A CHARACTERIZATION OF THE WEAK CONVERGENCE OF
MEASURES

By RoBERT BARTOSZYNSKI!
Unaversity of California, Berkeley?

0. Summary. In this paper we shall investigate the so-called weak conver-
gence of measures. Although the origin of the concept of the weak convergence
of measures is a probabilistic one, the concept itself is purely measure-theoretical,
and should be, therefore, treated by measure-theoretical methods. In Probability
Theory the notion of the weak convergence of measures first appeared in Cen-
tral Limit Problem. Its full importance, however, has been recognized only re-
cently. It is now known as Donsker’s Invariance Principle.

In this paper we shall follow Prohorov’s approach, as presented in [1]. The
list of all necessary definitions and results is given in the Introduction.

We shall give some conditions for the weak convergence of measures in
separable and complete metric spaces, which are expressed in terms of conver-
gence of measures generated in finite dimensional Euclidean spaces. The last
convergence can be treated by standard mathematical tools, like the Theory
of Fourier Transformations. It should be noted that our theorems concerning
the convergence of measures in separable complete metric spaces remain valid
if we omit the assumption of completeness. The proofs will remain essentially
unchanged; only instead of dealing with compact sets, we should deal with to-
tally bounded closed sets.

The theorems given in Section 4 are of interest for the Theory of Stochastic
Processes, since they give the conditions for the weak convergence of measures in
the functional spaces D[0, 1] and C|0, 1], and to a large class of stochastic proc-
esses there correspond measures generated in space D[0, 1] or C[0, 1], and these
measures are usually given in terms of u“'"**" i.e. in terms of finite dimensional
distribution functions of the process.

1. Introduction. Let R be a complete separable metric space with the metric
p. Denote by M(R) the space of all finite measures defined on the Borel o-fielP
of subsets of R. A sequence p, of elements of M(R) will be called weakly con-
vergent to u ¢ M(R) if for every bounded and continuous function f(z) on R

(1.1) tim | f@)un (d2) = [ 1@ @),

We shall denote weak convergence by =. The following Theorems A-F can be
found in [1]:
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THEOREM A. Let p, e M(R), n = 0, 1,2, --- . Then p, = uo if, and only if,
lim, e pa(R) = mo(R) and lim sup,.c u.(F) = wo(F) for every closed set F C R.

Let p1, pe € M(R). Denote by e, (resp. e,) the greatest lower bound of
those ¢, that for every closed set F C R we have w(F) < us(F*) + e (resp.
pe(F) = wm(F°) 4+ ¢) where F* denotes the e-neighborhood of the closed set F.
Let

(12) L(Ml , [.l,g) = max (El,z y 62,1).

The following theorem holds:

TureorEM B. The function L, defined by (1.2), is a metric in the space M (R),
and the conditions u, = po and L(u, , po) — 0 are equivalent. Moreover, M (R)
with the metric L is a complete separable space.

A condition for compactness of subsets of M(R) is given by the following
theorem:

TuroreM C. The set B € M(R) s compact if and only if supues u(R) <
and for every ¢ > O there exists a compact set K. C R such that sup,s p(K:) < €’

Let R* be a complete separable metric space and let x ¢ M(R). If f is a con-
tinuous function mapping R into R*, then, the condition u’(4) = u{f™(4)} for
the u-measurable f(A4) defines the measure x’ ¢ M(R*). The following theorem
holds:

TueoreEM D. The condition p, = uo holds if and only if for every real u-almost
everywhere continuous function f on R we have ul, = uj.

Remark 1. In the definition of metric L, it is sufficient to take the greatest
lower bound with respect to compact sets only. In fact, let the inequality um (K) =
u2(K®) 4+ € hold for all compact sets K C R and let F C R be an arbitrary
closed set. Take a sequence {K,} of compact sets, such that K, C K., n =
1,2,--+, and m[(U3= K,)°] = 0 (see, for example, [2]). Then, for every n we
can write

m(F NK]) = w(IF NK]Y) + ¢ S m(F) + ¢

and on the left hand side we can pass to tbe limit with n — o, obtaining
m(F) = m(F N UlKn) S w(F) + e

ReEMARK 2. An analogous distance of measures has been defined by Lévy
when the space R is one-dimensional Euclidean space. He defined the distance
between measures u; and pe as

L*(Ml ) #2)
= inf {e; forevery z: Fi(x — ¢) — € < Fo(z) < Fi(z + €) + ¢

where Fi(z) and Fi(x) are the distribution functions of the measures u; and
u2 , respectively.

