y exists which takes one back to the
standard case, from practical considerations it seemed worthwhile to study the
effects on the usual test statistics when g is estimated by minimizing A’A instead
of A’PA. Some of the reasons for doing this are glven in the last section. We
further assume that z is so chosen that zz’ = I, , the p X p identity matrix, so
that the elements z;; of z are of the order N*. This assumption is no restriction
in principle, and, even in practice, a simple modification in z may be sufficient.
For example, in the case of a linear or a polynomial trend, orthogonal poly-
nomials may be used; in the case of regression on the mean or on trigonometric
functions, a normalizing factor may be introduced.
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Writing b = 2y, v = y — 2’b,n = N — p, we recall that b and §* = v'v are
the least-squares estimates of 8 and ne” respectively. Now

(3.1) b =zxz(2'B+ A) =B + z4;

hence |

(3.2) Eb=8 oB=E®b-B® —p) =Pz
Also,

(3.3) v=y —a'b= Iy — 2'z)A = MA,

where M = Iy — «'z. Since M’ = M = M?, the characteristic roots of M are
zeros or ones, and since the trace of M = n, M is of rank n. Further,

Y4
(3.4) M;; = 6:5 — len’xaj =8;+ ON),

and
(35) Ev =0,V = Ew' = " MPM, 'R = Ev(b' — p') = "MPx'.

IfP =1Iy,thenB=1,,V = M,R = Mz’ = 0, so that v is independent of b.
Also ES* = no® and S?/o* is independently distributed of b as a x” variate with
n degrees of freedom. The usual statistic test to the hypothesis concerning the
value of 8; is '

(3.6) uj = (b; — B;)n'/8,

which is distributed as a Student variate with n degrees of freedom. In general,
when P = Iy,

(3.7) u = nla’(b — B)/S(a'a)t

is a Student variate with n degrees of freedom for any non-null vector a.
When P 5 Iy, neither ES® = no® nor the distribution of §°/¢" is that of a
5 variate. Furthermore, » and b are correlated so that S” is not independent of b.
We now consider the special case

(3.8) Pij = pri=jt, pm=1
It will be assumed that p; is small and > s p: negligible so that the departure
from the ideal conditions is not very great. For example, pr = e,

or 1/(a®% 4 1), a = 2. At first glance, these assumptions may seem somewhat
restrictive, but a little reflection will show that they are quite reasonable. If one
- or more autocorrelations are high, it would be desirable to modify the initial
model by introducing additional regression variables, presumably stochastic in
nature. For instance, we may introduce a small order autoregressive scheme for
A. In the applications which will follow after the general discussion we will
actually set px = O for k& > 1. In this case P will be written as P and for the
positive-definiteness of P® we will require | p | < (3) sec [x/N + 1)].
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Evaluating B;;, Vi, and R;; , where B is defined in (3.2), and V and R in
(3.5), we find '

N—1 N—k
B;; =1+ 2;1pk21 Zjelj,a+k
(3.9) N1
~14 2plz:l Ljsj,s+1 »

N-—-1 N—k

Vi=M:+ 2 kZ; Pk El M Mi,a+k
' 2, . D »
(3.10) ~1 - ki — 2m I:tZ; T Teigr + ‘Zl Lo Loy

r=1
N—-1 p p
+ Z Z Zl Lri Lrs Tes xt,:+l:|,

8=l r=1 t=

N-1 N—k

R;; = 1; Pr 821 (M iy o0 + M oii Tis)

N-—-1 »

P l:xj,z'-x + zjip — Z 2 (@i Trs Tjomt

j=1 r=l

(3.11)

IR

+ Ty Ty xi‘)])
where zjo = z; 41 = 0, and =2 is to be replaced by = when P = P". We notice
that B;; and V; are of the order of unity while R;; is of the order of pN = The
correlation coefficient between v; and b; is given by Rij(VuBj;) ™ = 0(aN?).
Hence, if either N is large or if p; is small, the vector v is almost independent of
b. As a first approximation, therefore, we will derive the distributions of .the
test statistics as though S* were distributed independently of b. Now,

