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1. Summary and introduction. Let (R,1,:---, R,»,) be a random vector
‘which takes on the N,! permutations of (1, ---, N,) with equal probabilities.
Let {by;, 1<¢{=<N,,v=1} and {as;, 1 7= N,, v = 1} be double se-
quences of real numbers. Put

N,
(1.1) 8, = 2 byitun, -
=1

We shall prove that the sufficient and necessary condition for asymptotic
(N, — ») normality of 8, is of Lindeberg type. This result generalizes previous
results by Wald-Wolfowitz [1], Noether [3], Hoeffding [4], Dwass [6], [7] and
Motoo [8]. In respect to Motoo [8] we show, in fact, that his condition, applied
to our case, is not only sufficient but also necessary.

Cases encountered in rank-test theory are studied in more detail in Section 6
by means of the theory of martingales. The method of this paper consists in
proving asymptotic equivalency in the mean of (1.1) to a sum of infinitesimal
independent components.

2. Three lemmas. Consider a sequence U, - -+, Uy of independent random
variables each having uniform (rectangular) distribution over the interval
(0, 1]. Let R; be the rank of U, i.e.,

(21) Us = Zg,,
where Z; < --- < Zy is the sequence U,, ---, Uy, reordered in ascending
magnitude.
Take a nondecreasing sequence @; < -+ < ax of real numbers and put
(2.2) al\) =a; for 1 —1)/N<A=Zi/N (1=7=N).

The function a(\) will be called a quantile function of a@; £ -+ < ax. As
(¢ —1)/N <3/(N + 1) < /N, we have

(2.3) a; = a(¢/N) = al¢/(N + 1)].
Furthermore,

a‘=lia=[1a()\)d)\ and 02=li(ai—d)2
Nt’:-l ' 0 N

(24)
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Lemma 2.1,
R\ T [, & ¢
(25) E[a(Ul) —a (_)] < 2 max |as — 4] _[2 3 (a5 — a)*],
N 1<isN N| &=
where the function a(-) is given by (2.2).
Proor. If Z,, - - - , Z are fixed, then U; takes on each of the values Z; with
probability 1/N, and Uy = Z; is equivalent to B, = 1. Therefore,
Ela(Uy) — a(Ry/N)I = EE{la(Th) — &(R/N)I' | Z1, -+, Za}
(2.6)

= (1/N)E§ [a(Z:) — a(i/N)}.

Now, first, consider a special quantile function
N — (k/N)] =0 if N=<k/N

@.7) .

=1 if N> Fk/N.
The quantile function €A — (k/N)] corresponds, obviously, to the sequence
o= -+ =a,=0, g1 = --+ = ay = 1. Let K denote the number of the

U.s smaller than k/N. Clearly, Zx < k/N < Zg1 . If K < k, we have
dZ; — (k/N)] — (i — k)/N] =0 if¢=1,-.-- ,K,k+1,---,N

(2.8) .
=1 otherwise

so that

(2.9) Z: [e (z,. _ ]ﬁ\,) — e (3_%@)]2 = K~ H.

- We can easily see that (2.9) also holds for K = k. The result (2.9) together with
(2.6) gives

(2.10) E[e (U1 - ’ﬁ°) — (R—‘Aj—'f)]2 - LBIK - K

The distribution of K is, obviously, binomial with mean value k£ and variance
k[l — (k/N)], so that

EK — k| < [E(K — k)" = [k{1 — (k/N,
and, therefore,
(2.11) Ble(Us — k/N) — (B — k)/N}* < N7{kl1 — (b/N)]}%

Now let us only suppose that a; = 0, and otherwise the sequence @3 < -+ =
ax can be arbitrary. The quantile function of any such sequence may be ex-
pressed in the form

(2.12) a(\) = :;—: (ars1 — ax) €[N — (k/N)] (@ =0,0<A=1).
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Actually, e.g., for A = /N, we have

1—1

a(i/N) = 3 (G = @) €[ = B)/N] = 3 (s — ) = a

Now from (2.12) it follows that, first,

I E;E; (@ — @) (az — ay) E ¢ [(i — k)/N]el(i — )/N]
(2.13)

= 3 3 (Geer = @) (@1 — a;) (N — max (K, 7)),

k=1 j=1

and, second,

l:a(Zi) —a (%)]2 = NE_I NE_I (trr — @) (@ — @)

k=1 j=1

G2 -0 - ()