(1.3)

3 In this paper 4¢ will denote the complement of A.
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Generally, if Fi(z1, -+, 2») and Fe(z1, -+, ») are the distribution fune-
tions of measures u; and we in m-dimensional Euclidean space R, , then we can
define the Lévy distance L*(F;, F;) as

(14) inf {¢; forevery oy, -+ , Zm : F1(T1 — € *** , Tm — €) — €
' S Fa(ey, o, am) S Fi(m+ 6 oy am + 6 + 4.
The convergence L*(F,, Fo) — 0 is equivalent to the condition that

lim Fo(zy, -+, 2m) = Fo(21, *++ , Tm)

n->o0

at every continuity point of the function Fo(2:, -+, ), and therefore, it is
also equivalent to the weak convergence u., = po of the corresponding measures
(see, for example, [3]).

In this paper, whenever the m-dimensional Euclidean space R, is considered
it will be assumed that the metric in this space is defined as

p({x17"'7xM}){yl)”')y'm}) = max |xk_ykl
1<k<m

By (10, 1] we shall denote the space of all real continuous functions f(¢) on
[0, 1] with the uniform metric

c(g, h) =oss‘f£1‘g<t) — h(8)|.

Denote by D0, 1] the space of all real functions f(¢) on [0, 1] satisfying the
following conditions:

(a) the limits f(¢ + 0) and f(¢ — 0) exist at every point ¢ £ (0, 1) and the
limits f(0+) and f(1 — 0) exist at the points ¢ = 0 and ¢ = 1, respectively.

(b) at every point ¢ € [0, 1] one of the two equalities f(¢) = f(¢ + 0) and
f(¢) = f(¢ — 0) holds.

We shall add to the definition of the space D[0, 1] the usual convention that
every two functions f1(¢) and f2(¢) for which the equalities fi(¢ + 0) = fo(¢ + 0)
and fi(t — 0) = fa(t — 0) are satisfied for all ¢ & [0, 1] will be considered as

one element of D[0, 1].
Let f € D[0, 1] and let T'; be the graph of function f, that is, the set of points
(¢, u) such that ¢ £ [0, 1] and u satisfies one of the following inequalities:

A fG—0)=u=sft+0) and f(t+0) =u=f(t—0).
Note that every graph is a bounded closed set on the plane. Let
wi(A) = sup [f(t) — f(t)]-
ty,toelA

We shall consider two functions

(1.5) wy(a) = Swp wy(A)

and
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(1.6) wr(a) = A;flAllpéa sup min (wy{|r1, 70)}, we{ (70, 7}),

where A denotes the interval [r;, 7o]. The following propositions have been
proved by Prohorov [1]:
I. If the function f has no jump greater than c, then

(1.7) wy(a) = 4(Wy(a) +¢) forall 0 < a = 1.

I1. @s(a) is a non-decreasing function, and @;(a) | 0 as a | O.
Let

W(e’) for 250
(1.8) re(2) =
wy(1) for z > 0.
Let f, g £ D[0, 1], Define

(1.9) di(f, g) = max {sup inf [p — g|, sup inf [p — g|}
pely geTy pely qeTy

and '

(1.10) (S, 9) = L*(r4(2), r4(2)),

where L* is the Lévy distance defined by (1, 3). Then the following theorem

holds:
TureoreM E. The function

defines a metric in the space D[0, 1]. The space D[0, 1] with the metric d is separable
and complete, the subspace C[0, 1] is a closed set tn D[0, 1] and for the subspace
C[0, 1] the d-convergence s equivalent to the uniform one. Moreover, if d(f. , f) — 0,
then fu(t) — f(t) at every point of continusty of f(¢).