S = vy = A’MA

is a non-negative definite quadratic form of rank n in A. If A;, ---, A, are the
non-zero characteristic roots of A = MP, the distribution of S%/o” is that of
Q = 2.7 \xi(1l). Here xi(») denotes a -x* variate with » degrees of freedom
and all such variates appearing in a linear combination are independent. We
approximate the probability density function (pdf) of @ by the pdf of a gx*(k)
variate, i.e., :

e—sl2a zh/2—l

(8.12) k(z9,h,) = COTGR) forz > 0, Oforz <0,

where (see, for example, [1])
(3.13) g= 2N/ = (XN 2N,

so that the first tvx;o moments of Q are equal to the first two moments of k(z;g,h).
g will be called the scaling factor and h the effective number of degrees of freedom
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associated with Q. Box [1] has shown that » < n. If greater accuracy is desired
this approximation can be improved in several ways [5]. One way is to write the

pdf of @, p(z), as

= (e s~ m!T(A/2) dn rae-n (2
1) b = k00 T T s 1 (5).
where
(e & (m+c\ (—z)
Lm)(x) = ;(m_‘7> i

is the Laguerre‘ polynomial of degree m, and the d,. are given by

dn = 20" [ DL (e/29) de

(3.15) .

=5 (") o,
where v; = EQ’. In particular, do = 1, d; = dy = 0, and
(3.16) ds = —$[220\° — hyl.

The convergence of such series as (3.14) in the case of a linear combination of
x” variates with all coefficients positive has been proved by Gurland [4].

If @ and @, are two independent quadratic forms in normal variates with
zero means, the distribution of their ratio can be obtained easily from their
joint distribution, where each distribution is developed in the form (3.14) In
particular if Z is a N(0, 1) variate and Q is a >_ Ajx3(1) variate independent of
Z, then the distribution of ¢ = Z(gh)}/Q} is given by

Pr(|t| z t) = I, (h/2, 1/2)
+ i (2g)~mdmi (—1)’ (m> I:(j + h/2,1/2),
m=3 =0 ]

where zo = (1 + /)", and, for p > 0, ¢ > 0,

(3.17)

L(p, q) = [B(p, q)l“f 2?1 —2) dy, for0<z<l1,
0
=0 for 20, 1 for z2= 1:
The leading term of (3.17) indicates that ¢ is approximately a Student variate
with A degrees of freedom.
Now, :

z = a’'(b — B)/o(a’Ba)}

isa N (0, 1) variate for any non-zero vector a, and is approximately independent
of §*/4". Hence

t = a'(b — B)(gh)"/S(a'Ba)}
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is approximately a Student variate with  degrees of freedom. The alternative
test statistics,

w = a'(b — Bn'/S(a’Ba)},
u = a'(b — B)nt/S,
are related to ¢ by the relations

I

w = a1t, u = alagt,
ar = (n/gh)},  a = (a’Ba/a’a)’.

Since o; does not depend on the vector a we observe that the distribution of w
does not depend on the choice of a, so that w,, ws, -+ , w, will be identically
distributed as eyf. It will be found in many cases that @; = 1 4+ O(1/2), so that
considering w as a Student variate with n degrees of freedom involves mainly
an error in degrees of freedom, which is not very serious if n and & both are
moderately large. However, in general a; will not be close to unity and considering
u as a Student variate with n degrees of freedom will lead to serious errors in
probability statements. Since a; depends on the choice of a, the distribution of
u will change with a change in @. In particular %, --- , u,, in general, will
have different distributions.

Let ¢, denote a number such that Pr (|¢| = ¢») = . This number can be
approximately determined through interpolation in existing tables of Student
distributions. The 100 (1 — «) per cent confidence interval on 8; is approxi-
mately given by

(3.18) b; — taSB};/(gh)} < B; < b; + t.SBY;/(gh)*.

In many cases it will be difficult to determine the characteristic roots Ay, - - - , A,
of the matrix A. We only require, however, the sums of powers of these roots to
determine the values of g, h, ds , d; etc. These may be found by the relations

(3.19) DN =trd, r=1,2 ---,
j=1 '

where ‘“tr’”’ stands for, the trace of a matrix.
In the following applications we will confine attention to the case when
P = P? ie, when

PY = p-yy  pi=0, forj > 1.
In the case of testing a single sample mean we will also consider P = P® where
PR =0 |pl<L

It is believed that applications of the theory presented in this section will be
found mostly in the analysis of time series. If we have a record on a time series,
which we believe to be stationary, we may wish to test the hypothesis that the
process mean is zero. If we have several samples we may wish to compare their
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means. In some other cases we may wish to test the existence of a linear trend
or of cycles. In all such cases we may assume that the errors form a stationary
process with an autocorrelation function p;, . The theory then provides adequate
test statistics, when N is large, noting that P;; = pji—j; .