Because €Z, — (k/N)] — e[(¢ — k)/N] and €Z; — (j/N)] — €[(i — j)/N|
take on only the values 0 and =1, we have

-8 (-]
<L) - ()]

On combining (2.14) (2.15) and (2.11), we get

[a(Ul) Ca @1)] - %EZ:; [a(zi) —a %)]2

N—1 N—1

= Z Z (\ak+l — &) (@ — a;)

= Nil Nil (a1 — &) (@i ;af)E [f <U1 - II_ng_X_ZéM) - (MNM)T

k=1l j=1

(2.14)

(2.15)

N—1 N—1 1 . _ ki b
= Z E (ak+1 — o) (@ — ai) i [max (k,J) W}
k=1 j=1
N—1 N—1

=+ 2 2 (@ — a)(az — @)V — max (k)P

k=1 j=1
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== {2 i: (@41 — ar) (@i — @)

TS (G = @) (@41 — ) (N — ma (k,m}

k=1l j=1

According to (2.13) and to
N—1 N—1

Z Z (a1 — @) (@41 — a;) = axy
the last expression equals N 'ax(>_1—1 a2)!. This means that, for a, = 0,
(2.16) [a(U) —a (Rl>] <1, [i az]*
' ' N)] =N
Generally, for an arbitrary a, , we have

(2.17) [a( U)) —a (]l\i’;)] =< % (ay — @) [ﬁ; (a; — al)z:r.
=<

On making use of the values —ay < --- £ —a, instead of a;
we also get from (2.17) that :

(2.18) [a( U) - a (ﬁ‘)] < % (ay — @) [f_:: (as — an)?

It is now easy to derive (2.4). Let us put

'éaN,

| R
oo

at(\) = a if a\) <a
= a(A) if aA) =a
and
a(A) =ald) —a if eaA) =a
=0 if a(A) =a
We then have

a\) = atQ) + a ().
and, in view of (2.17) and (2.18), the following inequalities are clear:

[a( U, — a(?)] =< 2E'|:a+( U, —a* (%):Iz+ 2F [a‘( U)) —a” (NI-)T

< 2(ay — @)X (a; — @) + 2(a — al)[Z; (a; — a)*

a; 2a

< 2 max la; — a {[E_ (a; — @) + [éﬁ (a; — a)’]*}

< 2 max ]a,—a][22(a1—0)]

157N

This completes the proof.
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Let us have a nondecreasing quadratically integrable function (M), 0 <A <
1, and put

(2.19) ev(\) = oli/(N 4+ 1)] if (¢ —1)/N <\ = i/N.

LeMMA 2.2. The functions ox(\), 0 < A < 1 are uniformly (N = 1) integrable
and

(220) tim | lox(\) — oI = o,

Proor. Suppose that ¢(0) = 0 so that both ¢(A) and ¢*(\) are non-decreas-
ing. Let A be a subset of [0, 1] and u(A4) its Lebesgue measure. Put

L = ((k — 1)/N, 1/N)

and J; = (/N — u(A N I,,), k/N) and note that ox(\) = o(k/(N + 1)) for
A eI, and on(N) = () for k/(N 4+ 1) < A < k/N. It holds, obviously,

@21) [ AN dh = u(4 N LR/ + 1)) S NV + DR f S0

so that, on making use of the first right hand expression for k¥ < 3N/4 and of
the second one for £ = N/4, we get

@2 [A0a =2 [ 400 s A@mua) + 4 [ 40 o

where u(B) = p(A) Inequality (2.22) clearly proves uniform integrability of
the functions {ox(A)}. A general () may be written in the form o(\) =
@1(\) — ¢2(1 — ), where ¢1(0) = 0, ¢2(0) = 0 and both ¢,(A) and ¢z()) are
non-decreasing. This completes the proof of uniform integrability.

In order to prove (2.20), let us observe that ¢x(A) — ¢(\) on the set of con-
tinuity points of ¢(\), which, however, has Lebesgue measure 1. Convergence of
ex(N) to ¢(M) almost everywhere, together with uniform integrability of the func-
tion ¢x(\), implies (2.20). The proof is completed.

Lemma 2.3. Let ¢1, -+, ¢v, di, -+, dy be arbitrary real numbers and put
¢ = N‘*Z,=1 ci,d=N" Ziv=1d Then
N
var (S oedng) = g 2 (00— 07 35 (d - 2
7=l - 7= 7=l
(2.23) N

Z c,—é)zidf.

