THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE
TRANSITION TO CONTINUOUS TIME

By I. J. Goop
Admiralty Research Laboratory, Teddington, England

1. Introduction. Consider a chain, N letters long, generated by a discrete-
time Markov process that has a finite number, ¢, of available states. Each state
will be called a “letter”, and the set of ¢ states the “alphabet”. I shall discuss
the joint probability distribution of the frequencies of the ¢ letters of the al-
phabet, in other words the probability distribution of the ‘“frequency count” of
the chain, by making use of what may be called a “pseudo probability generat-
ing function”. The discussion makes use of the interesting method of multiple
contour integration, previously used by Whittle for another problem concerning
Markov chains. I shall then apply a transition to continuous time. For the case
t = 2, the result for continuous time is already known, but our result is more
general; and it is of interest to relate the theories of discrete and continuous
time.

The main results are given by formulae (3), (8), (9), and (10). Formula (8),
for example, gives the covariance between the frequencies of any pair of letters
when the chain is ergodic and is in its stable state; formula (9) gives a neat
expression for the variance of the number of 0’s when ¢ = 2, and shows clearly
how it differs from the familiar result for binomial sampling; and formula (10)
provides, in principle, the joint density function for the durations of the ¢ states
when time is continuous, and where the chain is not necessarily in a stable state.

I believe this paper is of interest largely for its methods. I have not found
it convenient to present it in the conventional theorem-proof form.

2. Frequency Counts of a Markov Chain. Let the matrix of transition prob-
abilities be @ = (gu,») (&, v = 0,1, --- , ¢ — 1). Let p, be the probability that
the first letter of the chainisr (r = 0,1, --- , ¢ — 1). These need not be stable-
state probabilities. Let p(n) be the probability that the letter frequency count
willbe n = (ng, m, * -+, Ne), where ng + n; + --- + n,y = N. The prob-
ability generating function (P.G.F.) of the frequency count is (ef., [1])

Z p(n)xn = Z p(no s My, s, nt—l)xgofvi” A

summed over all n for which ny 4+ --- n.; = N. If however the summation is
over all n for which ny + -+ 4 n, is positive, then the result may be called
the “universal” P.G.F., and it serves for all positive values of N simultaneously.

Let e be the column vector consisting of ¢ 1’s, and let X be the diagonal matrix
diag (2o, - -+, Zs1). Then it is easy to check that the P.G.F. is (cf,, [1]

(1) (poo , P11, - -+, p,_lx,_l)(QX)""e,
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so that the universal P.G.F. is
(Poxo , Pry, « -, Peaea) (I — QX)_le
= (poxo ) plxl y Ty pt—lxt—l)adj(l - QX)e/det(I - QX).

I shall outline below" a proof that the coefficient of x® in (2) is equal to that
of z% in

(2)

(3) (a+ 2+ - 2) 1 G2 T,

where

t—1
fr(z) = br + ;) Qs,r%s

in which b, is an arbitrary constant which can be allowed to be zero if n, > 0
(r=20,1,---,t— 1), and where the C, are the cofactors of the diagonal ele-
ments of the matrix

(4) (6efr(Z) — Qr.2s).
(The double-suffix summation convention is not used in the present paper.)
We may regard (3) as a pseudo P.G.F. It is not an ordinary P.G.F. since it de-
pends on n. In principle it may be used in order to obtain the asymptotic be-
haviour of p(n), by invoking, for example, the saddle-point theorem, Theorem
6.3 of Good [6]. It could also be used in order to obtain the exact expectation of a
function of n, o(n), when Y . o(n)w" can be neatly expressed as a function of
w. For example, the moments could be obtained by this method. But the expec-
tation and variance will be obtained below by a more standard method.

