THE NONPARAMETRIC ORDERING: $(1001) \rightarrow (0110)$

By John S. White

General Motors Research Laboratories

Let $Z = (Z_1, Z_2, \dots, Z_N)$ be a random vector with $Z_i = 1(0)$ if the *i*th smallest in absolute value in a sample of N from the density f(x) is positive (negative). Then

$$P(Z = z) = N! \int_{0 \le y_1 \le \cdots \le y_N} \prod_{i=1}^N [f^{1-z_i}(-y_i)f^{z_i}(y_i) dy_i].$$

In the case of normal slippage to the right (i.e., $f(x) = f(x, \mu)$ is $N(\mu, 1)$, $\mu > 0$), Savage [1] obtains a simple ordering of the 2^N possible values of Z for N = 3, namely:

$$111 \to 011 \to 101 \to 001 \to 110 \to 010 \to 100 \to 000$$
.

where Prob (Z = z) > Prob (Z = z') if and only if $z \to z'$.

For N=4, Savage gives a partial ordering of the 2^4 possible values of Z. The following theorem orders two more values of Z.

THEOREM 1: If X_1 , X_2 , X_3 , X_4 are NID $(\mu, 1)$, with $\mu > 0$, then

$$D = \text{Prob} [Z = (1001)] - \text{Prob} [Z = (0110)] > 0.$$

Proof:

$$D = \text{Prob} \left[Z = (1001) \right] - \text{Prob} \left[Z = (0110) \right]$$

$$= 4!/(2\pi)^2 \int_{0 \le y_1 \le \cdots \le y_4} \exp\left(-\frac{1}{2} \Sigma y^2 - 2\mu^2 \right) \left\{ \exp\left(\mu(y_4 - y_3 - y_2 + y_1) \right) - \exp\left(-\mu(y_4 - y_3 - y_2 + y_1) \right) \right\} \prod dy_i.$$

$$D = 4! e^{-2\mu^2}/(2\pi)^2 \int_{0 \le y_1 \le \cdots \le y_4} 2 \sinh \mu(y_4 - y_3 - y_2 + y_1) e^{-\sum_{y_i}^2/2} \prod dy_i.$$

Now make the transformation $y_i = \sum_{j=1}^i w_j$. The Jacobian is 1 and the region of integration becomes $0 \le w_i \le \infty$, $i = 1, \dots, 4$. Hence,

$$D = c \iiint_0^\infty \sinh \mu(w_4 - w_2) \exp \left(-\Sigma(\Sigma w^2)/2\right) \prod dw_i,$$

where

$$c = 2 \cdot 4! e^{-2\mu^2} / (2\pi)^2$$
.

Noting that the integral is positive for $w_4 > w_2$ and negative for $w_2 < w_4$, break up the region of integration into two parts in two different ways as follows

Received July 1, 1960.

$$D = \int_{w_{1}=0}^{\infty} \int_{w_{3}=0}^{\infty} \int_{w_{2}=0}^{\infty} \int_{w_{4}=w_{2}}^{\infty} + \int_{w_{1}=0}^{\infty} \int_{w_{3}=0}^{\infty} \int_{w_{2}=0}^{\infty} \int_{w_{4}=0}^{w_{2}} = (say) D_{1}^{+} + D_{1}^{-},$$

$$D = \int_{w_{1}=0}^{\infty} \int_{w_{3}=0}^{\infty} \int_{w_{4}=0}^{\infty} \int_{w_{2}=0}^{\infty} + \int_{w_{1}=0}^{\infty} \int_{w_{3}=0}^{\infty} \int_{w_{4}=0}^{\infty} \int_{w_{2}=w_{4}}^{\infty} = (say) D_{2}^{+} + D_{2}^{-}.$$

Combining these two results, D may be written as $D = D_1^+ + D_2^-$. Setting $w_2 = s$ and $w_4 = t$ in D_1^+ and $w_2 = t$, $w_4 = s$ in D_2^- gives

$$D = c \int_{0}^{\infty} \int_{0}^{\infty} \int_{s}^{\infty} \int_{s}^{\infty} \sinh \mu(t-s) \exp(-\frac{1}{2}\{(w_{1}^{2} + (w_{1}+s)^{2} + (w_{1}+s+w_{3})^{2} + (w_{1}+s+w_{3}+t)^{2})\}) dt ds dw_{3} dw_{1}$$

$$- c \int_{0}^{\infty} \int_{0}^{\infty} \int_{s}^{\infty} \int_{s}^{\infty} \sinh \mu(t-s) \exp(-\frac{1}{2}\{(w_{1}^{2} + (w_{1}+t)^{2} + (w_{1}+t+w_{3})^{2} + (w_{1}+t+w_{3}+s)^{2})\}) dt ds dw_{3} dw_{1},$$

$$D = c \int_{0}^{\infty} \int_{0}^{\infty} \int_{s}^{\infty} \int_{s}^{\infty} \sinh \mu(t-s) \exp(-\frac{1}{2}\{(w_{1}^{2} + (w_{1}+s+w_{3}+t)^{2})\})$$

$$= \exp(-\frac{1}{2}\{(w_{1}+s)^{2} + (w_{1}+s+w_{3})^{2}\}) - \exp(-\frac{1}{2}\{(w_{1}+t)^{2} + (w_{1}+t+w_{3})^{2}\})] dt ds dw_{3} dw_{1}.$$

Thus D is positive if the difference of the exponentials in the square brackets is positive, but this is obviously true since t > s over the range of integration.

THEOREM 2: If X_1, \dots, X_N ($N \ge 4$) are NID $(\mu, 1)$ with $\mu > 0$, then D = Prob (Z = z) - Prob (Z = z') > 0 where z and z' are identical except that $z_1 = z'_2 = z'_3 = z_4 = 1$ and $z'_1 = z_2 = z_3 = z'_4 = 0$.

PROOF: The proof of this Theorem follows from Theorem 1 in exactly the same way that Savage's Theorem 6.1 follows from Sobel's Theorem ([1], footnote p. 1024).

Using the results of Theorem 1 and Savage's Theorem 6.1, the partial ordering for N=4 becomes, for normal slippage to the right,

Some preliminary Monte Carlo analysis suggests that the following orderings may be valid, although no analytic proofs are available:

REFERENCE

[1] I. RICHARD SAVAGE, "Contributions to the theory of rank order statistics—the one-sample case," Ann. Math. Stat., Vol. 30 (1959), pp. 1018-1023.