OPTIMUM DESIGNS IN REGRESSION PROBLEMS, II

By J. KiEFER!

Cornell Unaversity

0. Summary. Extending the results of Kiefer and Wolfowitz [10], [11], methods
are obtained for characterizing and computing optimum regression designs in
various settings, and examples are given where D-optimum designs are com-
puted.

In Section 1 we introduce the main definitions and notation which will be
used in the paper, and discuss briefly the roles of invariance, randomization,
number of points at which observations are taken, and nonlinearity of the model,
in our results.

In Section 2 we prove the main theoretical results. We are concerned with the
estimation of s out of the k parameters, extending an approach developed in
[10] and [11] in the case s = k. There is no direct way of ascertaining whether
or not a given design ¢* is D-optimum for (minimizes the generalized variance
of the best linear estimators of) the s chosen parameters, and Theorems 1 and 2
provide algorithms for determining whether or not a given £* is D-optimum. If
all k parameters are estimable under £*, we can use (2.7) to decide whether £* is
D-optimum, while if not all k parameters are estimable we must use the some-
what more complicated condition (2.17) (of which part (a) or (b) is necessary
for optimality, while (a), (¢), or (d) is sufficient). An addition to Theorem 2
near the end of Section 3 provides assistance in using (2.17) (b). Theorem 3 of
Section 2 characterizes the set of information matrices of the D-optimum de-
signs.

In Section 3 we give a geometric interpretation of the results of Section 2,
and compare the present approach with that of [10]. In the case s = k, the
present approach reduces to that of Section 5 of [10]and of [11]. When1 < s < k,
we obtain an algorithm which differs from that of Section 4 of [10] and which
appears to be computationally easier to use. When s = 1, the results of the pres-
ent paper are shown to reduce to those of Section 2 of [10]; in particular, we
obtain the game-theoretic results without using the game-theoretic machinery
of [10].

In Section 4 we determine D-optimum designs for the problems of quad-
ratic regression on a g-cube and polynomial regression on a real interval with
1<s<k

Part IT of the paper is devoted entirely to the determination of D-optimum
designs for various problems in the setting of simplex designs considered by
Schefté [12].
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’Various unsolved problems are mentioned throughout the paper. Further
examples will be published elsewhere.?

PART I. GENERAL CONSIDERATIONS

1. Introduction. The design of optimum experiments in regression settings can
be a tedious computational problem. In the present paper we are concerned with
the development and application of algorithms which make this task easier.
Early work in this area was done by Elfving [4], Chernoff [1], and Ehrenfeld [2].
The characterization of optimum designs in general symmetrical settings where
block designs are customarily employed was given by the present author in [8].
As described in Section 0, the present paper continues the work of Kiefer and
Wolfowitz [10], [11].

We now introduce our terminology and notation, which is essentially that of
[9] and [11]. Let fi, f2, - - -, fx be given functions on a space X. To avoid trivial
circumlocutions (see [11]), we assume X compact and the f; linearly independent
and continuous. By f(z) we denote the column k-vector with components f;(x).
For any discrete probability measure £ on &, write

(1.1) mii(§) =[x fi()fi(x)E(d).

(As discussed in [10] and [11], other probability measures can be considered, but
are not needed.) Write M (¢) for the k X k matrix {m,;(£)}. Any such £ is called
an experiment, and the set of all £ will be denoted by =.

The practical meaning of these notions is this: We are concerned with infer-
ence regarding an unknown k-vector 6, an element of a k-dimensional Euclidean
space Q. A single observation at the point  (value of the independent variable)
in & yields a random variable Y, for which

EY, = 0f(z) = IZ 8.fi(x),
Va/r(Yz) = 0'2-

(1.2)

Thus, 6'f(x) is the regression function. If n(x) observations out of the total of n
uncorrelated observations available in a given experiment are taken at the
point z and we let £ = n™'n, we obtain no "M (¢) for the “information matrix”
of the experiment; thus, for example, if all components of 6 are estimable, the
covariance matrix of the best linear estimators (b.l.e.’s) of components of 6 is
n'e’M 7' (£). The justification for considering only b.l.e’s in the sequel
(whether or not ¢” is known), and the trivial modifications which are needed in
our developments if the Y, are not uncorrelated with equal variances or do not
cost the same amounts, are discussed in [9] and [10]. Also discussed there is the
relevance of considering designs ¢ which take on values other than multiples of
1/n. Briefly, such considerations allow us to develop useful computational

2 Optimum designs for certain problems in the settings where systematic designs and
rotatable designs are employed, will appear in the Proceedings of the Fourth Berkeley Sym-
posium on Probability and Statistics.
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techniques which are completely absent if we restrict the values of £, and they
allow us to find one optimum ¢ (rather than a different one for each n) which
can immediately be altered into an actual design (i.e., a £ with restricted values)
which is within O(n™") of being optimum. Thus, we shall always consider, with-
out restriction, the whole space = of designs.

Suppose we are interested in inference regarding s independent linear para-

metric functions of 8, which we can take to be 6;, 6;, -+, 6, without loss of
generality. We partition M (¢) and M'(§) as
Mi(8) Ma(%) MO MP()
and ,
Mi(8) Ms(k) M® (&) M®(¢)

respectively, where if M(£) is singular we take M '(£) to be a pseudo-inverse
(see, e.g., [1] and the next section for details). Here Mi(¢) and M™(¢) are
s X s, and n '’ M (¢) is the nonsingular covariance matrix of b.le.’s of 6;,
--+, 8, if all of these parameters are estimable when the design £ is used. We

shall say that &* ¢s D-optimum for 61, - -+ , 6 if

(1.3) det M® (¢*) = min det M (¥),
teE
i.e., if £* minimizes the generalized variance of the b.l.e.’s of 6;, - -, 6, . Exten-

sive discussions in [8], [9], and [10] are concerned with the meaningfulness of this
criterion, with certain intuitively appealing properties of the criterion (e.g.,
invariance under certain transformations), and with a comparison of this
criterion with certain other optimality criteria. In the present paper we shall be
entirely concerned with D-optimality and an equivalent criterion which is dis-
cussed just after (1.4) below; results concerning other optimality criteria are
contained in [1], [2], [4], [8], [9], [10], and in the references cited there.

We shall also partition 6 (resp., f(x)) into 0 and 6® (resp., f¥(z) and
f®(2)), where 8 (resp., f(z)) is an s-vector.

When s = k, it will sometimes be convenient to state a problem in terms of
the k-dimensional vector space F spanned by the f; ; clearly, D-optimality de-
pends only on F and not on the choice of the f; used to represent it (analogous
remarks apply when s < k).

The variance of the b.le. of 6’f(x), the true regression function evaluated at
the point z, when the design ¢ (for which all components of 8 are estimable) is
used, is o’n"'d(z, &), where

(1.4) d(z, &) = f(2)'M(£)f ().

Another possible optimality criterion when s = k is for £ to minimize
max,d(z, £). One of the results of [11] is that this criterion and D-optimality are
equivalent, and this fact proves very useful in constructing optimum designs.
Thus, the direct maximization of det M (£) over all £ will usually be very diffi-
cult. However, as in the first example of Section 4, one can often guess a simple
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(finite-dimensional) subclass of &, compute the £* which maximizes det M (&)
over this subclass, and then compute max, d(z, £*). If this last quantity equals k
(and only then), £* is indeed optimum among all members of %, as was proved
in [10] and [11]. Thus, it would appear useful to find a generalization of d(z, §)
and the eriterion in terms of it, when s < k, and to prove the equivalence of this
criterion to D-optimality, so as to yield a computational technique in the case
s < k which is analogous to that just discussed for the case s = k. (Since the
matrix M*(§) of (1.5) is not linear in £ if s < k, and since M (¢£*) can be singular,
there will be complications which did not arise in the case s = k.) This is the
task of Section 2. The method of constructing D-optimum designs developed in
this paper is thus to guess a £* and to compute max, d(z, £*) (with the definition
of (2.3) in place of (1.4)) or, if not all components of 6 are estimable,
max¢D (£, £*). Paralleling the procedure outlined above in the case s = k, we
then use (2.7) or (2.17) (a) to test the optimality of £*.

Before turning to Section 2, we shall mention a few results which are relevant
for the remainder of the paper.