1=l 7=l

=5

The proof is immediate.

3. Asymptotic equivalency in the mean. Random variables S, and T, will
be called asymptotically equivalent in the mean (symbolically, S, ~ T,)

(8.1) lim E(S, — T,)}/(var T,) = 0.

The relation is symmetric, and, if S, ~ 7, and T, ~ V,, then, clearly, S, ~ V, .
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Let us take a sequence of independent random variables Uy, Us,- - - each uni-
formly distributed over (0, 1] and denote the rank of U; in the partial sequence
Uy, -+, Uy, by R,i, 1 = ¢=< N,, v = 1. The partial sequence Uy, --- ,
Uy, , reordered in ascending magnitude, will be denoted by Z,,, -+, Z,», .

The distribution of S, given by (1.1) does not depend on the ordering of the
a’s. So we may suppose that

(32) an = o = a, (r21).
We shall assume that the a’s fulfill the condition

max (ay; — @)%
1<i<NWN,

(33) lim =5 =0
Z (avi - dv)z
1=l

TuroreM 3.1. Under the assumptions (3.2) and (3.3) the statistic S, given by
(1.1) s asymptotically equivalent in the mean fo the statistic

N, N, -
(3.4:) Tv = Z!. (bvi - I;v)av( U1) + b-vzl Qyi

where a,(+) denotes the quantile functions of an < -+ = a,n, given by (2.2),
and b, = N7* 2 V1 bs.
Proor. On making use of (2.1) and (2.3), we may write

(35) S = Ty = 3 (b — B) [a,<zm,,.) —a (W)]

t=1

As is well-known, the distribution of the ranks (R,1, ---, R,~,) is independent
of the vector (Z,1, +++, Z,). In view of Lemma 2.3, where we put

ci = b, — I;v
and d; = a,(Z,;) — a,(i/N), we can write
E{(Sy - Tu)2 |Zv1; e VN,,} = var {Sv - Tv ‘Zvl; tt Yy ZvNy}

(3.6) — ; (byi — b,)? Z I:ay(Zyu,.) - a, (%’)]2
N S PP (Fﬂz

The first equality in (3.6) is ensured by E(S, — T\Z., -+, Z,,) = 0 which
follows from ) (b,; — b,) = 0. Taking the mean value over Z,, -*-, Z,,
on both sides of the inequality (3.6), we obtain

(37) E(S, -T)'< Nl NZ —b)2Z E[ay(U) (2)]

Clearly,
(38) E [a,(U,-) —-a @)]2 ~-F I:a,(Ul) -a @"y‘)]z (1<i<N,p21),
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so that (3.7) may be put in the form
2 N R 2 N, _
39) EBS -T)= ’ [a,(Ul) —a, (—N")] > (b — b,)%
v 1=l

=N, —
On the other hand, it follows from (3.4) that

N, N,
(3.10) var T, = 1/N,Z1 (@i — @)°Y (b — b))%
f= i=l

Making use of Lemma 2.1, (3.9) and (3.10) yield
E(S, —T,)° < 24/2 N, max|a,; — a, |

var T, =N, —-1T2% L
' [Z (ari — d,)z:l
7=l

Consequently, the relation (3.1) follows from (3.11) and (3.3). The proof is

completed.
THEOREM 3.2. Let the function ¢(\) be non-decreasing, non-constant and qua-

dratically integrable. Suppose that

(3.11)

(312) hm Nv = '°° .
Then the statistics
N,
(3.13) S, = ;bmo[Rﬁ/(N» + 1)]
and
N, _ _ N,
(3.14) T, = i; (bi — b,)o(Us) + byi_Z; o[t/ (N, + 1)]

are asymptotically equivalent in the mean.
Proor. If we put

(3.15) i = ¢[i/(N, + 1)] ’
the quantile function of a,, < --+ =< a,», will equal ¢n,(\) expressed by (2.19).

According to Lemma 2.2, the functlons exv(\) are uniformly integrable and

hence
1IN,

(8.16) hm N7' max |o = im max ox,(\) d\ = 0.

1§35N, v—y0 1<igN, Y(i-1)/N,

On the other hand, from (2.20) and from non-constancy of ¢(X\), it follows
that

(317)  lim —Z (ay; — = fo 1 [¢(x) - fo 1 o(z) dx:rd)\ > 0.