The last factor of (3) is a polynomial of degree ¢ — 1, and therefore, when
extracting the coefficient of z", its effect is at worst to complicate the algebra.
The values of C; when { = 2 and ¢ = 3 are

(5) Q0120
and
(6) QO1QO22§ + go2Queo?e + Qugi222: -

In both these cases, and perhaps for all values of ¢, the coefficients in C, are all
non-negative. (A proof of this conjecture may well involve a direct proof of (3),
without the help of (2).) When £ is such that the conjecture is true, and in par-
ticular when ¢t = 2 or 3, we have p(n) ~ 4-¢(n), where A is mathematically
independent of n, and g(n) is the coefficient of z" in

(7) I ()™

1 The proof is postponed to Section 4 in order that the continuity of the present discus-
sion should not be interrupted.
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Thus when the conjecture is true the algebraic complications mentioned above
are so to speak asymptotically immaterial. It is to be understood that all com-
ponents of n are to tend to infinity in the definition of asymptotic equivalence.

Unfortunately the work required in order to apply the saddlepoint method to
this problem seems to be heavy. The above discussion is however of some mathe-
matical interest, and may be of use if very accurate estimates of p(n) are re-
quired. It will also be used below in order to discuss continuous-time processes.
Meanwhile a less accurate approximation can be obtained by the following
method, provided that the process is ergodic.

Let us break off for a moment in order to clarify some terminology.

If, in a discrete-time stochastic process, the transition probabilities at any
stage depend only on the previous k states, and do not otherwise depend on
time, then the process is called a kth-order Markov process. It is an ordinary
Markov process when k = 1.

A succession of m states or letters occurring in a sequence in a chain is called
an m-plet. A kth-order Markov process may be thought of as a first-order process
by regarding its k-plets as states, the successor state of a k-plet being made up
of its last k-1 letters together with the next letter of the chain. (Compare, for
example, Good [5], de Bruijn [2], Bartlett [1].) If, for this revised interpretation
of a state, the process is ergodic, then it is called an ergodic kth-order Markov
process. If I > k, then a kth-order Markov process is also an Ith-order Markov
process. If it is an ergodic kth-order process, then it is easily seen to be an ergodic
Ilth-order process.

If an m-plet occurs v times in a chain, then v is called the frequency of the m-
plet, and v/(N — m + 1) the relative frequency. The entire set of all m-plets
in a given chain, with m fixed, is called the frequency count of the m-plets. The
joint distribution of the relative frequencies of the m-plets of a kth-order ergodic
Markov chain will, with probability 1, tend to a limit as the length of the chain
tends to infinity.

In fact Bartlett [1] proved that, for an ergodic kth-order process, the joint
distribution of the (k + 1)-plet relative frequencies in a chain of length N is
asymptotically normal when N tends to infinity. But a linear combination of
normal variates is again normal, hence the I-plets also have a joint normal dis-
tribution if I < k 4 1. (The same is true if I > &k + 1 since a Markov chain of
order k is also one of any higher order.) In particular, the letter frequencies
(1=1), no, ny,---, neu, have asymptotically a joint normal distribution
when the process is of order 1, as I shall assume again from now on. (This fact
was also proved by Kolmogorov [8].) In order to approximate to the probability
p(n) it is therefore adequate first to note that the expectation of n, is Ngq, (where
@, q, -, g1 are the stable-state probabilities of letters: this result is exact
and not merely asymptotic if the chain is in its stable state, which I shall assume,
during the remainder of this section, for the sake of simplicity); and second to
compute the covariance matrix, (cov(n,, n,)).

Let z;, = 1 if the 7th letter of the chain is an r, and let z;, = 0 otherwise.
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Then
1,2, +,N
E(non) = 2, E(xirxi.)
T

= 6:qu + QrTr,s + QsTs,ry

where ., is the (r, s) element of the matrix
(N-1Q+ (N—-2)Q + -+ +Q""

Since the process is ergodic, the only eigenvalue of Q of modulus 1 is 1 itself,
and it has multiplicity 1. It corresponds to the left and right eigenvectors q' =
(@, @1, -+, 1) and e, ie.,, ¢'Q = q’, Qe = e. Note also that q’'e = 1,
and that

Q =eq +R,
where R is singular and has all its eigenvalues of modulus less than 1. It follows
that ¢'R = q¢'Q — q’eq’ = 0, and Re = 0, and hence that
Q"=e +R"(n=12,3,::-),
so that