Invariance. If A and B are s X s nonnegative definite symmetric matrices,
write A = B if A — B is nonnegative definite. Without recourse to a specific
optimality criterion such as D-optimality, one can study complete classes of
designs, admissible designs, etc., and this was first done in the regression setting
for s = k by Ehrenfeld [3], who exploited the usefulness of M (¢,) = M(&,) as a
criterion equivalent to %, is at least as good as & for all linear estimation prob-
lems”. As discussed by the present author [9], the idea can also be explained as
the sufficiency (in the sense of Blackwell) in the normal case of & for & , criteria
other than Ehrenfeld’s for completeness can be given, and the whole theory can
be extended to the case where we are only interested in s out of the k param-
eters. In this case, £ is at least as good as £ if and only if M(&) <= M® (&)
or, equivalently, if M*(&) = M*(&), where

(1.5) M*(¢) = [MP(E)] = Mi(t) — Ma(§) M3 (£) M3(%).
(The modification in the singular case is obvious.) If 4 is a nonsingular k X &
matrix of the form

A A,
0 A;
where A, is s X s, and if J(¢) = AM(£)A’, then, with an obvious notation, we
have

(1.7) J*(§) = AM*(£)A; .

Suppose G isa group of linear transformations on € of the form (1.6) with 4, = T
and 4; = 0 (so that G leaves 6 fixed), where for each g in @ there is a trans-
formation g on & for which

(1.8) 0'f(z) = (§6)f(g)

)

A=
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for all  and 6. Suppose also that G = {g} satisfies the usual conditions of the
transformation group in the invariance theory in statistics (see, e.g., Kiefer
[7]). Then, as proved by the author in Theorem 3.3 of [9], we have

Complete class tnvariance theorem. Under the above conditions, the class of designs
& which are G-invariant, i.e., for which

(1.9) &(gB) = &(B) for all g and B,

18 essentially complete for linear estimation of 0%, This is a convex set of measures,
invariant under G.

Fundamental in the proof of this result is the following lemma (Lemma 3.2 of
[9]), which we shall also need in the next section:

LEMMA 1. Forj = 1,2, --- ,r,let C;be s X (k — s), let D; be positive definite
symmetric s X s, and suppose \; > 0, Z A; = 1. Then

(1.10) (220G MDA 22 MCT] = 22M,C,D7Cs

with equality if and only if the matriz C;Dj" is the same for all j. (The extension
of Lemma 1 to the case of singular D,’s is discussed shortly before the statement
of Theorem 3.)

In the case where we are interested in a specific optimality criterion, the
group G in the above theorem can be more general; for example, in the case of
D-optimality the A,’s do not have to be the identity, but only a group of matrices
of determinant one for which the usual invariance theorem in statistics holds.
We obtain (Theorem 4.3 of [9])

Invariance theorem for D-optimality. Under the above conditions, there is a
G-invariant £ which is D-optimum for 6.

This is proved by using the previous invariance theorem and also the following
trivial lemma, which we shall also have occasion to use in the next section:

LemMma 2. If A and B are nonnegative definite symmetric s X s matrices, then
—log det (AA + (1 — X)B) is convex in N for 0 = X = 1, and s strictly convex
unless A = B or A + B s singular.

Invariance theorems for other optimality criteria are considered in [9]. The
invariance theorem for D-optimality is extremely useful in problems like those
considered in Section 4 and Part II of the present paper, where it enables us to
limit our search to suitably symmetrical £ rather than to all of &.

Randomization. As pointed out by the present author [8] and [9], in the exact
small sample theory it can happen that, in terms of certain criteria (especially
in problems of hypothesis testing), some randomized design may be better
than any of the nonrandomized designs which are customarily employed in
block experiments (this does not merely refer to the classical reason for employ-
ing randomization in such experiments). In the considerations of the present
paper, we need not be concerned with randomized designs, since they are not
needed. The reason for this is that a special case of Lemma 1 says that

(L11) AM(&) + (1 — MM (&) = MM (&) + 1 — VM (&)
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for 0 < N\ < 1;if M(¢) and M(&) are nonsingular (the singular case requiring
only obvious modifications), equality can hold if and only if M (&) = M(%).
The right side of (1.11) is proportional to the inverse of the covariance matrix
when & is used with probability X and £ is used with probability (1 — \); the
left side is prcportional to the information matrix of the nonrandomized design
AfL+ (1 — N)& ; thus, the latter design is always at least as good as, and usually
better than, the former (randomized) design, for linear estimation.

The number of points needed in the support of an optimum design. Elfving [4]
and Chernoff [1] gave upper bounds on the number of points needed to support a
design which minimizes the average variance of the b.le.’s (i.e., the trace of
M®(£)); Chernoff’s result gives s(2k — s + 1)/2 as an upper bound in the
general case. Chernoff’s geometrical argument can be duplicated in the case of
the generalized variance; for example, when s = k this amounts to noting that
the M (£) can be considered as a closed convex set in Euclidean E(k + 1)/2-
space with extreme points obtainable from §’s with single points for support, and
that det(aM) is increasing in @ > 0 if M is positive definite, so that any D-
optimum M (¢) must be a boundary point of the set. The bound in the case
s = 1 is obtained by a different method in [10]. An alternative but less direct
approach to obtain the bound s(2k — s + 1)/2 is to use Stone’s characterization
[13] of this as the number of points needed to support a design which maximizes
det L} (¢) where Ly(£) = I + \M (£); letting N go to infinity gives the desired
result.

The bound obtained in this fashion can be very poor, as can be seen in the
examples of Part II. A method of sharpening the bound slightly when s = 1 is
given in [10]. As discussed (with slight inaccuracy) in [9] and [11], a method for
sharpening the results in many cases is to count the dimension H — 1 (say) of
the range of the set of convex linear combinations of the functions fifi, 1S3,
and then to note that any M(£) can be achieved by a £ whose support is H or
fewer points.

Even this result gives a poor bound in many cases, as can be seen in the ex-
amples of Part IT where, as is often the case, there exists a D-optimum design
for § with support on k points (obviously the minimum number possible). In
the case of polynomial regression of degree ¥ — 1 or less on a real
interval (fi(z) = z*™), it is an old and well known fact that any M(¢) (ie., any
set of values for the moments up to the 2(k — 1)st) can be achieved by a £ with
support on at most k points, and this has been sharpened by the present author
[9] to state that the minimal (essentially) complete class of admissible designs
consists of those £ whose support consists of at most k points, at most k — 2 of
which are in the interior of the interval. A difficult and important mathematical
problem is to extend such results as the well known ones just cited on the moment
problem to the case of other f:, so as to characterize for any given F the maxi-
mum number of points needed for the support of £’s in an essentially complete
class. The results for polynomials in one variable, which depend on certain
properties of orthogonal polynomials, are not directly extendable.
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A final problem in this area is to combine the invariance results with those
just discussed. Thus, it can happen in some settings that there is an optimum
design (in some sense) on P points without there being a G-invariant optimum
design on P points. How many points are needed for the latter?

The nonlinear case. If the regression function is not linear in 6 as in (1.2), it is
still possible to obtain relevant asymptotic results. Thus, the results of the next
section can be applied in exactly the way Chernoff’s [1] are for the average
variance, in such cases. When s = 1, the average and generalized variances of
course coincide, and the results of Section 2 of [10] and of the present paper thus
yield a computational algorithm for the problems treated by Chernoff; such an
algorithm for minimizing the average variance when s > 1 can be found in
Section 4 of [10].

The author thanks Professor J. Wolfowitz for helpful discussions.

2. The main results. Since the case where a D-optimum ¢ for §* has nonsingular
M(§) is slightly easier to handle than is the singular case, and since the non-
singular case yields sharper results, we shall treat this case first, although we
now make some definitions which apply generally. We shall say that £* yields a
global minimum of det M (¢), or is D-optimum for 6, if (1.3) is satisfied;
of course, M (¢) is well defined and finite if 6% is estimable under £,
whether or not M () is nonsingular; we define det M®(§) =  if 8 is not
estimable under ¢£. Thus, in this formula as well as in those which follow, deter-
minants and inverses can always be computed in the case where M (£) is singular
by computing them with M (£) replaced by M(¢) + A and then letting A
approach zero. Equation (1.3) can of course be written (using (1.5)) as

(2.1) det M*(¢*) = det M(£*)/det M;3(£*) = max; det M*(£);

so that (1.3) can be rephrased to state that £* yields a global mazimum of det
M*(¢). We shall say that &* yields a local maximum of det M*(§) if
det M*(£*) > 0and

(22) 5‘?& log det M*([1 — aJ£* + af) |amor < 0 forall &.

We generalize the definition of (1.4) in the case s < k to define
(2.3) d(z, £) = f(2)'M7(£)f(z) — (&) M5 (&)f (2);

the form of this in the case of singular M (¢) will be seen more explicitly, later (in
the functions D and D introduced below; D(zx, £) is the direct analogue of
d(z, £) in the singular case, but is not the appropriate function to yield an
analogue of Theorem 1, as we shall see). If M (¢) is non-singular, the integrals
with respect to £ of the two terms on the right side of (2.3) are easily seen to be
k and &k — s. Hence,

(24) [ d(z, £)t(dz) = s

(this is similarly true whenever 6 is estimable, whether or not M (§) is non-
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singular, as we shall see just above (2.18)), and thus
(2.5) max, d(z, ) = s.
Consider now the problem of determining £* so that

(2.6) max d(z, £¥) = mEin max d(z, £).