»—>0 v i=1

Relations (3.16) and (3.17) imply that the sequences a,; < --+ < a,y, fulfill
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condition (3.3). Therefore, in view of Theorem 3.1, the statistic (3.13) is asymp-
totically equivalent to the statistic

N, - _ N
(3.18) T, = 22 (b = b)) ow,(Us) + b, 2, oli/ (N, + 1)),
It remains to show that (3.18) is equivalent to (3.14). However, as is easy to see,
1
Br, -y ] ) —en (P
var T, T A 1 ]’
) — dz | d\
£ l:qo( ) £ o(x)

so that T, ~ T, is a consequence of the assumption (3.12) and of Lemma 2.2.
Theorem 3.2 is proved.

(3.19)

b

4. Necessary and sufficient condition for asymptotic normality of S,. If
S, ~ T,, then obviously, the asymptotic variance and the asymptotic dis-
tribution of S, and T, exist under the same conditions, and, if they exist, are the
same. Thus the problem of the asymptotical distribution of S, is reduced to the
problem of the asymptotical distribution of T, . The statistic 7', , however, is a
sum of independent addends, so that, if these addends are infinitesimal, it
suffices to use well-known theory [11].

THEOREM 4.1. Let us suppose that
max (a,; — @)°

(4.1) lim *5;22 0
Z (avi - dv)2
7=l
and
max (b,; — b,)*
. 1<i<N,
(4.2) lim “E35% = 0.

o Z (bn' - 5,,)2

1=l
Then the statistic (1.1) has an asymptotically normal distribution with mean value
ES, and variance var S, if, and only if, for any + > 0

(4.3) lim 1/N, .ZE 8 =0,
y>0 dyijl>T
where
(44) 6”-j= . 1;ry (bvi - bv) (a:r': - dv) ; (1 §74,j§_ Ny,ll > 1)
[ o2 o = 5 2 (o — a7

Proor. Assuming that a,, < -+ =< a~, , then from (4.1) and Theorem 3.1
it follows that (1.1) is asymptotically equivalent in the mean to (3.4). There-
fore, it suffices to show that, under the additional assumption (4.2), the condi-
tion (4.3) is necessary and sufficient for the asymptotic normality of T, with
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mean value ET, and variance var T, . The assumption (4.2), however, implies
that the addends in (3.4) are infinitesimal, because

max var [(b; — b,) a,(U;)]

1<iSNy

var T,
(45) -
max (bn - b )2 ! E (a'vz - -v)2 max (byi bt by)2
— 15151\*, N, =t _ 1lsisw,
1 X, - )
Zl (bvi - )2 Z (a'vz - v)2 Zl (byi - by)2

Consequently, we have to prove that (4.3) coincides with the Lindeberg condi-
tion for 7,, namely with

N,
. LU | . _ B
(406) }']-g: ; var T, |z|>7(varT,)} v dP {(b" b")a’( U') < x} =0.
Clearly, we have
1 2 -
var T, Jiz|>(varz,)t & dP{(b: — b)a(U) < =}
N, _

(4.7) ,1_ ; [(b" by)2 j;l (avj _ dy)2_]

1 Ny _ N.,” )

X E (bvi - bv)2 Z (avi - dv)2

Nv 7=l =l
where

N ¥
(48) B ={J'= (s = ) (ar; = @)] > r[ E (b = )" 2 (@i — a.)z]}.
Now, observe that
N, _
Z [(bvi - bv)2 Z (avj - bv)2]
1 2 1=l jeE,;
(4.9) ]V 18,44 1> vii = Ny Jv,M ’
™ Zl (bvi - bv)2 Zl (ayj - dy)2
1= =

so that (4.3) is actually equivalent to (4.6). The proof is accomplished.

The condition (4.3) is symmetrical in the a’s and the b’s. In applications, how-
ever, the a’s and the b’s often play a somewhat different role. In such cases the
following theorem is useful::

THEOREM 4.2. A double sequence {a,; , 1 < ¢ = N, , v = 1} satisfying the con-
dition (4.1) fulfills the condition (4.3) for any double sequence {b,; ,1 < i < N,,
v 2 1} satisfying the condition (4.2) if, and only if,

. k li 15:1<magk,szv,¢§(a“" — &)
(4.10) 11 =0 |= lim o -0.

y—30
Z (avi - av)2

1=
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Proor. First, let us prove that (4.2) and (4.10) implies (4.3). Put, for a fixed
T > 0,

N, ~
. Tzz; (bvi - bv)2 1 N,

(4.11) Ev = j:(a,”j —_ a',v) > = =
’ max (b, — b,)’ N, =

1<i<N,

(avi - dv)2

and denote the number of elements in E, by k, . Clearly

N, _
Tzz; (bvi - bv)2 k N, . . Ny .