Conditions for compactness of the subsets of the space D[0, 1] are given by

the theorem:
THEOREM F. The set B C D[0, 1] is compact #f and only if, there exists a con-

stant M > 0 and a function h(e) | 0 as € | 0, such that for all f ¢ B
sup |[f(8)| < M
0<t=<1

Wy(e) < h(e) for 0= e=1.
‘Now we shall prove the following inequality
(1.12) d(f, g) < 3sup [f(2) — g(8)|.
0<t<1
In fact, if supo<:<i |f(£) — g(£)] = ¢, then, of course, di(f, g) < e Since the
functions #,(a) and ®W,(a) satisfy the inequality |#;(a) — @,(a)| < 2¢ for

every a, then also |r;(z) — r,(2)| = 2¢ for every z, hence do(f, g) < 2¢, which
was to be proved.
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Let ¢, - -+, tm be fixed points from [0, 1]. Denote by ¢ = ¢,,...,:m the func-
tion mapping D[0, 1] (or CI0, 1]) into R,,, defined as o(f) = {f(t, — 0), -- -,
f(tn — 0)}. For u ¢ M(D[0, 1]) (or u e M(C[0, 1])), we shall denote by u‘t*"
the measure in M(R,) defined as u*'""‘"(A) = u{o (A4)} for p-measurable
¢ '(4).

2. Convergence of measures in metric spaces. In the present section, R
will denote an arbitrary fixed complete separable metric space with the metric p.
Let fi(x), fa(z), - - - be a fixed sequence of continuous mappings of R into the
real line R, . Suppose that for every z we have sup, |f.(z)] < .

Denote by ¢ the mapping of R into k-dimensional Euclidean space R; defined
as op(x) = {fi(z), -+, fu(z)}. If u & M(R), we shall write x* = u**. Further
we shall use the notation p*(z, y) = sup. |fu(z) — fu(¥)|-

The following theorems hold:

THEOREM 1. If the functions fi(x), fo(z), - - - are equicontinuous at each point
z ¢ R, that s, if the condition p(zm , ) — O tmplies p*(Tm , ) — O then a neces-
sary condition for the convergence u, = po(pn € M(R), n =0, 1, ---) s
(2.1) lim sup L(u5, us) = 0.

TuEOREM 2. If the condition p*(Zm , x) — 0 implies p(Zm , ) — 0, then (2.1)
is a sufficient condition for the convergence un => po(pn € M(R), n =0, 1, ---).

To prove these theorems we need some lemmas giving the connections be-
tween e-neighborhoods in the spaces R and R .

LemwMA 1. If the conditions of Theorem 1 are satisfied, then for an arbitrary com-
pact set D C R, any integer k and any set F C Ry

D N g (F)]° € g (F™),

where wp(e) | Oase | O.

Proor. At first suppose that F = {2, -+, x} and let & ¢ D N[g (F)]".
It follows that there exists 5 & o7 '(F) such that p(£ 7) < e Since D is supposed
to be compact it follows that p*(%, %) < wp(e), where mp(e) | 0 as ¢ | O.
Then also

max If:(®) = fi(m)| < 7p(e)

and since fi(n) = z;, (¢ =1, --- , k), we have
teor({m, oo, ™).

To complete the proof it is sufficient to note that pre-images and e-neighborhoods
are additive and wp(e) does not depend on {x;, ---, .
Lemma 2. If F C R s compact, then for arbitrary ¢ > 0 and 6 > 0

n ovlen(F) ] < F§F,

where F& denotes the a-neigborhood of the set F in the metric p*.
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Proor. Let ¢ > 0 and & > 0 be arbitrary, and let & & = ok loe(F)]. It
follows, that for every k we have ¢;(£) & ¢ (F)°. Then, there exists . € F such
that max; <; <« |fi(§) — fi(m)| < e Since, by assumption, F is compact, we
can select a convergent subsequence from the sequence {7:}. Suppose, without
loss of generality, that #, — n & F. Let n be an arbitrary integer. Then

[fa(8) = Fa()| = 1fa(®) — Falm)| +] falme) — fa(n)].
For a sufficiently large k, the first term on the right hand side of the last formula
is less than e and the second is less than . Hence it follows that

P*(E; 7) = SI;;lp lfn(s) —fn(ﬂ)l <e+4

which was to be proved.