It follows from (2.5) that a sufficient condition for £* to satisfy (2.6) is
(2.7) max, d(z, £*) = s.

(Obviously, a necessary but not sufficient condition for £* to satisfy (2.7) is that
£* give unit measure to the set of z for which d(z, £*) = s.)

We now prove

TuaroreM 1. If M (£*) is nonsingular, equations (2.1) (D-optimality of &* for
6™, (2.2), (2.6), and (2.7) are equivalent.

Proor. Clearly, (2.1) implies (2.2), and we have already seen that (2.7) im-
plies (2.6). We first show that (2.2) implies (2.7). Denoting by M;;(£) the
cofactor in M () of m;;(£) and by M (£) the (3, 7)th element of M (¢), we have,
as in [11], that, for M (#*) nonsingular (sometimes omitting the argument ¢* for
typographical ease),

.‘962 log det M([1 — alt* + of) | amor

8 det M am;([1 — ale* + af)

= det M'(£*) E

am,; da a=0+
@8 e @) D (o SemaMa) noe) = moe)]

= det M'(£%) ; M(£%)[mii(g) — my(%)]
= 2 mI(E)my(8) — k.

(A somewhat neater derivation proceeds by letting BM(£*)B’ = I and
BM (§)B’ = D, a diagonal matrix; the left side of (2.2) is immediately seen to be
trD — k,and we havetrD = tr[BM (¢§)B’] = tr[(B'B)M (¢)] = tr[M N (E)M(£)].)
Similarly, writing M3 = {m";4,7 > s}, we have

(29) 5%108 det Ms([1 — alg* + af) | amor = 2, M7 (E)my(£) — (k —s).

1, >s8
Hence, (2.2) can be written as
tr (M7 (#*)M(£)] — tr{M3" (£*) Ma(£)]
(2.10) = 2 mU(E)mi(e) — 3, mU(EIm(§) < sforall £
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In particular, if ¢ gives measure 1 to the point z, the left side of the inequality
(2.10) becomes d(zx, £*). Thus, (2.2) implies (2.7).

Conversely, if (2.7) holds, we have (2.10) for every ¢ which gives measure one
to a single point. Since m;;(£), and thus the left side of (2.10), is linear in £, we
obtain (2.10) for all £ Thus, (2.7) implies (2.2).

Now, a design &* satisfying (2.7) always exists (since a £* satisfying (2.1)
exists by compactness, and we have seen that (2.1) implies (2.7)). We conclude
from (2.5) that (2.6) implies (2.7).

It remains to prove that (2.2) implies (2.1). From Lemma 1 of the previous
section, we have, for0 < a < 1,

(2.11) M*([1 — aft* + af) 2 (1 — a)M*(&*) + aM*(§).
From (2.11) and Lemma 2, we obtain

—log det M*([1 — at* + af)
(2.12) < —logdet [(1 — a)M*(£*) + aM*(§)]
< —(1 — a) log det M*(£*) — alog det M*(§).

(We shall later, but not now, use the fact that the first inequality is strict unless
M) M5 (g*) = M,(§)M5'(¢), and that the second one is strict unless
M*(£*) = M*(¢).) Thus, log det M*([1 — a]&* + af) is concave in «, and thus
this function has positive derivative at & = 0 if det M*(&) > det M*(£*); this
last inequality holds for some £ if (2.1) does not hold, and hence (2.2) is also
violated in this case. This completes the proof of Theorem 1.

We now turn to the case where 68 is estimable but M (¢*) is singular. If we
try to duplicate the proof of Theorem 1, we find, exactly as before, that (2.1) and
(2.2) are equivalent. What happens to the rest of the proof is most clearly seen
by considering a linear transformation of 8 into (A’)7'9, where A is of the form
(1.6); this transforms M*(&) into the form (1.7), and thus leaves unchanged the
various criteria considered in Theorem 1. We shall use such a transformation in
order better to display what occurs. In all that follows, £* is fixed and 6% is es-
timable under £*. We can choose A of the form (1.6) so that J(£*) = AM(£*)A’
is a diagonal matrix with its first s 4+ r diagonal elements unity and the rest zero.
For a fixed £, we can at the same time choose 4 so that

J1J2J40
J2J3 J60
JiJsJs0
0000

where J1is s X s, J3isr X r, Jsis p X p, Js is nonsingular, J¢= 0, and J;, Js,
and Js are diagonal.
If we try to go through the proof of Theorem 1, duplicating the arguments in

(2.13) J(¢) =
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the present case, we obtain
JH([1 — oJe* + af)
= (1 =)+ aD — & Ja([1 — ol + aJs) Ty — aJJ5 4,
and thus, in place of (2.10),
(2.15) 2 wiil®) = o6 £) = s,

(2.14)

where we denote the elements of J(£) by u;;(£) and where p(£, £¥) is the trace of
JuJ5'Ji . To put (2.15) in a form which- more closely resembles (2.10), write
u*(£%) for the elements of the inverse of the upper left (r + s) X (r + 8) sub-
matrix J(£*) of J(£*), and 5"(£*), s < 4, J £ s 4 r, for the elements of the in-
verse of {u:;(£*), s < 1,7 < s + r}. Then (2.15) becomes

[T (8%) T (8)] — trlJ3 (£9)Ts(8)]
(2.16) = te[J(E)T(E)] — ol (%) Ja(£)] — te[JT (E*)Ju(8)T5 (E) Ja(E)]
= ij§+r pUE i (E) — 2 @ (E)ui(E) — p(k ) < s,

8<4,)
<s+r

where J; = (JiJe) and J(£) = J(&) — J7(£)J5(£)J5(£) is proportional to the
information matrix of £ for the first s 4 r components of (4’)™'6 (analogous to
J* for the first s components) and J; = J; — JeJ5'Js . In fact, without requiring
J(£*) and the J;(£) to be of these special forms which facilitated the computa-
tion of (2.15), we clearly have (2.16) whenever AM (£*)A’, of rank r + s, has
zeros outside of the upper left hand (r 4+ s) X (r + s) matrix, where J; is no
longer necessarily of full rank (so that we can take it to be (k — s — r) X
(k — s —r)) and p(£, £*) is again the trace of the product of JT' (£*) by the
matrix limy.o J4(£)[J5(¢) + M| 7'J4(£); the matrix J has the same meaning as
above. Thus, for a given £* and 4, the same formula (2.16) holds for all £ In
fact, it is easy to give an invariant, geometric definition of the left side of
(2.16), as we shall see in Section 3, and we note here that the first form on
the left side of (2.16) could have been obtained by using (2.2) and (2.10) on
aJ () + (1 — a)J(£*) with k replaced by r + s. If we denote by * the oper-
ation * of (1.5) when k = r + s, the essence of the matter is that, in the singular
or nonsingular case,

(Mt = M*,

This is easy to prove directly or in terms of the J’s. We hereafter denote the ex-
pression on the left side of inequality (2.16) by D(¢, £*) ; we also write D (g, £*) =
D(§, £*) + p(&, £*); this is the left side of (2.16) ignoring the p(£, £*) term. We
also denote by D(z, £*) and D(z, £*) and p (z, £*) the corresponding expressions
when £ gives measure one to the point z.

If M(¢*) is singular, the functions D and p depend on the choice of 4, but the
function D does not.
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It is thus clear from (2.16) that, in analogy to the implication of (2.2) by
(2.7) in Theorem 1, (2.2) is now implied by the first or the third of the following
four statements, and implies the first and second:

(a‘) maxg D(£1 f*) =8,
(b) max. D(x, £*) = s,
(C) maxg D-(fl E*> =8,
(d) max, D(z, £*) = s.

(2.17)

Moreover, (2.17) (c¢) and (d) are clearly equivalent.

By using the transformation 4 which makes AM (§*)A’ the identity of order
(r + s) together with zeros (as above) and writing g(z) = Af(z), we see that
the first » + s components of g are orthonormal functions with respect to £*,
while the other components vanish on a set of unit £* measure. Hence, D(z, £*) =
3% gi(x) — p(x, £), where p(z, £*) = 0 on the support of £*. Hence,
D(&*, &%) = D(¢*, £*) = s, and thus, analogous to (2.5), we have

ax *) = *
(218) maxg D(Ey f ) maxz D((l?, £ )
g maxg D(fy £*> g maxs D(xl E*) g S,

for every & (optimum or not). Thus, if in analogy to (2.6) we set ourselves the
problem of determining £* so that

(a') maxg D(fy f*) = mini'ma‘xi D(Ey E’))

or
(b) max, D(z, £*) = mingmax, D(z, ¢),

(2.19) or
(¢) max; D(¢, £*) = ming-max; D(, §),

or

(d) max, D(z, £) = mingmax, D(z, ¢),

it follows from (2.18) that (2.17) (a) (resp., (b), (¢), (d)) is a sufficient con-
dition for (2.19) (a) (resp., (b), (c), (d)) to be satisfied. (Of course, (2.19)
(c) and (d) are equivalent.) Moreover, from (2.16) we see that there exists at
least one £* (namely, any satisfying (2.1)) which satisfies (2.17) (a) and (b),
so that these two conditions are in fact equivalent to (2.19) (a) and (b), re-
spectively.