= ky . — A L oa)? < _a
oo G =N, ; (a; — @) < g&;v (a; - @) = ,;1 (a; — @)
1<i<N,

ie.,
max (bvi - l-)v)z
]_V_” =< 7—2 lé;véNu
L2 -
S (YR 5,
fous

from which, in view of (4.2), it follows that

=

’

(4.12) lim (k,/N,) = 0.
Relation (4.12), according to (4.10), implies that
E (avj - dv)2
(4.13) lim J;,—f"———————— = 0.
’ El (avj - dv)2
=

Now, from (4.8) and (4.11) it follows that E,; C E, and, consequently,

I [CRR S C 7] X (a-ay

(4.14) iﬁlN” “NE,N < j;f‘.
Zl (bw' - Ev)z Z; (a'vj - dv)z El (a'yj — d,,)2
1= = . =

Finally, (4.3) is an obvious consequence of (4.9), (4.14) and (4.13).

Second, let us assume that (2.10) does not hold. Then there exists a sequence
B, of sets of integers such that, first, B, C {1, --- , N.}, second, the numbers of
elements in B,, say l,, satisfy the relation

(4.15) lim (L,/N,) =0,
and, third,

Z (avi - dv)z
(4.16) lim sup 57— > 0.

->00
’ Z (avj - a'-v)2

7=
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If
2 o (N/1)}
(4.17) Cy = {j:(ayj el a-p) > __]vv__y_ Z (av‘i - dv)z} )
v =1
and Cy = {1,2, ---, N,} — C, then, clearly,
_ 2
jwzyr:w: (e — @) (M)* L _ (lv )’
P 7,J N, \N,
Z (avi - dv)z N N

7=

IIA

and, therefore, according to (4.15),
Z . (avj - dv)2

. ieB
lim 72:0¢> = 0.

y>00 %
Z (aw’ - dv)z
1=l

Consequently, in view of (4.16),

Z (avj - dv)2 . Z (avj - dv)Z
(4.18) lim sup 52— 2 lim sup 5>——— > 0.
e Z (avi - dv)z Z (avi - dv)z
1=l =1
Now, put
(4:~]-9) bvl =0 = bvﬂ, = 1, bvn,+1 = e = bvN;. = 0)
where n, is determined by
(4.20) n < (N/L) <n + 1 (v = 1).
We have, obviously,
(4.21) lim (n,/N,) =0
and, in view of (4.15),
(4.22) ' limn, = «
Furthermore,
(4.23) Ev = nv/Nv )
Ny
(424) Zl (bvi - I;v)z = [nv(Nv - nv)]/NV ’
and
2 n 2 n 2
max (b — b,) max{(l — ——"—) , <—l>}
(425) EET = W N )N” < max {% ) N———l n} .
- 7 \2 ny, y— Ny v v = Ty
; (bn bv) _-—]v_y‘__
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Consequently, the relations (4.21) and (4.22) ensure that the condition (4.2)
is satisfied.
The sets E,; , given generally by (4.8), will be now for 1 < ¢ < n, defined by

V‘l-

(4~26) Evi = Evl = {j:(avj - dv)2 > T E(a” dy)} (1 7 S n,,).

From (4.20) it follows that, for » sufﬁclently large, the set C, given by (4.17)
will be included inthe set E,; given by (4.26).Therefore

1 E [(bn - b )2 E (an .dv)z]
N, E Z 531':‘ = '_1

P 1il>r Z: (bn' - bv) Z (arj - dv)z
2
E [(bn - bv)2 E (arj - av)] (1 - %) ny, E (avj - dv)2
(4.27) g 7‘ »s = |2 J;,E,;
; (bv'i - bv)2 ]Z=; (avj - dv)2 ny (1 - nﬁl;) ’; (ayj bt d,,)z

E (avj - dv)2 .