(N-DQ+ (N —-2)Q + -+ Q""" = @)eq’ + N-RI—-R)™ + 0(1).
Therefore the required covariance is
cov (n,,m,) = 6:¢; N + 2 (]g) ¢:¢ + Ng.{RI — R)7Y},,

(8) + Nq.v{R(I - R)_l}s.r - N2QrQ8 + 0(1)

= N{a:qf‘ = 4rQs + Qr(R(I - R)_l)r,x
+ q.v(R(I - R)_l)s,r} + 0(1).

When ¢ = 2, the covariance matrix is determined completely by its top left-
hand element, which reduces to

(9) var(ng) = Ngog:(26™ — 1),

where 8 is the “association factor’” between 0’s and 1’s, 8 = quo/¢o = D10/ Q@1 =
Po/qoq1 , where p,, is the stable probability of the 2-plet (r, s). For a random se-
quence the association factor is 1 and (9) reduces to the usual formula for a bi-
nomial variance. If the association factor is less than 1 there will be a tendency
for 0’s and 1’s to occur in runs, and the variance of the number of 0’s (and 1’s)
will be greater than for a random sequence. The association factor cannot ex-
ceed 2.

For any value of ¢, the part of the equation (8) that depends on R may be re-
garded as the part of the covariance that is attributable to “Markovity”. For
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weak Markovity, i.e., with all elements of R small, this contribution will be small,
and also easy to approximate numerically.

3. Continuous-Time Processes. In order to avoid difficulties of rigour I shall
take the point of view of some one, whom I shall call a “physicist”’, who wishes
to apply the results to a particular physical problem. He will consider it ade-
quate to regard time as continuous if he considers that the following assumption
is also adequate for his problem. There is a smallest time unit, dr > 0, so small
that its size cannot be determined, but only upper bounds on its size. (There
will also be a smallest space unit.) All time intervals are then integer multiples
of dr.

Thus the physicist will demand that the solution of the (discrete-time) prob-
lem with an assumed small enough value of dr must be experimentally indis-
tinguishable from the solution with any smaller value of d=. He will then be satis-
fied a fortior: if all physically measurable aspects (measured in standard units,
not as multiples of dr) of the solution tend to limits as dr — 0. If this condition
is met we may say, by definition, that we have obtained the solution of the con-
tinuous-time problem in a form adequate for the physicist. I do not know whether
this definition is more or less realistic than the usual one.

Consider then a ¢-state continuous-time Markov process, with constant in-
finitesimal transition probabilities. Let the total times in the ¢ states, 0, 1, - - - |
t— 1lber,r, -, 7 . These must be integer multiples of the time element,
dr, and we may write r, = n,dr (r =0, 1, -+, t — 1). From the previous
results concerning discrete time, we may deduce the joint distribution of (r,

-, 7i-1). The total time, 7o + 71 + --+ + 7.01 = 7, is regarded as given.
The joint distribution is not normal: it would be fallacious to argue that ‘it
must be because that of ng, n;, - -+, 74—y is normal.” This argument fails be-
cause if we divide time up into N small intervals each of length dr, where Ndr =
7, and then let dr — 0 and N — «, the transition probabilities do not remain
constant.

We may write

Qr,s = Org dr (3 # T)’ Qrr = 1- Za”’ dT,

where, by convention, «,, = 0. The probability density of (7o, 71, -+, 7e-1),
when 70 > 0, 7, > 0, ---, -1 > 0, can be obtained from the pseudo P.G.F.,
formula (3), with all the b,’s equal to zero. We write 7,/dr for n,, and take the
limit of the probability after dividing by (dr)“™", since we are in the (¢ — 1)-
dimensional simplex 7o + r1 + --- 4+ 7,1 = 7. We find that the density is the
limit, if this limit exists, of the constant term (the term mathematically inde-
pendent of the 2’s) in

Trldr
TERLEA O CoR T

where Dy, Dy, -+, Dy are the cofactors of the diagonal elements of the matrix
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(6:2 Oyrly — arazc)-

(For the present, summations and products of unspecified range are from r = 0
tor = ¢ — 1.) Thusthe probability density, when []r, # 0, is equal to the con-
stant term in

(10) exp (—; ey Tr) IZIz’ > p.D, exp (; Oy r 7124/ 2r).