4. Single sample mean. Let
| ye = B/N' + A, t=1,2, -+ ,N.

Since there is only one regression coefficient, we omit the suffixes from 8 and B.
Now

N : ~
b= (N)y=nN"? ;:y,, & = Zitf - N§'.
. " b= tes
The elements of the matrix M are obviously 8;; — 1/N, where 8;; = 0 if ¢ 5 j,
1if 2 = j. The usual test statistic concerning g8 is
u = (§ — B/N*)(nN)¥/8, n=N-1,

(2) In case P = P, we have B = 1+ 2p, — 2p/N, and, evaluating > A
and ) N’ from the relations(3.19), we obtain

3N =tr MP® = a(1 — 2p,/N)

- = tr (MPY)? = n(1 — 4p/N) + 2(n — 2)pi + 4(N + 1)pi/N".
From thése, g and h are eaéily détefmined for any given value of })1 ,-and then
= (/2N a=(B)

_ S w= ait, U = ogol.
(b) In case P = P®, we have, neglecﬁng o, |
B =(1+p/(1 -0~ 2/(N(1L = p)},
XA=N—(1+0p)/1 = p) + 2/N(1 = p)’,
DN =N1+/)/A=0)— (141 —p)"—20/(1 = p)
| +4p(1 = F)/IN(L = p)*(1 + o)} + 48/IN*(1 — 0)'}.

As an illustration, valueé of- g, h and approximate 5% points of ¢, w and u for
o= —.2,0, +.2 when N = 10 are given in the following table. The top value
in each column corresponds to P = P and the bottom value to P = P®,

3 h_ - g . L oz 1,08 w,08 %08
—.2 8.51  1.100 981 .80 2282  2.239  1.791
8.44 . 1.102 .983 .833 2.285 2.246 1.871
0 9.00 1.000 1.000 1.000 2.262 2.262 2.262
9.00 1.000  1.000 1.000 ~ 2.262 2.262 2.262
+.2 8.43 1.025 1.021 . 1.166 = 2.285 2.333 2.720

8.46 1.012 1.025 1.200 2.284 2.341 2.809
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5. Two samples. We distinguish the sample and associated quantities by a
subscript or an additional subscript, e.g.,

yie = B/N* + Ay, t=1,2,---, Ny, i=12,

where A;, 7 = 1, 2, are mdependent N(0, iP;) vector variates. The case
P;=1Iy,1=1,2 and 01 ;é o5 has been studied by Welch [7]. We will treat here
the general case when a3, 03 , Py and P, are arbitrary. We will assume that P,
and P, and 0 = o}/03 are known and that N, and N, are large. The variate

=[5 — §2 — B/ (N} + Bo/ (N2)')/02(0B1/ Ny + Bo/Ns)
is a N(0, 1) variate and

N;
Sf = Ztst—‘ s’.l/; = ZAft—Nth

teal =1
= A:'M,'A,', 1 = 1, 2,

are distributed, mdependently of each other and approximately independently
of Z, as o5 Z,..l Njxs (1), where X, 5 = 1, , Mg are non-zero characteristic
roots of A; = M; ,P, and n; = N; — 1. Hence Q Sl/ o} + 83/03 is distributed as

i Z,,,l Mix*(1). Let g and & be the scaling factor and the effective degrees
of freedom associated with @, i.e.,

h= (X XN)/ 22 XN, 9= 2 2N/ 20 2 N
where the summations over j are from 1 to n; and over 7 from 1 to 2. Then
t=[h— 7 — B/ (N:)* + B/ (N3)*1(gh)}/[6B1/ N1 + Bu/N2)(Si/0 + st
is approximately a Student variate with h degrees of freedom.