= (1 ")11— v2w).
Z: (au dv)2

J=1

The relations (4.27), (4.18) and (4.21) imply that (4.3) cannot hold, and the
theorem is thereby proved.
Let G,(x) denote the distribution function of the numbers a,; = -+ = ayw, ,

ie.,

number of the a’s smaller or equal to

(4.28) G.(z) = A
LemMA 4.1. Cundition (4.10) may be expressed in either of the following three
forms:
(i) The functions [a,(A) — & {fsla,(\) — &> dN} ™" are uniformly integrable.
(ii)
€y 1
([ + )@ - ara
(429) llime = 0] = | lim X2 =% 0.
y->00 ‘ y>o0 f [a,,()\) _ d,,]zd)\
0
(iii)
(430) [lim K, = =] =>[hm 1 f (z — @)" dG,(z) = O],
V>0 >0 G’y |2—a, |>K 0,
where

@) A=t P —ar= [l -afa=[ G- a)de.

y 1=l
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Proor. If 4,1 < -+ < a,», then surely
ky 2 ky1 2 Ny 2
(4.32) max Z (@i, — @) = E (@i — @) + Z (@i — @)%,
1541<+<ipyENy a=l i=1 =N y—kyg

where k,; + k.2 = k, . On the other hand, we have

ky1 Ny
Z (avi - dV)2+ . Z (avi - dv)2

=1 i=Ny—ky2

ky1/Ny 1
_ T
. = Nv (‘[; + [—(k,g/N,)) [av()\) ay d>‘)

which proves the equivalency of (4.10) to (ii) and, of course, to (i) as well.
Now we shall prove the equivalency of (4.10) to (4.30). Clearly,

(4.33)

1 i 11 _
s L[ G-a) e =5r X (e —a)t
0y Y|z—ay|>K o, Ty LVy layi—a,|>K ey

Denoting the number of a’s such that |a,; — @,| > Ko, by k, , we have the fol-
lowing form of Tchebychev’s inequality:
(4.35) kK < 1/0 |a.;—a§>xyv, (@i — @) = N,.
Assume, first, that (4.10) holds. Then K, — « implies, in view of (4.35),
k,/N, — 0, so that, according to (4.10), the right side of (4.34) tends to 0,
and, consequently, also the left side of (4.34) tends to 0. Thus (4.10) implies
(4.30).

Assume, second, that (4.10) does not hold. On repeating the respective part
of the proof of Theorem 4.2, we get again the relation (4.18), which is equivalent
to

(4.36) lim sup 12 (z — &,)%dG,(z) > 0.

vr0 Oy f|z-a,1>(zv./z,)%v.
This means that (4.30) is not satisfied for K, = (N,/ 1,)!. So the negation of
(4.10) implies the negation of (4.30), i.e., (4.30) implies (4.10). Lemma 4.1 is
proved.

CoroLLARY. The statistic (3.13) is asymptotically normal with mean value
ES, and variance var S, for any double sequence {b,;, 1 =i = N,, v = 1}
satisfying (4.2).

Proor. By Lemma 2.2 and Lemma 4.1 the numbers a,; = ¢[¢/(N, + 1)]
fulfill the condition (4.10). It suffices to apply Theorem 4.2.

ExampLE 4.1. If the b’s are given by (4.19), then the statistic

N, ny
(4.37) Sv = Z;bm'avli’,,,- = Zlavﬂn'

represents a sum of 7, elements selected by simple random sampling from the
population {a,, - - - , @w,}. The condition (4.2) is fulfilled, according to (4.25),
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if, and only if,
(4.38) lim n, = lim (N, — n,) = .
Hence, provided that (4.1) holds, the distribution of S, is asymptotically normal
with mean value ES, and variance var S, for all n, satisfying (4.38) if, and only
if, the a’s satisfy the condition (4.10).

As we shall see in Section 5, (4.10) is fulfilled, for example, if the populations
{@n, - -+, awx,} have uniformly bounded excesses. See also [9] and [10] for fur-
ther results concerning sampling from a finite population.

6. Comparison of various conditions. First let us introduce the following

Noration. The condition (4.1), introduced by Noether [3] and simplified by
Hoeffding [4], will be denoted by N.

The Lindeberg condition (4.3) will be denoted by L.

The condition (4.10) will be denoted by Q.

