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Thus the simple symmetric s.p.’s of size 2n can also be characterized by the
vectors (@i, - -+, @) satisfying (7); or more precisely the vectors (a;, --- ,
Gn1, 0, 0, 0, any, - - - a1) satisfying (7) characterize simple symmetric s.p.’s
of size 2n. The a’s in fact represent the ‘“distances’ of its boundary points from
the points on the line x + y = 2n. From known results [3. p. 170}, the number

-1

Evidently, a 1:1 correspondence similar to (8) yields a characterization of
any simple s.p. of size n in terms of the “distances” of its boundary points from
the line « 4+ y = n. The vectors (a1, -+ , @s41) depend on both (¢, - -+, t,y)
and (b, - -+, b,) in this case, but the method as well as the conditions satis-
fied by (a1, -+, @as+1) can be easily derived. Since the lattice-theoretic ideas
developed in {2, 3] yield a simple 1:1 correspondence between the vectorial
representations (using boundary points) of simple s.p.’s of size » and simple
symmetric s.p.’s of size 2n, we obtain without further calculations another
proof of our theorem. The characterization (7) of s.p.’s and their interpretation
as a distributive lattice applies with little change to other problems in prob-
ability theory, and yields a unified approach for rederiving and extending many
results. [cf., 2].

of simple symmetric s.p.’s of size 2n is n~" <n 3n ) .
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AN INEQUALITY FOR BALANCED INCOMPLETE BLOCK
DESIGNS

By V. N. Murty
Central Statistical Organization, New Delhi

1. Summary. For a resolvable balanced incomplete block design, R. C. Bose
[1] obtained the inequality b = » + r — 1, and P. M. Roy [2] and W. F. Mikhail
[3] proved this inequality without the assumption of resolvability, but with the
weaker assumption that » is a multiple of k. In this note an alternative and
simpler proof of Ray’s theorem is given.
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2. Proof. A B.I.B. design is an arrangement of v treatments in b blocks of
size k < v such that (i) every block contains k distinct treatments, (ii) every
treatment occurs in r blocks and (iii) any two treatments occur together in
M blocks.

The parameters satisfy

(2.1) bk = wvr,

(2.2) r(k —1) = rv — 1),

(2.3) b=zv, rzk

From (2.2) we have

(24) r/(v — 1) =N(k—1) = (r —=N)/(v — k).

If now we assume that v is a multiple of k, v = nk, we have from (2.4)
r/(v —1) = (r =N/ — k) = (r = N)/(k(n — 1)),

(r(n = 1))/(@ = 1) = (r = N)/k
Putting v = nk in (2.1), we have b = nr, so that (2.5) can be rewritten as
(2.6) (r—=N/k=((b—r)/(v —1).

Rewriting (2.2) after expansion we have r — X = rk — oA, and (r — M) /k =
r — nA. Thus

(2.7) (r—=N/k=((b—r)/(v —1) =r —n\

Since n, 7, \ are all integers, r — n\ is an integer, from which it follows that
the other two ratios in (2.7) are integers. It can easily be seen that they must
be positive integers since » > X and k is a positive integer. Therefore

b—n/v—-1) 21

(2.5)

andb=>v+r— 1.
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