We summarize our results:

TureoreM 2. If 67 is estimable under £*, equations (2.1), (2.2), (2.17) (a), and
(2.19) (a) are equivalent. Moreover, (2.1) (and thus any of the above) implies
(2.17) (b), which is equivalent to (2.19) (b), while (2.1) is tmplied by (2.17)
(¢) (or, equivalently, (d)).
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An addition to this theorem, which simplifies the use of (2.17) (b), will be
found in Section 3. The fact that (2.17) (¢) (or equivalently, (d)) implies (2.19)
(¢) (or, equivalently, (d)) has not been stated as part of Theorem 2 since the
latter two do not have the same intrinsic interest that (2.6) does when s = k.
The second sentence of the theorem is not of primary interest, but (2.17) (b) is
useful in eléminating various £¥s from optimality considerations; for example, it
can be used in certain problems to show that a D-optimum design cannot have
such a simple structure as any of those encountered in the examples of Part II
or the first example of Section 4. Of course, (2.17) (d) is a useful sufficient
condition for D-optimality. Of primary interest is the question of whether or not
(2.17) (b), (c), or (d) is equivalent to (2.17) (a), since (2.17) (b) or (d) would
seem on the surface to be a more natural analogue of (2.7) than is (2.17) (a).
Unfortunately (from the viewpoint of computations as well as of esthetics!),
the answer in general is “no”. This is easy to see by examples in the case of either
of the three criteria, and we shall content ourselves here with seeing why (2.17)
(b) need not entail (2.17) (a).

To this end, suppose k¥ = 2, s = 1, and that & consists of three points, with
f()" = (1,0), f(z2)’ = (0,1), and f(x5)’ = (b, 1) with b® > 4. Let £* give
measure 1 to z;. Then (2.17) (b) is easily seen to be satisfied. However, if
£(xy) = £(xs) = 5, we have D(¢, £#*) = b%/4 > 1. The difficulty is really that
we have lost the linearity which permitted us to go from (2.7) to (2.10), the
“convexity” of Lemma 1 working in the wrong direction here.

Needless to say, there is no general equivalence of (2.17) (¢) and (d) to (2.19)
(e) and (d).

We end this section with a description of the set of D-optimum £’s. It is no
longer the case when s < k, as it was when s = k (treated in [11]), that M (£) is
the same for all D-optimum . From the concavity of log det M*([1 — a]¢* + at)
proved in (2.12) (which is valid whether or not M(¢) and M(¢*) are non-
singular), it is clear that, if £ and & both maximize det M*(¢), then so does
[1 — a)¢* + atfor 0 £ a £ 1;i.e., the set of D-optimum §¢’s is convex. Suppose
now that M(£*) is nonsingular and £* is D-optimum, and write M*(¢*) =
R, Mx(§*) M3 (¢) = E, and

I -E
(2.20) B = ” 0 I “

If ¢ is also D-optimum and M (£) is nonsingular, we must have equality in (2.12)
(otherwise the parenthetical remark following (2.12) implies that (¢ + £*)/2
would be better). But then M*(¢) = R, M,(§)M5'(£) = E, and hence

, IR O
(221) BM(5)B' = ! 5 ke H
Conversely, if for some T we have

1f(RO 1y,
(222) M) = B (O T) (B,
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then M*(£) = R, Ma(£)M3'(¢) = E, and hence £ is D-optimum.
If M (£*) is singular, the characterization of (2.22) must be modified slightly.
In Lemma 1 with r = 2, suppose the C; and D; are of the form

Q0 0 Q00
Dy =10 Q:0|, Ci=|L1L0], Dy=|000 ||, Co=|L0L,
000 0 0Q

where the @; are nonsingular. Then the conclusion is modified to state that
equality holds if and only if L,Q7" = L.Q3". If the Ms’s and M,’s are reduced to
the form of the D’s and C’s above through a simultaneous diagonalization, we
see easily that the conclusions of the previous paragraph are still valid if M (£¥)
is nonsingular. If M (£*) is singular, the modified conclusions can be stated in
several ways, perhaps the simplest being that, if J(£*) is of the form prescribed
above (2.13) (nothing special being assumed about the form of J(£)), then
Jo(£) = 0.

Writing out the form of (2.22), we obtain

THEOREM 3. The set of D-optimum £'s is convex. If £* 1s D-optimum and M (£*)
18 nonsingular, then the set of all D-optimum &'s consists of those £s for which
M (&) is of the form

R + ETE'ET
TE' T

where R = M*(£*), E = My(£*) M7 (£*), and T is arbitrary. If £ is optimum
and if J(&*) is as prescribed above (2.13), then & is optimum if and only if J2(£) = 0
and J*(¢) = 1.

In any problem where at least one optimum &* exists for which M (£*) is non-
singular, the characterization of (2.23) can be used. The characterization of the
final sentence of the theorem in the case of singular M (£*) can easily be given a
geometric formulation in the manner of Section 3.

Of course, M*(£) is the same for all D-optimum &, which thus all perform identi-
cally for problems of linear estimation of 8. All D-optimum (for 6”) designs
are thus admissible for linear estimation of 6°, but clearly a design can be
D-optimum for 6 and inadmissible for linear estimation of the full vector 6.
The designs of the form (2.23) which are also admissible for linear estimation
of 6 are easily characterized (see [9]) as those for which 7' is maximal in the sense
that if a design of the form (2.23) exists with 7T replaced by T and with T = T,
then T = T.

3. Other forms and relationship to previous results. First suppose M (£*) is
nonsingular and that AM(¢*)A’ = I, where A is of the form (1.6). A trivial
computation yields

(3.1) w6 = (3 aen) = () (ud.

)

(2.23) M(¢) = x
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Now, (4, 45) M(£*)(0 A4)’ = 0, and since A4 is nonsingular this means that
(A1 45) (M3 ()M (£%))’ = 0. Thus, the expression (3.1) is of the form /(8
M (£*)B8') ™8, where 8 is any s X k matrix of rank s whose rows are orthogonal to
those of (M;(E*)Ma(g*))(so that (4; 4;) = L™'8 where Liss X s and LL' = 8
M (£*)B’). Writing 8 = (B; B,) where B, is s X s, we can write

BM (£%)8' = BiMi(£*)Bi — ByMy(£*)Bs.

We can now give a geometric description of d(z, £). Let g;(z) = Z i Biifi(x),
1 = 7 = s, be linearly independent with respect to (i.e. on, the support of) £*,
and also orthogonal (£*) to all k — s functions of f®. Writing

g(x)" = (gui(x), -+, go(x))

and

(3.2) (g, 99)¢ = [ gi(@)gi(x)E(da),

and denoting by G(¢) the matrix {(g:, g;) &, we have

(3.3) d(z, &) = g(2)'@ (8)g().

In particular, if the g; are chosen to be mutually orthogonal (£*), we obtain
(3.4) d(z, £*) = 2ia1gi()/(gi, 9:) e

Thus, for example, we obtain (3.4) if we let 8;; = 1 and choose the other g8;; so
as to minimize (for each z)

(3.5) J fi=) + ,;e Biif () '¢* (dx)
or, with 8;; = 0 for j < 7, so as to minimize (for each 7)
(3.6) [ f=) + j; Biif i(z)I't* (dz).

In the case of (3.5) (resp., (3.6)), g: is the part of f; orthogonal (£*) to the
linear space spanned by the f; with j # ¢ (resp., 7 > 7); i.e., ¢; is f; minus the
projection (£*) of f; on that linear space.

In many examples, (3.5) will be the more convenient form to use; for, if the
components of f enter the problem symmetrically, it will only be necessary to
carry out the computation of the 8;; for a single value of s.