The Wald-Wolfowitz [1] condition

N'l_ iv: (am’ - dv)r
(5.1) vl o = 0(1) (r=384,-)

L5 (e — 6
[ J

v 1=1

where O(1) denotes uniform boundedness, will be denoted by W.
The Hoeffding [4] condition

Ny Ny _
Z (avi - dv)r E (bw - bv)r
(5.2) lim N} = =1 =0

y>00 5 ¥ - r/2
[ (o — 0 3 0 - 7
4= =1

will be denoted by H.

Observe that the conditions L and H concern {a,;, b,;, 1 S ¢ < N,, v = 1}
whereas the conditions N, @, W are applied to each double sequence {a,;, 1 <
i< N,,v=1} and {b:, 1 ¢ = N,, v = 1} separately. The fact that {b,;,
1<¢{=N,, v2 1} satisfies N and {a,;, 1l £ N,, » = 1} satisfies @
will be denoted by NQ, and the symbols NN, NW and WW will have similar
interpretations.

TueoreM 5.1. WW = NW = H, NQ =L = NN.

Proor. For WW = NW = H see Hoeffding [4], and for H = L Motoo [8].
NQ = L follows from Theorem 4.2. Thus it remains to prove NW = NQ,
ie, W= Q,and L = NN.

W = Q. If we take r = 4 in (5.1) and use the quantile function form, we get

fol () — &l dx

([ w00 - ar 2y

.= 0(1)

(5.3)
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As is well-known from a theorem due to Vallé-Poussin, (5.3) implies that the
functions [a,(\) — &)*/foles(A) — @) d\ are uniformly integrable, which is
equivalent to @ (see Lemma 4.1).

L = NN. This fact follows from the inequality

max (avj - dv)2 max (bvi - Bv)2(avj - dv)2

Ny

1§;’§N, = Z 1S;SNy S
(5.4) Zl (am’ - a'-v)z 1_12 (bn E )2 E (avi - dv)2
——-—Z max 6y;,sé+— ZZ 5m (€>0),
v i=1 15N, P 18y551>€

where the a’s can be replaced be the b’s.

ReEMARK 5.1. The condition (5.3) means that the excesses are uniformly
bounded. Denoting this condition by W,, we have W = W, = Q.

In [7] Dwass considered the empirical distribution function G,(x) of the values
G, *++, G, and supposed that, first, lim,., G.(z) = G(z) at every con-
tinuity point of a distribution function G(z) and, second,

(55) [zd6.(a) = [2d6() =0

(5.6) fxsz,(x) = fxz dG(z) = 1.
These assumptions imply that

lim K, = oo]=>[limf| | 22 d@, = 0].
y->0 z|>K,

Consequently, by Lemma 4.1, the a’s fulfill the condition @, so that the respec-
tive part of Dwass theorem [7] is contained in Theorem 4.2.

6. A special case encountered in rank order test theofy. In rank order tests
theory there are used locally most powerful tests based on statistics of the form

N,
(6.1) Sv = ; thE{¢(U1) IRM'}
where E{- | R,} denotes the conditional mean value under the condition that
the rank of U; among the observations U, , - -+, Uy, equals R,; . Let us observe
that (6.1) is a special case of (1.1) for
(6.2) a; = E{le(U1) | Bn = 4} = E{e(Z.:)},
where, in the middle expression, the index 1 might be replaced by any index
j=1,---,N,.

For simplicity we shall suppose that, as in previous sections, the U’s have
a uniform distribution. This causes no loss of generality, since arbitrarily dis-
tributed observations may be expressed as (non-decreasing) functions of uni-
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formly distributed observations. We shall also assume that

(6.3) fo "o\ d) = 0
and that
(64) fol SN d\ < .

The assumption (6.3), however, is not essential. The integers N, will be assumed
to tend to o monotonically, i.e., N, £ Nyj1, v = 1.
LemMma 6.1. Put

(6.5) Y, = Y,(R1) = Ele(Uy) | R}
and assume that (6.3) and (6.4) hold. Then

(1)
(6.6) P{lim Y, = o(Uy)} =1,

(i) {Y1, Ya, ---, ¢(U4)} is a martingale and {¥1, Y3, .-+, ¢'(U1)} is a
semimartingale,
(iii) the random variables Yi(v = 1) are uniformly integrable,

(iv)

(6.7) limE|Y) — ¢(U)| =0
and
(6.8) lim EY; = E'(Uy).

y->0

Proor. The Borel fields &, generated by the random vectors (R, -,
R,v,) form an increasing sequence of Borel fields. Denote by . the smallest
Borel field containing UYF, . As is well-known, the conditional distribution of
U, for given R,; = j is the Beta distribution with p = jand ¢ = N —j + L
Hence

2 Ny . .
(69) E(Ul—- Rﬂ) L& -t 1

Nw/  NASN +1AN,+2) N
from which follows that U, is equivalent (with probability 1) to a random
variable measurable with respect to . . Consequently, ¢(U1) is also equivalent
to a random variable measurable with respect to F .