For example, when ¢ = 2, the probability density of 7, (or of r;), when
ror1 > 0, is equal to the constant term in

eXp("‘OlmTo - am"'l)(zo—l + Zfl)(poamzo + plalozl)
X exp(am‘flzo/h + 01107'021/20),

i.e., the density is

—ao1To—a1071
€ {

(11)

(Poam + p1a10)10(2(0£01¢¥10‘7'0‘7'1)*)

+ (aman) (Do(ro/m)! + pr(71/70)H) [1(2(amanorors) )},

where I and I are the Bessel functions of imaginary argument of orders 0 and 1.
If the Markov process starts in its stable state we have py = ayo/(an + an),
? = an/(an + aw). If the initial state is known to be 0 then the density is ob-
tained by putting po = 1, p, = 0 in (11). The cumulative distribution can be
deduced with the aid of Erdélyi et al. [4], p. 201 (16), together with a formula
obtained from it by partial integration. Formula (11) is given by Dobrusin [3],
with an acknowledgement to F. I. Karpelevitch and V. A. Uspensky. See also
Takécs [10], who gives the cumulative distribution. My method, and the methods
used in these references are all distinct, and in the references the usual definition
of a continuous-time process is used.

Formula (10) may be used in order to obtain the expectation of a function
¢(z), and the moments of the distribution of = could thus be obtained. If we
denote the multidimensional Laplace transform of ¢ by ¢* where

@ = [ [ eeap (—x'-2) e,
0 0
then the expected value of ¢(%) is equal to the constant term in

2r
(12) _IZIZ Z prDr¢* (Z Qo — Z asozx/ZO, Tty Z Qt-1,s — Z aa,t—lza/zt—l)-

These methods can be at least formally extended to the case of a Markov
process having a continuous infinity of states, with discrete or continuous time,
by making use of probability generating functionals or characteristic functionals.

4. Proof of formula (3). In Section 2, I postponed the proof of (3). This proof
can be based on a generalization to several variables of Lagrange’s expansion of




MARKOV CHAIN FREQUENCIES 47

an implicit function as a power series. (See Good [7], which is related to earlier
work by Whittle [11].) Leaving aside here the finer points of rigor, the coefficient
of 2" in a function h(z), analytic in a neighbourhood of the origin, z = 0, is
equal to

() § -+ f i f o f et e

if the vector function z(x) is also analytic in the neighbourhood of the origin

= 0. Let the relationship between z and x be z, = z,/f,(z), where the f’s
are defined just below formula (3), and must not vanish at the origin (so that
the b,’s must not vanish). In this case it is a simple matter to compute the in-
verse Jacobian, and, on writing & = k-f", where % is another function of z,
we find that the coefficient of x" in k(z(x))/det(I — QX) is equal to that of
z® in k-f". We now select k so that

k(z(x)) = (poxo, **+ , prazey)-adj(I — QX)-e.

The multiplier of p, in this expression is easily seen to be the determinant ob-
tained from the matrix (8; — g,.%,) by replacing each element in its rth column
by z,. Now express the z’s in terms of the 2’s, and (3) follows on noting that

y —qo121 y — o222, *

20, Qoo + qulz + o, —Queze, -

...................................

20, —Qi—1,1%1 y —Qt—1,2%2, v
2+2a+ 0+ 24,0 , 0
20 y quzo + quze + -+ cy —Qi2R2, |

................................................

) "

as we may see by adding to the top row of the first determinant the multiples
21/20, 23/%0, + -+ of the remaining rows.

A similar, but shorter, proof can be supplied for MacMahon’s “Master Theo-
rem,” (MacMahon [9], pp. 93-123). I hope to publish it elsewhere.
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