We shall now indicate the relationship of (3.4) with the choice (3.6) to the
results of Section 4 of [10]. In the notation of the present paper, the approach of
Section 4 of [10] is to consider, for A = (A, - -+, A,) with all \; > 0, the zero-
sum two-person game with payoff function

(37) Ka(z, ) = E NI + X g,

where 8 = {B:;; 1 7 <s,2 <j = k}. It is shown there that if & is a maximin
strategy for this determined game, then the D-optimum &’s are those &’s which
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maximize IIii Fi(%), where
(3.8) Fy(§) = I‘I;JE; I lfi(z) + jZMB.-]-fj(x)]zs(dx),

and that there is, to within a multiplicative constant, a unique value \* of X at
which the maximum is attained. The results of the present paper give us addi-
tional information. Write M;(£) = 1/Fi(¢) and A(§) = {\i(£)}. Then, clearly,
d(z, £) = Kxw(x, B(£)) where B(£) is minimal with respect to £ for the payoff
function Ky ; hence,

(3.9) max, d(z, §) = max. Kxo (2, 8(8)) 2 Ko (4 B(8)) = s,

and a D-optimum £* will be one which is mazimin when A\ = \(£*) (assuming
still that M (£*) is nonsingular for that £*), and we will have equality in (3.9)
for £ equal to such a £*. Hence, A* = A(£*) for such a £* and the value of the
game with A = A(¢*) = N*is s. Thus, the essence of the matter is a fixed point
theorem which we have proved. Hereafter calling the case where there exists a
D-optimum £* with nonsingular M (£*) the regular case (of f @ relative to f), we
have:

In the regular case there is a £ such that # = &\ , and any such & is D-optimum.

Of course, not all D-optimum ¢’s need have M () non-singular in the regular
case. It will be easy to see how the above results must be modified in the singular
case, but we note here that there are many examples where 9 is estimable if
and only if 6 is estimable, and the above results of the regular case apply to such
examples.

We remark that the considerations of Section 4 of [10] require only obvious
modifications to apply to the case where (3.6) is replaced by (3.5), or where
(3.4) is replaced by the general form (3.3).

To compare the method of Section 4 of [10] with the method which uses the
results of Section 2 of the present paper (and which is described in the paragraph
containing (1.4)), we consider the trivial problem treated in Example 4 of [10].
In the present notation, k = 3, s = 2, € = [—1, 1], and fi(x) = £, Asin [10],
we might begin by guessing that there is an optimum £ of the form £(—1) =
£(1) = a, £(0) = 1-2a. For such a ¢, we have gi(z) = 2* — 2a, go(x) = x, and

(2 — 2a)* | 2°

(3.10) d(x, f) = m + 33"

This is a convex function of 2° for 0 < 2° £ 1, and thus has its maximum at
2
z =0orl:

20 2 — 2a
(3.11) max d(z, £) = max (iTZE’ ——2a—>'

This last expression equals 2 if and only if @ = 1/3; this choice thus yields a
D-optimum design. It can be seen that the computations here were exceedingly
simple. A less trivial example will be found in Example 4.2. In such more com-
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plicated examples, it appears that the present method may often involve con-
siderably less computation than that of [10].

In the case s = 1, we can take A = \; = 1 and write K for K, , in conformity
with the notation of Section 2 of [10]. Our criterion d(z, £*) < 1 for the D-
optimality of £* becomes

(3.12) max, K(z, B(8*)) = K(&, B(¢)),

where again 8(£*) is minimal with respect to £*. It follows at once from (3.12)
that the game is determined and that £* is maximin (and maximal with respect
to B(¢*)) while 8(£*) isminimax (and minimal with respect to £*). Moreover, these
assertions regarding B(¢*) and £* imply that max. d(zx, £¥) = 1. Thus, the game-
theoretic results of Section 2 of [10], which were proved by entirely different
methods there, have been obtained at once from Theorem 1 of the present paper
in the case where there exists a D-optimum £* for which M (£*) is nonsingular.
The result in the singular case can be derived with only slightly more manipu-
lation.

In the application of our method when s = 1, we shall use the following nota-
tion: Suppose we are interested only in estimating 6; , where now j need not be 1.
In order to investigate the D-optimality of a £* for which M (£*) is nonsingular,
we find a column vector ¢ of k¥ components which is orthogonal to all columns of
M(£*) other than the jth, and for which ¢’M(£*)c = 1. Writing §;(x, £*) =
¢'f(x), we then have that £* is D-optimum for 6;if and only if max, |6;(z, £*)| = 1.

In [11] a function space corollary of our results was stated in the case s = k:
There exists a £* and a nonsingular k X k matriz C such that the functions hi(z),
where h(z) = Cf(z), are orthonormal with respect to £* and max, 25 hi(z) = k.
Of course, M (£*) is nonsingular for a D-optimum £* when s = k, so the result
there is not complicated by the possibility of singularity. One obtains a close
analogue of the above result in the case s < k in the regular case; in fact, given
fi, <+, fu, the result we shall state is stronger in the case s = N <k =M
than is the result stated above in the case s = k = N. The analogue is:

COROLLARY TO THEOREM 1. Given X and f = {f;, 1 < 7 < k} in the regular
case for f (the first s components of f) relative to f, there exists a probability measure
£ on X and an s X k matriz C of rank s such that the functions h;(x), where h(x) =
Cf(x), are orthonormal (£*), are orthogonal (£*) to the f; with j > s, and satisfy
max, 2 s hi(z) = s.

We now turn to the case where M*(£*) is nonsingular but M (£*) is singular
(of course, the discussion which follows reduces to the preceding discussion if
M (&*) is nonsingular). Let gi(z) = Y_;Biifi(z), 1 < i £ s, be linearly inde-
pendent (£*) and orthogonal (£*) to all f;, 7 > s. Let gi(z) = 2 i»:B:fi(2),
s < ¢ £ s + r, be a maximal set of linearly independent (£*) functions of this
form. Of course, each g, is orthogonal (£*) toeachg;, 1 71 < s<j<s+r.
As in the development of (3.4), we can and do choose the g;,1 £ 7 < s+ r, to
be mutually orthogonal (£*); the reader will have no difficulty in supplying the
modifications needed in what follows if these functions are not so chosen.
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Finally, letB,; ,4 >s-+r, j>s, be chosen so that the matrix{g8:;,1 = 4,j < k}
is nonsingular (where 8;; = 0 for 1 < j < s < 72 £ k), and write
qi(z) = D i»sBiifi(x), s + r < i < k. Then the g; are all zero on the support of
£

As in (3.4), we have

(3.13) D(z, &) = 2 iagi(x)/(g:, 9:)e

and we have linearity in obtaining D(, £*) from D(x, £*):
(314) D(Ey E*) = fD-(x’ E*)E (d(l?) = Z;=l(gi ) gi)f/(gi ) gi)f‘ .

We must still exhibit p(z, £*) and p(£, £*). Let ei(z) = > iserviigi(z) be a
maximal set of linearly independent (¢) functions of this form, 1 < ¢ < ¢, where
again for simplicity we choose the e; to be orthogonal (£). Then it is easy to see
that

(3.15) p(¢ &%) = ],SZ‘ (g7, em)e/1(g5, 3)e(em » €m)e.

m<t

The functions D and p depend on the 8.; , but D does not. If ¢ gives meas-
ure one to the point x, we obtain p(z, £*), and this takes on a particularly
simple form since ¢ must then be 0 or 1. If ¢ = 0, we have p(z, £*) = 0. If ¢ = 1,
consider the special diagonalization of M(£) (now of rank 1) of Section 2,
wherein J; , J3, and Js are diagonal and Js = 0. J5 is a positive scalar, which
we can choose to be unity. Since Js = 0, we must have J; = 0, since otherwise
J () would have rank >1. Similarly, at most one element, say the first, of Ji
can be other than zero, and if this element is 1 the first element of Jy is == h
(possibly A = 0), and all other elements of J(£) except for Js are zero. A trivial
computation yields D(z, £) = B? and D(z, £) = 0 in this case (compare the
example of Section 2). Thus, we see how easy it is for £* to be D-optimum with-
out (2.17)(d) being satisfied. More important, from our two results in the cases
{ = 0and ¢t = 1 we have the following sharpening of a part of the results of
Section 2, which obviously shortens the computation needed to use (2.17) (b)
to eliminate nonoptimum designs:

ApDITION TO THEOREM 2: Let Z(£*) = {x:qi(z) = 0,7 > s + r}. Then

(3.16)  max, D(z, £) = maXeezem D(T, £*) = Maxeezs D(z, £*).

Equation (3.15) makes clear the lack of linearity in £ of p(£, £*), which causes
the complications in the singular case.

The reader will not find it difficult to write down analogues in the singular case
of (3.9), (3.12), the Corollary to Theorem 1, etc.

4, Some examples.