Proor or TuEOREM 1. Suppose that u, = uo. Then L(p,, p) — 0 and for
any & > 0 there exists a compact set D; such that sup. u.(D3) < & (see [1]).
Let L(pn, uo) < a; then it follows that for every closed set A C R we have
un(A) = mo(4%) + a and p(4) = pa(A4%) + a. Let k be an arbitrary integer
and F C R, be an arbitrary closed set. Then, by Lemma 1 and the fact that the
set ¢ '(F) is closed, we obtain '

#o(F) = mfer (F)} = palon (F)} + «
S pdDs NG (P} +a+ 6
S e ' (F) + a4 6 = ya(F™) +a+a.
Similarly we obtain u%(F) < us(F™®) + « + 8, which implies that
L(ph, po) < max (o +-3, ms(a)),

A

and also
sup L(uh, ut) < max (a + 8, m(a)).

Let ¢ > 0 be arbitrary. Choose a fixed 8 < ¢/2 and then find a such that & < ¢/2
and ms(a) < e. Then choose N = N., such that for » > N we have
L(un, mo) < a. It follows that forn > N

sup L(uh, ut) < e

which was to be proved.
Proor oF THEOREM 2. Suppose that the condition (2.1) is satisfied. Let ¢ > 0

be arbitrary and let forn > N.
(2.2) sup L(uk, ) < e

By Lemma, 2, for every n and every compact set F' we can find k = k, » such
that
(2.3) pale lon(F) T = pn(F¥) + e

Then, for every compact set F we can write the following chain of inequalities,
using the conditions (2.2) and (2.3):
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“n(F) wn{et [on(F)} = un{en(F)}
< wiler(F)Y + e = woler Ter(F)T + ¢ < uo(F¥) + 2e.
In a similar way we prove the inequality
po(F) = pa(F¥) + 2e
Hence, by Remark 1 (made at the beginning of this paper) we get
Ls(un, mo) < 2¢ for n >N,

where the distance Ls is calculated according to the metric p*. Thus p, = ug
in the topology generated by the metric p*, and im SUpPsow pa(F) = po(F)
for all sets F closed in the metric p*, hence, for all sets F closed in the original
metric p, which was to be proved.

3. Some lemmas. Let u ¢ M(DI[0, 1]). We shall say that ¢, is a continuity
point of the measure p if the set of those f ¢ D[0, 1] which are discontinuous at
the point & is of u-measure zero.

The first lemma we are going to prove gives some regularity properties of the
behavior of the functions f in the neighborhood of the continuity points.

Lemma 3. If ty, - -+, tn are arbitrary continusty points of the measure p, then
for every e > 0

lim inf{ inf [M (n {f, sup f(t) < 2 + })
c»0 ESTRRRN Y k=1 te Tlcc

(o <a))] o

where T denotes the interval [t, — c, & + c]. If for some e > 0, and for some par-
ticular points ty , « - - , tm (without the assumption that they are continuity points)
the relation (8.1) is not satisfied, then there exists ap > 0 and &, (amongty, -+ ,tm)
such that

(32) plf; 1f(t +0) — f(& — 0)] > adf > .

Proor. Suppose that the points &, - - , ¢{m are continuity points of the meas-
ure u. Then for arbitrary ¢ > 0, ¢ > 0 and arbitrary x;, -+, » We have

M (kal {f; (%) < xk})
=u () 17w <m0 A s 150 - W) < )

uTk

+u( 137w <m0 o 10 - 1wz a])

terfl

(3.1)

S (;ﬁ {fisup f(t) < @ + e})

t:T"

Z f; sup |f(t) "‘f(tk)l 2 e}’

t:Tk
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or

w (0 s 70 <o+ d) = () 15760 <)

c
te Tlc

+ 2 ulfysup [7() — f(t)] 2 ¢} 2 0.
- t&Tﬁ
Let ¢, be an arbitrary sequence of numbers decreasing to 0. Denote by A,
the set of those f’s, such that
sup [f(¢) — f(te)| 2 e

cn
te Tk

Then A, D A4 and
it [w(D s 10 <m+9) - u(D 1500 <2)]

k=1 " 4o pen
+ kZ: #(Aar) 2 0.
On the other hand, for every &k we have
Av = (1 dus € 155 6+ 0) = 6 — O] 2 4,

and 0 = p(4s) = lim,e u(Aax), which proves the inequality (3.1). The
second part of Lemma 3 follows immediately from the first part.

