908 v. n. murty

Thus the simple symmetric s.p.'s of size 2n can also be characterized by the vectors (a_1, \dots, a_{n-1}) satisfying (7); or more precisely the vectors $(a_1, \dots, a_{n-1}, 0, 0, 0, a_{n-1}, \dots a_1)$ satisfying (7) characterize simple symmetric s.p.'s of size 2n. The a's in fact represent the "distances" of its boundary points from the points on the line x + y = 2n. From known results [3. p. 170], the number of simple symmetric s.p.'s of size 2n is $n^{-1} \binom{3n}{n-1}$.

Evidently, a 1:1 correspondence similar to (8) yields a characterization of any simple s.p. of size n in terms of the "distances" of its boundary points from the line x + y = n. The vectors (a_1, \dots, a_{n+1}) depend on both (t_1, \dots, t_{n-1}) and (b_1, \dots, b_{n-1}) in this case, but the method as well as the conditions satisfied by (a_1, \dots, a_{n+1}) can be easily derived. Since the lattice-theoretic ideas developed in [2, 3] yield a simple 1:1 correspondence between the vectorial representations (using boundary points) of simple s.p.'s of size n and simple symmetric s.p.'s of size n and simple symmetric s.p.'s of size n and their interpretation as a distributive lattice applies with little change to other problems in probability theory, and yields a unified approach for rederiving and extending many results. [cf., 2].

Acknowledgment. The authors are grateful to the referee for his helpful suggestions.

REFERENCES

- [1] MORRIS H. DEGROOT, "Unbiased sequential estimation for binomial populations," Ann. Math. Stat., Vol. 30 (1959), pp. 80-101.
- [2] T. V. NARAYANA, "An analogue of the multinomial theorem," to appear in Can. Math. Bull.
- [3] T. V. NARAYANA AND G. E. FULTON, "A note on the compositions of an integer," Can. Math. Bull., Vol. 1 (1958), pp. 169-173.

AN INEQUALITY FOR BALANCED INCOMPLETE BLOCK DESIGNS

By V. N. Murty

Central Statistical Organization, New Delhi

1. Summary. For a resolvable balanced incomplete block design, R. C. Bose [1] obtained the inequality $b \ge v + r - 1$, and P. M. Roy [2] and W. F. Mikhail [3] proved this inequality without the assumption of resolvability, but with the weaker assumption that v is a multiple of k. In this note an alternative and simpler proof of Roy's theorem is given.

Received October 29, 1960.

2. Proof. A B.I.B. design is an arrangement of v treatments in b blocks of size k < v such that (i) every block contains k distinct treatments, (ii) every treatment occurs in r blocks and (iii) any two treatments occur together in λ blocks.

The parameters satisfy

$$(2.1) bk = vr,$$

(2.2)
$$r(k-1) = \lambda(v-1),$$

$$(2.3) b \ge v, r \ge k.$$

From (2.2) we have

$$(2.4) r/(v-1) = \lambda/(k-1) = (r-\lambda)/(v-k).$$

If now we assume that v is a multiple of k, v = nk, we have from (2.4)

(2.5)
$$r/(v-1) = (r-\lambda)/(v-k) = (r-\lambda)/(k(n-1)), (r(n-1))/(v-1) = (r-\lambda)/k$$

Putting v = nk in (2.1), we have b = nr, so that (2.5) can be rewritten as

$$(2.6) (r - \lambda)/k = (b - r)/(v - 1).$$

Rewriting (2.2) after expansion we have $r - \lambda = rk - v\lambda$, and $(r - \lambda)/k = r - n\lambda$. Thus

$$(2.7) (r - \lambda)/k = (b - r)/(v - 1) = r - n\lambda.$$

Since n, r, λ are all integers, $r - n\lambda$ is an integer, from which it follows that the other two ratios in (2.7) are integers. It can easily be seen that they must be positive integers since $r > \lambda$ and k is a positive integer. Therefore

$$(b-r)/(v-1) \ge 1$$

and $b \ge v + r - 1$.

REFERENCES

- R. C. Bose, "A note on the resolvability of B.I.B.D.," Sankhyā, Vol. 6 (1942), pp. 105– 120.
- [2] P. M. Roy, "Note on the resolvability of balanced incomplete block designs," Calcutta Stat. Assn. Bull., Vol. 4, (1952), p. 130.
- [3] Wadie F. Mikhail, "An inequality for balanced incomplete block designs," Ann. Math. Stat., Vol. 31, (1960), pp. 520-522.