Ezxample 4.1. Quadratic regression on a g-cube. Let X be the g-dimensional cube
consisting of all points * = (21, - -+ &) for which —1 < 2, < 1,1 <7 < ¢. The
problem of linear regression on X is trivial: a D-optimum £ is that measure which
assigns measure 277 to each corner of the cube (at least for ¢ > 3, there are
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other optimum designs,’ since the bound H of Section 1 here becomes H =
q(g + 3)/2 + 1 < 2%). We therefore turn to the problem of quadratic regres-
sion. The unique D-optimum ¢ is well known when ¢ = 1 to put equal weights
on the points 2, = —1, 0, 1. In what follows we restrict our attention to the
case ¢ = 2.

It will be convenient, for the purpose of partitioning M (£), to write the f;in the
following order: fi(z) = 1;fi+3(2) = 27,1 £ j < ¢;farrss(z) = 2,1 Sj < g;
fi(x) for 2 ¢+ 2 =4 = (¢ + 1)(¢ + 2)/2 are the functions z,z, , p < r, in
any order. Thus, ¥ = (¢ 4+ 1)(¢ + 2)/2, and it is easy to compute that H =
(g + 1)(g + 2)(¢ + 3)(g + 4)]/24. We shall seek an optimum ¢ with support on
r = 29738 + 4q + q(g — 1)] points, of the following form: £ assigns positive meas-
ure « to each of the 27 corners of the cube, positive measure 8 to the midpoint of
each of the 29! edges, and positive measure v to the center of each of the
q(g — 1)22% two-dimensional (square) faces. We shall obtain such a design, and
will verify its optimality, for ¢ = 2, 3, 4, 5. We note that r < H when ¢ = 2 or 3,
but that r > H when ¢ > 3, so that other optimum £ exist in at least these latter
cases.t

Although the set of points supporting the optimum £ just described is of the
same form for ¢ = 2, 3, 4, 5 (the design for the case ¢ = 1 is also of this form),
the ratios among a, 8 and vy change with ¢. It is interesting to contrast this with
the optimum ¢ mentioned above for linear regression on a g-cube, or those opti-
mum §’s of the example of Section 6 for linear or quadratic regression on a
g-simplex, where equal weights suffice in all cases. In fact, in the present example,
a ¢ with support of the form we are considering can no longer be optimum when
g = 6, as we shall discuss below.

For £ of the above form, write

u= [ (dz) = 28a + 4(¢ — 1)B + (¢ — 1)(g — 2)],

4.1)
( v = [aia} £ (de) = 2B+ 4(g — 2)B + (¢ — 2)(¢ — 3]
then
1 F 0 0
FF'G 0 0
(42) ME& =19 o0 w, o |’

0 0 0 olygue

where I, is the ¢ X ¢ identity, F is a row-vector of q u’s, G is a ¢ X ¢ matrix with

3 In fact, for ¢ = 3, an optimum design assigning measure 1/h to each of h points of a
proper subset of the 2¢ corners can be obtained from an Hadamard matrix or orthogonal
array of strength 2 which describes a design for the corresponding factorial problem with
q factors at 2 levels. Here & can be taken to be <2q (an easily improvable bound), so that
we see again how poor the bound H can be. These results on linear regression are much
simpler than the corresponding results on quadratic regression which are mentioned in
footnote 5.

¢ See footnote 5 in this connection.
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diagonal elements u and off-diagonal elements v, and the symbol 0 denotes any
matrix of zeros. From this we obtain easily

a B 0 0

L B¢ o 0

(4:-3) M(E) - 0 0 u—qu 0
0 0 0 v 'Iyenn

where @ = [(¢ — 1)v + u]/[(¢ — 1)v + u — qu’], each of the ¢ elements of B is
b= —u/[(¢g — 1)v + u — ¢’], and C has diagonal elements

c=1[(g—20w+u— (g — 1)/ (u—v)(g— 1o+ u— qu]

and off-diagonal elements d = [u* — v]/(u — v)[(¢ — 1)v + v — qu’]. Also,
from (4.2), we have

(4.4) det M(£) = u™ ™% — 0)'u + (¢ — 1)v — ¢u’].

Since the problem at hand is illustrative of many similar examples, we now
indicate two methods for “guessing” values a, 8, v for which one can verify that
max, d(z, £) = (¢ + 1)(g + 2)/2. Firstly, as mentioned in the introduction,
we can try to maximize det M (£) among £ of this form, by solving the equations
d log det M (£)/9u = 3 log det M(£)/8v = 0 in the region where «, 8, and v are
all positive. Secondly, we can used (4.3) to write out d(z, £), say d(=, £) =
P+ QZ.- 22+ R izt + SZ.-#,' zix; , where P, Q, R, S are functions of w and
v, and then try to determine » and v so as to make d(z, £) have some simple form
for which it is obvious that max, d(zx, £) = (¢ + 1)(g + 2)/2; for example, we
can try to find u and v such that P = (¢+1)(¢+2)/2,R= —Q 20,8 = 0.
Either of these approaches leads to the same formal solution in the present cases,
neglecting for the moment the question of positivity of «, 8, v:

_ (¢ + 3) 2 o 2
“ZIq T+ D(g + 2 {(2¢ + 3¢+ 7) + (g — V){4g" + 12¢ + 171*},
(45) (¢ +3)

8@+ 2@+ D
- {(4¢" + 8¢* + 11g— 5) + (2¢" + ¢ + 3)[4¢" + 12¢ + 171},
For this choice of 4 and v we obtain after some reduction

(4.6) d(z, ) = (¢+ 1)(g+2)/2 — c; (aF — 1),

whose maximum over & is clearly the desired value (¢ + 1)(¢ + 2)/2 = k,
since ¢, defined just below (4.3), is easily seen to be positive. The corresponding
values of a, 8, and v which are obtained from the equations (4.1) and the equa-
tion 27°[8a + 4¢8 + q(g — 1)y] = 1, are

a=2"""(g—1)(g —2) — 29(qg — 2)u + q(g — 1)),
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B=2""(2¢ — 3)u — (¢ — 1) — (g — 2)],
y =211 + v — 2u];
more explicitly,
a = [2""(¢ + 2)°(q + DI'{(4¢" + 12¢
— 25¢" — 107¢" + 85¢* + 479¢ + 128)
— (2" — g — 19)g (g — 1)(q + 3)[4¢" + 12¢ + 17J}},
(47) B =[2""(¢+2) (g + 1)I{—(4¢" + 16¢* — 11¢* — 143¢
—149¢ +139) + (¢ +3)(¢ — 1)(2¢" + ¢ — 15)[4¢" + 12¢ + 17]}}
y = [2°7(g + 2)%(¢ + DI{(4¢" + 24¢° + 43¢" — 249 — 119
—(g+3)(2¢" + 3¢ — 11)[4¢" + 12¢ + 17]}.

Thus, (4.7) provides an optimum £, provided that the a, 8, ¥ given here are all
nonnegative. This is the case for ¢ < 5, and the following is a table of numerical
values:

q a B Y

1 .250 .500 .000

2 . 1458 .08015 .0962

3 .071975 .01895 .03280
4 .03705 .0038375 .01185
5 .01928 .0003125 .004475

For comparison, we note that, when ¢ = 2, the ¢ which assigns measure % to
each of the nine points supporting the optimum £, yields a value of det M (%)
which is about 15 per cent lower and a value of max, d(z, £) which is about 21
per cent higher, than does the optimum design. For larger g, the comparison is
even more striking.

To see what happens to the above solution when ¢ > 5, it will suffice to con-
sider the case ¢ = 6. Equation (4.7) no longer gives a solution, since 8 < 0
(i.e., the solution can no longer be obtained by solving d log det M (£)/du =
9 log det M (£)/0v = 0). This suggests that we look for a D-optimum £ of the
form we have been considering, but with 8 = 0. If, in fact, we investigate the
behavior of the expression (4.4) on the region {« = 0,8 =20y = 0} = {u <
(v 4+1)/2,u £ (10 4 150)/24, w = (4 + 5v)/9}, we find that the maximum is
attained at (u, v) = ([50' + 4]/9, v'), where v = v’ is the solution between .7
and .8 of the equation 3500° — 1900 — 139» 4 60 = 0 (this last equation is ob-
tained by solving 0 log det M (£)/dv = 0 on the line 9u = 4 4+ 5v, and it is not
hard to prove that this gives the desired solution). For the corresponding &
(for which 8 = 0) we obtain, at z = 0,d(0, £) = 3(25¢" 4+ 2)/5(1 — v') (50" — 2)
> 28 = k. Hence, we have proved that the best & of the form we have considered
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(i.e., over all choices of a, B,v) s not D-optimum when q = 6. The corresponding
result also holds when m > 6, and a D-optimum design for the case ¢ = 6 is still
unknown.®?