The succeeding lemmas which we shall prove will give us some connection
between neighborhoods in the spaces D[0, 1] and R .

Let &, - -+, tm be fixed points of the interval [0, 1] and let ¢ denote the func-
tion mapping D0, 1] into R, , defined as o(f) = {f(t — 0), - -+, f(¢n — 0)}.
Let B be an arbitrary compact set in D[0, 1] and let C = C[0, 1] denote, as usual,
the space of all real continuous functions on [0, 1].

LemMmA 4. For an arbitrary set K C R,

(3.3) ¢ (K) NBI‘N C C ¢ /(K*®)
and
(34) [¢"'(K) N BN C]* C ¢ (K™"),

where Yp(e) | 0 and 6s(e) | 0 as e | O.
Proor. Note first, that since pre-images and e-neighborhoods are additive,

it is sufficient to prove inclusions (3.3) and (3.4) for sets K = {21, -+, Zu}.
To prove (3.3) suppose that f € [¢ '({z1, -+, »}) N B]*NC. It means that
there exists a function g € D[0, 1], such that g ¢ "({21, *+, Zw}) N B and

d(f, g) < e In other words
(1) g(t) = 2, kb =1,2,--+,m,
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(2) geB,

(3) d(f,9) < ¢

(4) f1is continuous.
Condition (2) means that @,(a) < hs(a) for 0 < a < 1, where function
hs(a) is a function appearing in the condition for compactness of the subsets of
D[0, 1] given by Theorem E of the Introduction. From condition (3) it follows
that di(f, g) < € and & (f, g) < €, where d} and dp are defined by (1.9) and

(1.10). Then, there exist points &, -+, tm, with
max |t — b
1sksm

and

max |f(6) — ()] < e
<ksm

Using (1) we obtain
(3.5) : max |f(t) — @ < e
1<ksm

Condition dy(f, g) < e implies that for every 2
By(¢) — € < Wy(¢) = B(eT) + 6
and hence by (2)
y(e’) < e+ ha(e™).
Putting ¢’ = ¢ we obtain for sufficiently small e
Wy(e) = e+ hp(e'€) = e+ ha(2e).
Since f is supposed to be continuous, we may use (1.7) obtaining
wy(e) = 4(e + hs(2e¢)),
which means that
(3.6) sup  |f(m1) — f(72)| = 4(e + hs(2¢)).

rure;lri—Tal<e

Combining (3.5) and (3.6) we obtain
max If(t) — za] < € + 4(e + ha(2¢)) = ¥s(e)

which implies that fe¢ ({21, -, Lo} ¥89) and according to Theorem E,
we have hs(e) | 0ase | 0, which proves the first part of Lemma 4. To prove
inclusion (3.4), suppose that fel¢ '({21, -+, @m}) N B NC]. This means
that there exists function g £ D[0, 1] such that

(1) g(tk) =x,k=12---,m,

(2) g ¢ B,

(3) g is continuous,

(4) d(f,9) <e
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First we shall prove that function f cannot have jumps greater than 84z(e) + 2¢,
where h(e) denotes, as before, the function appearing in the condition for com-
pactness of the set B. In fact, suppose that for some £, we have

[f(to + 0) — f(to — 0)| > 8hn(e) + 2e.