6. Linear trend. We take N to be an odd integer and consider the linear trend
in the form

= NI, + [N(N* — 117 (12)¥B:ft — (N + 1)/2} + A,
S t=1,2,---,N.
From [6], we have

b = Ny, = (12)'N (N — 1)‘*Zty, - (3)*N*(N + 1)*(N - 1),
. A
S = éyﬁ—bf—bg.
The elements of the matrix M are given by
My =8 — 1/N — 3INV* — 1)]7(2 — N — 1)(2j — N — 1).
If P = P, we have V
Bu=1+2n—2n/N, Bu=0,
By = 1+ 20, — 6p/N — 4p/{N(N* — 1)}.
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Evaluating >_ A and D \’, we find, writingn = N — 2, .
2\ =n(l — 4p/N),
2N = n(l = 8n/N) + 2(n — 3)pi + 16p1/N
+ 16p1/N* — 2401/(N*(N — 1)},
from which % and g are determined. Finally
t = S7a(b — B) + aa(bs — 2)1(gh)/[aiBu + 03Bl

is approximately a Student variate with /& degrees of freedom for arbitrary con-
stants a, and a; not both equal to zero.

7. Regression on trigonometric functions. Consider
L]
Y = ﬂl/N} + (2/N)*Z1 (B2 cos pit + Boita sin pd) + Ay t=12,-- ..’N’

where p; = 27w;/N,% = 1, -+ , g, and w; are positive integers less than N and
different from each other. Again, from [6] we obtain

N . N
by = NYj, by = (2/N)*;1 YOS pt; Doy = (2/N>*§31 Ye sin i,

1 =11, » @
N 2¢+1
8=yl —bi— 2,
t=1 ) =2
n=N—2¢—1,
) qa
My =6:—N"'— 2N_IZICOS wi(s — t).
Assuming P = P, we also have
Bu =1+ 2p — 2p/N
Byiai = 1 4 2p, cos p; — 4N "py cOS pi
Byit1,2i41 = 1 + 2p;1 €08 pi i=1,--,4q.

Evaluating > A and > N, we find

q q
2A=n—2p— 4p1._Z; cos wi + 2N 7'y + 4N”‘p1§ €os i,
q ‘ q
SN =n—2(n—2)p — 4p — 8p1 ) cOS pi — 4pf21008 2u
=1 i=

i=1

q q
+ 4N"'p <1 +2 Z; cos y,-> + 4N"p (1 + 2> cos 2 m)
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+4N‘“(2q +3q+1+22cosu,+Zcos2u,

q
+ 2 Z’; COS u; COS p,~> .
7]

The remaining steps for testing any one of the regression coefficients are straight-
forward.

8. Concluding remarks. In the preceding discussion we have assumed that

(i) the elements P;; = pjs—ji, po = 1,
(ii) p1 is small and ps, ps, - - - are negligible, and p; is known, or
(ii") N is large and p; is known.

As was remarked earlier, if P is known, it is possible to find a non-singular
matrix, D, such that DPD’ = Iy . The transformation y* = Dy, then, takes us
back to the ideal situation as the covariance matrix of A* = DA is ¢’Iy . Since,
on theoretical grounds, such a transformation is desirable before applying the
least-squares method, or, equivalently, the minimum variance unbiased linear
estimate of 8, obtained by minimizing A’PA, must be preferred over the least-
squares estimate, b, obtained by minimizing A’A, the reasons for using the latter
procedure must be sought in practical considerations. Some of the reasons may
be enumerated as the following. Firstly, if N is moderatley large, it may become
quite laborious to evaluate D or to work with the transformed variable y*.
Secondly, one may be dealing with several regression problems, the covariance
matrices of errors in different problems being different, and one may wish to
streamline the calculations. Thirdly, and this is the most important reason, in
almost all practical situations, P will be unknown. In this case, if we estimate 3
and the elements of P (under some assumed structure other than Iy) simul-
taneously, say, by the maximum likelihood method, the estimate, 8, of 8 will
become non-linear in y. The problem of finding the distribution of 8, and of ob-
taining suitable statistics for testing hypotheses concerning 3, will become ex-
tremely complicated. The only suitable procedure seems to be to proceed as if
P = Iy, and to obtain the least-squares estimates, b, which are linear, unbiased
and asymptotically efficient. The autocorrelations, appearing in the statistic ¢,
will have to be replaced by the serial correlations calculated from the residual, ».
Although this point needs further investigation, it is the feeling of the writer
that, for large N, the significance level of ¢ will not be affected seriously, at least
under the assumption that only the first autocorrelation will be estimated. The
error involved in using the sample serial correlation in place of the unknown
autocorrelation will, presumably, be of order N’ in probability.

We further observe that, as a first approximation, the distribution of ¢ was
obtained as if S* were independent of b. It would be of interest to improve this
approximation by taking into consideration the correlation between b and S.
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