Ezample 4.2. The case of polynomial regression on a real interval when 1 < s < k.
The problem of polynomial regression on a real interval was solved by Guest [5]
and Hoel [6] in the case s = k and by Kiefer and Wolfowitz [10, Section 3] in the
case s = 1. The other cases are more difficult to handle. A trivial example
(quadratic regression, k = 3, s = 2) was treated in the previous section and in
[10], and we now illustrate the more complicated problems which can arise by
considering two computationally more difficult examples for the case s = 2 < k.
In both examples it is obvious from the outset that we are in the regular case of
Section 3.

First consider the problem of estimating the quadratic and cubic regression
coefficients in the case of cubic regression;ie.s = 2,k = 4, X = [—1, 1], and
fi(z) = 2% 4 =1, 2, 3, 4; we want a D optimum design for estimating 6, and
0: (the coefficients of z* and «*), and the comments of Section 1 suggest that we
seek one of the form £(a) = &(+ a) = /2, £(1) = &(—1) = (1 — a)/2,
where 0 < a < 1. We easily compute that the g;(z) of Section 3 can be taken to
be 2* — ¢z and z* — b, where ¢ = (1 — o + aa')/(1 — a + aa?) and b =
1 — @ + ad’. Writing z* = wand o’ = 4, we obtain

u — b)? l1—a+cad
(48) d(z8) = 4 . Iel g et E a)aA-(l-l - 24)2
If £ is D-optimum, we must have d(1, £) = 2;i.e.,
(4.9) 22 + (A — 1)z — 24 = 0,
where we have written z = (1 — a)/a. If d(1, £§) = 2, we must also have

d(a, £) = 2, and since the expression (4.8) is a cubic in u we will clearly have
d(z, £) < 2 for all z if

w(u — ¢)b.

_|_

3d(x, £)/9u lu=a = 0,
3°d(x, £) /90U’ |u=a < 0.

The first half of (4.10) yields z = 34%/(1 — 44); substituting this into (4.9),
we obtain, finally,

(4.10)

a = A} = [(11 — 73h) /12,
a=(z+1)7" = (73 — 5)/6,

s Recently Dr. R. H. Farrell and the author have obtained optimum designs for all
values of ¢q. For ¢ > 5, the support of such designs must contain points of the 3¢ array which
are midpoints of faces of dimension >2. The invariant designs of this form (which are not
unique for ¢ > 2) can always be obtained by choosing weights analogous to «, 8, and vy above
in such a way as to make the moments defined by the lefthand equations of (4.1) equal to
the quantities defined by (4.5). The designs obtained in this way will be supported by more
than H points if ¢ > 5. Designs on fewer than H points (in fact, on O(g®) points) can be
obtained by combining certain orthogonal arrays of strength 4. Results of the type dis-
cussed here and in footnote 3 will appear elsewhere.

(4.11)
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and it is easy to check that (4.9) and (4.10) are satisfied by these values. Thus,
(4.11) gives a D-optimum design.

Next, suppose with the same cubic setup that we only have k = 3 (i.e., the
constant term is missing). Surprisingly, the arithmetic is now more compli-
cated. One obtains 2° — (1 — 24%)2" — (24 — 4%z — A® = 0 in place of (4.9)
and (34 — 1)2° + (54° — A%z + (44" — 24%) = 0 for the first half of (4.10),
and more effort is required to solve these than in the previous case. We obtain,
finally, that a D-optimum design £ of the same structure as above is now given by

a = [(5-33" — 21)/24]},

4.12
(4.12) (3 + 334 /20.

I

o

PART II. SIMPLEX EXPERIMENTS

5. Preliminaries. Scheffé [12] has given an interesting account of experiments
in which & is the ¢g-simplex S, consisting of all (¢ + 1)-vectors (x;, 22, + -+ , Tg41)
for which all z; are nonnegative and »_; z; = 1. (Scheffé uses ¢ — 1 to denote
the dimensionality of the simplex, but we shall find the present notation more
convenient, and will adhere to it throughout.) The reader is referred to the
fundamental paper [12] for discussions of the construction and use of such
experiments, including modifications in the case where & is only a part of S, .
We shall be concerned here with optimum properties which are possessed (or not
possessed) by certain of Scheffé’s designs, namely, those designs in which ¢ gives

measure 1 to the (g, m)-lattice S,,.. consisting of those (m;: q) points of S,

all of whose coordinates are integral multiples of 1/m, and, in particular, the
design &,,.,» wheh assigns equal measure to each of these points.

In the footnote on page 353 of [12], Scheffé mentions the desirability of in-
vestigating the optimality of his designs (in the case s = k of our Section 1) in
precisely the sense discussed in Part I of the present paper, i.e., in the sense of
minimizing max. d(z, £). We shall investigate the optimality of £, . or certain
simple modifications of it in various cases of polynomial regression on . Thus, in
the case where all polynomials on S, of degree m or less are possible regression
functions, the set {fi} of Section 1 can be chosen in various ways (see [12]) as a

set of (m; q) linearly independent polynomials of degree < m. We shall also

discuss certain other cases considered by Scheffé, in which only a proper subset
of the polynomials of degree m are possible.

Before proceeding to these investigations, it is necessary to verify a conjecture
of Scheffé regarding designs on S, :

Orthogonal polynomials and identifiability for designs on a (q, m) lattice. Scheffé
makes a conjecture on page 346 of [12] which is equivalent to the statement that,

for mth degree regression, any design which gives positive measure to all (m :1_ q)
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points of the (g, m) lattice S;.., enables all (m; q) regression coefficients to
be estimated. (He verifies this for m = 1, 2, 3.) We now verify this conjecture
by proving the existence of a system of (m;: q) polynomials of degree < m

such that, for any point of the lattice, there is a polynomial in the system which
is not zero at that point, but which vanishes at all other points of the lattice.
(This system is thus orthogonal for any design whose support is the (g, m)
lattice.) Since there are exactly as many points of the lattice as there are re-
gression coeflicients, this will imply the validity of Scheffé’s conjecture.®

Fix ¢. Such a system of polynomials obviously exists when m = 1. Suppose
such a system exists when m = M — 1, where M > 1. Let p be a point of S, . .
Since M > 1, there is a bounding hyperplane L of the simplex S, on which
8, is the lattice, such that p £ L. Since T = S,,» — Lisessentiallya (¢, M — 1)
lattice, there is a polynomial ® of degree at most M — 1 which vanishes every-
where on T except at p. But then, if f is a linear function which vanishes on L
but not on 7', the function ®f is a polynomial of degree at most M which vanishes
everywhere on S, » except at p. This completes the proof.

6. Quadratic regression on the ¢-simplex.

A D-optimum design for all coefficients in quadratic regression on the g-simplez.
We shall now show that, when % is the ¢-simplex S, and F consists of all poly-
nomials of degree < 2, the design &, which assigns measure 2/(q + 1)(¢ + 2)
to each of the points of the (g, 2) lattice S, 2 on X, is D-optimum. To this end,
we compute d(z, £,,). This can be done directly by computing M (&.,)™" and
thus f(z)'M (&.,,)” f(x) for the usual choice {f;(z)} = {z,,1 S r < ¢+ 1 and
8,1 S r <s = q+ 1}, but a somewhat quicker method is to note that a
system of (¢ + 1)(g 4+ 2)/2 quadratic orthonormal polynomials with respect to
£2,4, each of which vanishes except at one point of the lattice, consists of the
functions [2(¢ + 1)(¢ + 2)'zi(z: — 3), 1 < 4 < ¢ + 1, and the functions
8(¢ + 1)(g + 2)Pxix;, 1 £ 4 <j < g + 1. Hence, d(z, £,,) is just the sum of
squares of these functions (see Section 3), and we obtain, denoting by .’ the
summation over all j not equal to ¢ (for fixed 7),

2 _ LY 2 22
m d(x, &.q) =4 Z Ty (x, 1/2) + 16 1Z<J ZT; X

=2 (1 — X'a;)(4ai — 4af + 2) + 8‘; zia}

¢ It will be seen that it is unnecessary to exhibit these polynomials explicitly in carrying
out the inductive proof which follows, although that induction can be used to obtain them
explicitly. Professor Scheffé has informed the author that I rofessor L. J. Savage had inde-
pendendently constructed and communicated to him the formula for a polynomial of degree
m on S, which vanishes at all points of the (g, m) lattice except for the point (2,22, -+,
2¢+1), where it is unity. Savage’s expression is

q+1 mz;—1
11 { [(mz) ] Ho (ma; — j)} .
Fe=i

7=
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=1- Z4x3(1 — ) — Z (22 — 1) > z; + 8 2%

175
=1- inx, {4z; + (2z: — 1)Y + 8 2’22
1747
=1 — > za;{2 + 22; + (2z: — 1)%/2 + (2z; — 1)¥/2) + 82 ala]

)

=1— > z;{2(x: — z;)* + (1 — 4zaz;)).
175

The last expression in braces is always nonnegative. Hence, d(z, £.,)
(¢ + 1)(g + 2)/2 for all , and &, is indeed optimum.