It follows, that max{|g(t) — f(to + 0)|, |g(to) — f(t — 0)|} > 4hs(e) + e
Suppose, for instance, that |f(f + 0) — g(t)| > 4hs(e) + e Since ge B
and ¢ is continuous, it follows from (1.7) that

wy(e) < 4W,(e) < 4 hz(e).
This condition implies that
sup_[g(t) — g(t)] < 4 ha(e

tilt—tol<
and we obtain for some ¢’ with |ty — ¢/| < e:
lg(t") — f(to + 0)| > e + 4 hs(e) — 4 hs(e) = ¢
hence di(f, g) = ein contradiction with (4)..

Now, from (1) and (4) it follows that there exist points t N t,/,, with

max |t,i — | < e

1<ksm
and
(3.7) max |f(t) — 2| < e
1<k<m

From (4) it follows that for every z
Wy(€7) — € S Wy(e’) = Wy(e™) + ¢

which implies that

(&) S € + ha(e™).
Putting ¢© = ¢ we get for sufficiently small e

Wr(e) = € + hp(2¢)
and applying (1.7) with ¢ = 2¢ + 8 hz(e) we get
(3.8) wy(e) < 4e + ha(2¢) + (2¢ + 8 hs(e))].
Combining (3.7) and (3.8) we obtain

Jnax If(t) — 2kl = € + 4[e + hp(2¢) + (2¢ + 8hn(e))] = 85(e)

which means that f £ ¢ *({21, -+ , Zm} "2*?). Since 5(¢) | 0ase | 0, Lemma
4 is proved.

Let &y, -, tm, --- be a fixed sequence of points dense in [0, 1]. Denote by
or the mapping of D0, 1] into Ry, defined as ¢x(f) = {f(ts — 0), -+, f(tx — 0)}.
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We shall prove

LemMma 5. If F < D |0, 1] is compact, then
(3.9) n on len(F)] € F*.

Proor. Suppose that f & (i ¢x lex(F)9. It follows that for every k there
exists gr ¢ F, such that
(310) max lf(t,) — gk(tj)l < e

1<j<k

Since F is supposed to be compact, we can select a convergent subsequence
from the sequence {gi}. Without the loss of generality, we may assume that
gr— g € F. Let 7 be a continuity point of functions f and g. For an arbitrary

8 > 0 let us choose a point ¢, from the sequence {#} which is a continuity point
of the functions f and g and such that

If(r) = f@n)| <8,  lg(7) — gltw)| <.

For all sufficiently large k& we have

log(tn) = gutm)| < 8,
hence by (3.10)
If(r) — g(D)| = 1f(r) — fu)] + [f(tn) — gi(tm)

+ lge(tn) — g(tw)] + lg(tn) — g(7)| < € + 35.

Since 8 is arbitrary we get

sup |f(7) — g(r)| = ¢,

where A denotes the set of points in [0, 1] at which both functions f and g are
continuous. Hence

sup [f(t — 0) — g(t — 0)| = ¢,
0st<1
sup |f(t +0) — g(t + 0)| = ¢
0<t<1
and by the convention concerning the identification of elements of D[0, 1] and
the relation (1.12), we get d(f, g) < 3e < 4¢, which was to be proved.
4. Criteria for convergence of measures in functional spaces. Let
un € M(D]O, 1]), n=20,12, .

We shall give some conditions for the weak convergence u, = uo expressed in
terms of distances L(u&""™, u'"**™) of corresponding measures generated in
an m-dimensional space R, . All these conditions consist of requirements of some
kind of uniformity in &, <+-, tm.
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We shall repeat that point £, is a continuity point of measure u if the set of
those functions f ¢ D[0, 1] which are discontinuous at the point # is of u-measure
zero. If every point ¢ £ [0, 1] is a continuity point of measure u, then we shall
say that the measure u has no fixed points of discontinuity (note that this does
not imply that u{(C[0, 1])% = 0).

TaeOREM 3. Let u, ¢ M(D[0, 1]),n = 0, 1, 2, - - - and let measure uo have no
fixed points of discontinuity. Then for the convergence Mo = Mo Tt 18 necessary that
(4.1) lim sup L(ui ' ut ') =0

n>0 £1,°c, by
for every m.
Proor. Note first that the convergence

for every fixed &, - -+ , tm € [0, 1] follows from Theorem D and from the fact

that the function ei,....;,(f) = {f(& — 0), -+, f(tm — 0)} is a po-almost
everywhere continuous mapping of D[0, 1] into R .