Since the conditional distribution of U, for fixed R, is independent of Rs , - - -,
R.,~, , we may also write

(6.10) Y, = E{o(U)|Ru, -+, Rxv,} = Elo(U)|F). |

Now we can apply the theory of martingales. The assertions (i) through (iv)
are consequences of Doob [13], Chap. VII, Theorem 4.4, §1 Example 1, Theorem
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1.1, Theorem 3.3 (III), Theorem 4.1 s, respectively. (6.8) is a simple conse-
quence of (6.7).

LeMMA 6.2. The numbers a,; given by (6.2) satisfy the condition Q given by
(4.10).

Proor. Observe that Y, takes on the values a,; with equal probabilities so
that condition (4.10) coincides, in view of (6.3) and (6.8), with uniform in-
tegrability of the random variables Y, , » = 1, which has been proved by Lemma
6.1.

TaroreM 6.1. If {b,;,1 < ¢ = N,, v = 1} fulfill the condition N given by
(4.2) and the function ¢(\) is non-vanishing and quadratically integrable, then
the statistic (6.1) has an asymptotically normal distribution with mean value ES,
and variance var S, .

Proor. It suffices to apply Theorem 4.2 and Lemma 6.2.

TaEOREM 6.2. Under the assumptions (6.3) and (6.4), the statistic (6.1) s
asymptotically equivalent in the mean to the statistic

(611) T, = ¥ (b~ 5ol U0,

Proor. By the method used in proving. (3.9), we can show that
(6.12) E(S, - T,)* < [N,/(N, — 1)]E[e(Uy) — Y,]zg (b — b,)%
In view of (6.5), (6.12) is equivalent to
(613) E(S, — T,)* < [N./(N, — DIES(Uy) — EY)] N; (b — b))

Now it only remains to divide both sides of (6.13) by var T, and to apply (6.8).

REMARK 6.1. Theorem 6.1 generalizes the Dwass theorem [6], and the equality
(6.8) generalizes the respective part of Hoeffding’s Theorem 2 [5]. The condition
of convexity of ¢(\) is removed, which proves the conjecture made by Dwass
in [14], p. 358.

7. Vector considerations. We shall briefly touch the question of asymptotical
m-dimensional normality of a vector (S5, - -+, S)') where

N,
(7.1) Sy = Zlbviagkm' (g=1,---,m),

i.e., the b’s are fixed and the a’s depend on g =1, - -+, m.

TuroreM 7.1. Suppose that for any constants A, **+ , Am

N, m 2 N,
(7.2) > [Z £, (ad; — as ] = e max [)\52 (as; — @ 2]

i=1 | g=1 1<gsm =1
where e is positive and independent of v= 1. Assume that the b’s fulfill the condition
N given by (4.2) and the a”’s (g = 1, ---, m) the condition Q given by (4.10).
Then the vector (S, -+ , S') has an asymptotically normal distribution with mean
values ES? and covariances cov (S5, Si),1 < gh < N,,» = 1.
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ProoF. According to a theorem by Cramér [12], p. 105, it suffices to prove
asymptotic normality for any linear combination

m N, m
; NS =D by [Z Ao azR,,.] .

i=1 =1

This will be done if we show that the numbers ¢,; = Dy A,a%; fulfill the condi-
tion (4.10) for any A1, - -+, A\» . However, in view of (7.2), we have

ky . ky m 2
S (o =) [ N(ali, — az)]
a=1 g=1

N, = ';:1 m 2
Z (Cvi - év)2 Z [Z )\g(agi - dg):l
=1 =1 |_g=1
%, m k,
_ DN - e 2 G
= N, = N, *
¢ max [ki ; (a% — d‘:)z] € ; (a% — ai)?

Now it suffices to note that, according to our suppositions the values aj; fulfill
the condition (4.10).

ReMARK 7.1. The condition (7.2.) simply means that all multiple correlation
coefficients are uniformly bounded from 1.
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