It is striking to note how much simpler the treatment of the present example
is, than is that of quadratic regression on the g-cube in Section 4. Unfortunately,
the cases where m = 3 are not so simple.

An optimum design for estimating only the coefficients of the quadratic terms of a
quadratic on S; . This example will illustrate the use of our theory when 1 <
s < k, and contains a good example of the type of geometric argument which is
often useful. Write the f’s in order as z.x;, zixs, T12, o1, @2, 73 . We seek a
design which minimizes the generalized variance of the three b.l.e.’s of coeffi-
cients of f1, f2, f3 . It is to be noted that any D-optimum design for this problem
is also D-optimum for the problem where f1, f2, f; are replaced by % , 25, 25,
since the transformation which takes one problem into the other is of the form
(1.6).

We shall search for an optimum design among those designs £'® which, for
some a, assign measure /3 to each vertex of S; and measure (1 — a)/3 to the
midpoint’of each edge of S,. Denoting by [a, b] a 3 X 3 matrix with diagonal
elements a and off-diagonal elements b, we obtain for such a design £,

@y _ |le/16, 0] [0, a/8]
SMEE™) =10, /8] [t — w2, a/4]H
and thus
82 —a) 4 [ -2
M—I(E(a)) M—l(s(a)) [a(l - a)’l - oz:l O, 1 — a]

0 -2 ] [ 20 — of a :I
'l — a 4—-30)(1 —a)’4—3a
and (using the fact that Y z; = 1)

1 @y _ (2 — &)
FRaGE )_(4—3a)(1— le"’4—3 ;,”‘x’

B e I TR e ) Y A

1 — aiF (l—a)1<,

x1x2x3 .

Of course, a necessary condition for optimality is that d(z, £®) = 3 on a set of
unit £“-measure. It is only necessary to check this condition at the point
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(1, 0, 0), since it then follows for other relevant points from symmetry and the
fact that the integral of d(z, £) with respect to £ is automatically 3. We
obtain o = &, where

9 — 17
8

In order to prove that £® is optimum, we must show that d(z, £®) < 3 on
S, . First we note that if we consider the function d(z, £®) not merely on S,
but on the whole plane P = {2 z; = 1}, it is obviously a quartic which is non-
negative (see (3.4)) and which, on the line z; = 0, is symmetric about (%, 1, 0)
and equal to 3 on this line at z; = 0, }, and 1. We conclude without any computa-
tion that d(z, £®) < 3 on that part of the line z; = 0 which is part of S;, and
thus on the whole boundary of S, . )

Next, we compute easily that d(2’, £€®) < 3, where 2’ = (3, %, 1). Further-
more, it is not hard to compute that z’ is a local strict maximum of d(z, £).
From this and the fact that d is positive quartic on the plane P which is < 3 on
the boundary of S;, we conclude easily that d(z, £®) < 3 on that part of any
line of P through z” which is contained in S, . Hence, d(z, £%) < 3 throughout
Sz, and thus £® is D-optimum.

7. Cubic and higher regression on the ¢-simplex. The cases where m = 3 are
computationally much more difficult. We already know from the results of
Guest [5] and Hoel [6] that, even in the case ¢ = 1, any design on the (g, m)
lattice (regardless of whether or not ¢ assigns equal measure to the points) is
not D-optimum when m = 3.

For the sake of brevity, we will limit our discussion to the case ¢ = 2, m = 3.
We shall briefly discuss three different models. In the general cubic case (in
Scheffé’s terminology) we can take the f; to be the ten functions z;,
zx;, tixj(x; — x;), and zx.ws (here 1 < 7 < j < 3). Scheffé’s “special cubic”
omits the functions z.x;(x; — z;). In the “cubic without 3-way effect”’” we shall
consider the nine functions other than z,x.x; ; it is clear in what sense the mean-
ing of this name is to be taken, and the physical significance of each of the three
models is clear (see also [12]).

In the case of the cubic without 3-way effect, for 0 < b < % consider the
design & which puts measure 4 on each of the three points z; = 1, z; = 2, = 0
and each of the six points z, = 1 — z; = b, zx = 0. It is not too difficult to
compute that

= .6530.

a =

(@)

det M (%) = const V(1 — 4V)?,

where V = b(1 — b). Hence, V =, or b = (1 — 57%)/2, gives the optimum
design among designs of this structure. It is interesting to note that this value of b
also gives the D-optimum design in the case ¢ = 1, m = 3, with equal weights at
each of the points x; = 0,5, 1 — b, and 1.

For the general cubic, if we consider designs which assign measure ¥ to each
of the nine points supporting & in the previous paragraph, and also to the point
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a1 = T = a3 = %, the best choice of b changes to (1 — 37%)/2. In fact, it is far
from clear that we should expect the D-optimum £ to be of this form or to be
supported by only 10 points; the situation appears to be more complex than
that of quadratic regression on a square (discussed in Section 4).

A D-optimum desitgn for the special cubic on S;. We turn now to the case of
the special cubic, where we shall show that Scheffé’s design £ which assigns
measure ¥ to each of the six points of the (2, 2) lattice S.,2 and also to the point
X1 = &2 = 3 = %,is indeed D-optimum. We cannot, in imitation of our development
in Section 6, take d(x, £) to be the sum of squares of the seven orthonormal
cubic functions each of which vanishes on all but one of these seven points; for
these cubics will not all be linear combinations of only the seven functions we
began with. Rather than to compute appropriate orthogonal functions, we shall
in this example compute M~ directly. Writing the seven functions in the order
Xy, X2, T3, Tols , Tak1 , L1z, 12223 , and denoting by [a, b] a 3 X 3 matrix with
diagonal elements a and off-diagonal elements b, and by [¢] a 3 X 1 matrix of

elements ¢, we obtain
(2,57 [1.2] [1
18’ 36 27’216 81
= 1 35 97 1 1
TME) = [’2’751‘6] [1296"8—1] [ﬂ@]

EIRRE

(1,01 [0, —2] (3]

and thus

%M"‘(g)= [0, —2] [24,4] [—60]].
(3 [—60]" 1188

Hence, we obtain

Ld(z, E) = Z_‘, - 4; zir; + 2412; aia + 8 D zawats + 6aiwars
(7.1)
—120xxas 2, i + 1188x3252s .
1<J

The fourth term on the right is of course just 8ziursx; . The first term on the
right can be written as

fo =1-2) zx;=1—2 ; zixi(x; + x; + xr)

1<Jj 1<y
(72) 1#Ek#E]
=1- 22 22 — BLyLas .
i
We substitute this last expression in (7.1) and, in the resulting form, substitute
for the expression —6 ) ; z3x; the last of the following expressions:
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—6 alr; = —6 xix; — 6 air;(1 — ;)
=]

=7 =
(7.3) = —62 ziz; — 6 Z wiri(x; + )
. 1] 177
itk ]
= —62 aiz; — 12D 23l — 12zm0s .
2] T<J

We obtain, finally,
}(zE) =1 — 6 xix; + 12 zhal — dryars
Ti i<
—120ay29ms 2, zix; + 11882ixizs
i<
(7.4)
=1— {62 zx;(x: — 2;)° + dmrars(1 — 27a1202;5)

1<

+ 1202m0ms( D Tix; — 9zixexs)) .
1<J

Each of the three terms inside the curly braces is easily seen to be nonnegative
on the simplex. Hence, d(z, £) < 7 for all z in the simplex, and thus £ is indeed
D-optimum.

An optimum design for estimating only the coefficient of the cubic term of a special
cubic on S . Scheffé showed that, among the designs which assign measure one
to the set of seven points which supports the £ of the previous example, the one
which minimizes the variance of the b.l.e. of the coefficient of xz,xr; is the
measure £ which assigns measure %% to each vertex of S;, 3% to the midpoint of
each side of Sz, and 2% to the centroid of S,. We now show that, in fact, ¢ is
optimum among all designs.

The proof is quite simple. Using the notation of the previous example, we
obtain

4, 2] (1/3,5/6]  [1/9]
[1/3,5/6] [13/36,1/9] [1/27]
(L/9r (/277 1/81
A column vector ¢ which is orthogonal to the first six columns of M (¢') and for
which ¢/M(£)c = 11is given by ¢/ = (1,1, 1, —8, —8, —8, 72). Thus, in the
notation of Section 3,
S(x, &) Z T, — 82. Tir; + 7221253

(7.6) v
= 1— 8{mx: + %3 + Xowz — 9 212073}

(7.5) 24M(¢') =

The term in braces is easily seen to have a maximum of ¥ and a minimum of 0
on S, . Hence, max, |8:(z, )| = 1, and thus (see Section 3) ¢ is optimum.
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