To prove Theorem 3 suppose that condition (4.1) is not satisfied. Then, there
exists a number ¢ > 0, a sequence n; — 0, a number mo and a sequence

{t:’ ] t:;lo}

such that
e " th..., ,',, .
(4.2) L(pn, y ’“01 t ) > «, i=12,-
Notice that for fixed m the set of measures {u'" '™}, t, -+, tm €[0, 1] is
k k
compact. In fact, consider an arbltra.ry sequence {uwed ™, k=1, 2, -
Let us select from the sequence {f, - - -, &} a subsequence {#’, - -, t4} con-
vergent to (tl, .. t,,.) Since the measure uy has no fixed points of discon-
tinuity, we have
i "f to vt
wo! T = uet ™ as j— oo,

By Theorem C, for arbitrary § > 0, there exists a compact set Bs C E. such
that .

sup po'r'm(B§) < 8.

L1 citm

It follows that the distance L in the formula (4.2) can be replaced by the Lévy
distance L* defined by the formula (1.4). For simplicity of notation we may
assume, without loss of generality, that mo = 1. Then formula (5.2) takes the

form
(4.3) L*(l‘n ’ 1‘0 ) > e, t=12 -

Furthermore, we may assume without loss of generality that ¢; — 4. Since
measure o was supposed to be without fixed points of discontinuity, we have
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(4.4) lim L*(uo, w®) = 0;

>0

hence for all sufficiently large indices ¢+ we have

(4.5) L*(uas , u®) > eo/2.

From (4.5) it follows that there exists a sequence {z;} such that
(4.62) badf5 F(8) <m0 + Fef + Feo < polf; f(bo) < @
or

(4.6b) pai{f5 f(8) < @i — fe} — Feo > wolf; f(b) < @

Suppose now, that the first inequality (4.6a) holds for infinitely many ¢’s. Then
for any ¢ > 0 and for every sufficiently large 7 for which (4.6a) holds, we have
(4.7) padf; F(8) < @i + Feb 2 padf; sup f(2) < 2 + Feo}
te Tg
where Tt = [ty — ¢, t + cl.
On the other hand, according to Lemma 3, for ¢ = fe, we have
(4.8) ol f5 f(t:) <z} < wolf; sup f(£) < i + e} + teo.

tch
From (4.6a), (4.7) and (4.8) we obtain
po{f; sup f(t) < @ + feo} > pailf; sup f(¢) < i + e} + feo

te Tﬁ teT(')’
hence L*(u%, , u§) > %e, where

o(f(1) = fuﬁf(t)

Since ¢ is a u-almost everywhere continuous function on D0, 1], it follows
that pn; 7 po .

Suppose now, that the inequality (4.6a) holds only for a finite number of
indices 7; hence, beginning from some %, the inequality (4.6b) holds. If the
points ¢; are continuity points of infinitely many of the measures u.;, then the
inequalities (4.7) and (4.8) are true with u.; and po interchanged, and the proof
remains unchanged. If for all sufficiently large ¢ the points #; are the discontinu-
ity points of the measures u,,, then, according to Lemma 1, there exists a se-
quence B; such that

(4.9) wn iS5 1F(8: + 0) — f(t: = 0)] > 84 > 8.

Let 8; be the upper bound of the numbers 8; for which the inequality (4.9)
holds. If B - 0, then, again, we can make the above estimations. Suppose, then,
that 3% >B>0 k=1, 2 . Take a & > 0 such that for the interval

= lto — 8, to + 8] we have Ho {f; wy(As) > B} < B0, where w;(A4;) is de-
ﬁned as SUP:;.sea; |f(B) — f(&)|. On the other hand, for all sufficiently large
i , we have by (4.9)
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B < B:k < ﬂnsk{f; If(tik + 0) — f(ty — 0)| > 3:k} = ﬂns,,{f; wr(4s) > 30}

and hence u7,, 7 ul , where o(f()) = w;(4;). Since ¢ isa ue-almost everywhere
continuous function on D[0, 1] it follows that Hng, 7> Mo, as asserted.

TaeorEM 4. Let p, e M(DIO, 1]), n =0, 1, 2, -+ and let the measure po
satisfy the condition uo{(C[0, 1])°} = 0. Then a necessary condition for the con-
vergence p, = o 18

(4.10) lim sup Supt L(M:,"""t"', “31 ..... t,,,) =
e ortm

n->00 m ¢

Proor. Suppose that p, => uo. According to Theorem B, it follows that
L(pn , o) -0 and according to Theorem C, it follows that for any given & > 0
there exists a compact set B; C D[0, 1] such that sup;, u.(B3§) < 8. Lett;, -+ ,tn
be arbitrary points in [0, 1] and let ¢ be the function appearing in Lemma 4.

Suppose that for some fixed » we have L(pn , m) < a. According to (1.2), it
follows that

(4.11) ba(F) S wo(F°) +a and u(F) = wa(F°) + a

for all closed sets F < D0, 1].
Let K C R,, be an arbitrary closed set. Then the sets

<p—l(K) NB; and ¢ (K) N B NC,1]

are also closed, and we can write the following two chains of inequalities, using
Lemma 4 and (4.11):

" ™(K) = pale (KD} S male (K) N Bs} + 6
(4.12) < wolfle (K) N BilY} + 8 + a = wile (K) N B, N Cl0, 1]}
+o+a = wle (K*) + 6 +a=u"(K"?) + 6+ a;
pe N (K) = wile”(K) N C[0, 1]}
(4.13) < wie (K) N C[0, 1] N B} + 8 < wafle™ (K) N C0, 1] N By]Y
+ 0+ 0 = mle (K" + 6+ a = ul"(K") + 8+ a.
From (4.12) and (4.13) it follows, according to the definition of metric L, that
L(p ', wet ') < max (8 + a, ¥5(a), 6i(a))

and hence

where & > 0 is arbitrary, ¥s(a) | 0 and 6;(a) | O as a | O.
~ Let € > 0 be arbitrary. Take 6§ < e and then take a < §/2 such that
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max (Ys(a), 05(a)) < e

For this value of a take N = N, such that for n > N we have L(un, po) < a.
Hence

sup sup L(M:.l ---- ‘m, ”;1 ----- lm) < e
m ‘l""-tm

for all » > N, which was to be proved.

TueoreM 5. Let u, e M(D[0, 1]),n = 0, 1, 2, --- . Then the condition
(4.14) lim sup  sup, L(y,. """ m gl =0

1s sufficient for the convergence p, = uo .
Proor. Suppose that condition (4.14) is satisfied. Let ¢ > 0 be arbitrary and
let forn > N.

(4.15) sup sup L(ui ", ue' ') < te
m tl'...'tm
Let ty, -+, tm, - be a sequence of points dense in [0, 1]. Denote by ¢ the

function appearing in Lemma 5. By Lemma 5, for every compact set # < D[0, 1]
and for arbitrary n = 0, 1, - - - there exists £ = k(n, F) such that

(4.16) undee lou(P) Y S wa(F?) + Ze
By (4.15) and (4.16), we can write for n > N the following chain of inequal-
:2((3;’) < wlotlon(F)l) = 4 Meou(F)} S wet Hen(F)H + e
= woler Tos(F)' + e < mo(F) + ke + Fe = uo(F) + «
In a similar way we prove that for all compact sets F
po(F) = ma(F) + ¢

hence, by Remark 1 (made in the Introduction) L(us, mo) < e for n > N,

which was to be proved.
As an immediate consequence of Theorems 4 and 5 (and also Theorems 1 and

2), we obtain
TueoreM 6. If u, € M(CI0, 1]), n = 0, 1, 2 - - - then for the convergence

Mn = Mo

it s necessary and sufficient that

(4.17) ' hm sup sup L(pitm ugttmy =
>0 m ty,°
Proor. Necessity of this condition has already been proved; sufficiency fol-
lows from the fact that for the space C|0, 1] € D[0, 1] the d-convergence is
equivalent to the uniform one.
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