NOTES

EXPRESSING A RANDOM VARIABLE IN TERMS OF UNIFORM
RANDOM VARIABLES

By G. MARSAGLIA

Boeing Scientific Research Laboratories

Summary. This note suggests that expressing a distribution function as a mix-
ture of suitably chosen distribution functions leads to improved methods for gen-
erating random variables in a computer. The idea is to choose a distribution func-
tion which is close to the original and use it most of the time, applying the
correction only infrequently. Mixtures allow this to be done in probability terms
rather than in the more elaborate ways of conventional numerical analysis,
which must be applied every time.

Introduction. We are concerned with procedures for generating sequences of
numbers which will serve as independent determinations of a random variable
z with specified distribution function F. Currently, the most satisfactory method
is to use an arithmetic procedure for generating a sequence of numbers u, , uz, - - -
which serve as “independent’ determinations of a uniform (0, 1) random vari-
able, and then to generate the required  in terms of the u’s. There is no, or very
little, probability theory concerned with the w’s—they are generated recursively,
say by putting w11 = au; + 8 (mod m), where , 8 and m are chosen to make
the resulting sequence meet the user’s requirements for ‘randomness.” See
references [1] and [2].

If we are willing to grant the adequacy of such procedures and take as our
starting point a sequence

U, U2, U3, °

of independent uniform (0, 1) random variables, then we may use some prob-
ability theory in searching for methods for expressing a random variable z with
distribution function F in terms of the u’s, guided, of course, by the suitability
of such methods for use in programs for digital computers. A summary of existing
methods for generating a normal random variable is given by Muller in [3]. We
will not go into details of the various methods on record, but point out that the
fastest method in Muller’s summary is one of his own [4] that takes, using a unit
familiar to programmers, about 120 cycles and provides F' to within a certain
accuracy, while programs based on the methods outlined below will be more
accurate and have average running times on the order of 15-20 cycles.

Methods. Suppose we have a method M, for providing a random variable y,
with distribution function G;, and method M, takes 10 cycles. Suppose we also
have a method M for providing a random variable y, with distribution function
G, and method M, takes 500 cycles. If we can represent F as a mixture of Gi

Received November 8, 1960.
894

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Mathematical Statistics. BINORN

www.jstor.org



RANDOM VARIABLES VIA UNIFORM VARIABLES 895

and G; , say

F(a) = .99Gi(a) + .01Gy(a),
then we may use % , U2, us, + -+ to provide a random variable x whose distribu-
tion is F as follows: if u; < .99, we use method M; on u,, us, - -+ to generate

pandputz = 3 . If .99 < w; < 1, we use method M, on uz, us, - - - to generate
2 and put x = y» . The average running time will then be (.99)10 4 (.01)500 =
14.9 cycles, plus the time necessary to test u; < .99.

This illustrates the basic principle of the simple device which provides pro-
grams with very short average running times—we represent F as a mixture of
distributions,

(1) F(a) = pGi(a) + psGs(a),

in such a way that p, is close to 1 and the time to generate a random variable
1y, with distribution G, is small; then most of the time we put + = 3, . Even
though G:, the correcting distribution, may be quite complicated and difficult
to handle, we still have a short average running time, since G: must be han-
dled so infrequently.

In searching for representations of F such as (1), if we have a G which shows
promise, then we find the largest p, so that F — p,G, is monotone. It seems bet-
ter to work with densities, and find p; so that f(x) — pigi(x) is non-negative.
Furthermore, if we make g; a rectangle or a mixture of rectangles, we can expect
to have very short running times, especially if the rectangles are chosen so as to
exploit the particular features of the computer in question.

We give some examples which will serve to illustrate the above remarks.

ExampLE 1. Let

g (9—-12)l e
(2) h(z) = ce f dy, 0z=3
o

We will see in Example 2 how i may be used in generating a normal random
variable. Suppose we want to express a random variable z with density & in terms

of the members of the sequence u; , uz , u3, - -+ . We write
1832 164
h(z) = hl( ) + 55 3048 ke () + ha(x)

where the terms in the mixture are drawn in Figure 1, h; and A, are mixtures of
rectangles and h; is the residuum. Then:

(i) The rectangles which make up h; have base 3 and altitude an integral
multiple of 4. A random variable z, with density h; may be formed by putting
21 = a; + % uz where q; is chosen with probability z5. 21 may be formed in about
10 cycles.

(ii) The rectangles in h, all have the same area, so that a random variable z:
with density h: may be formed by putting 2; = ¢; + b, , where the pairs (¢, , b;)
are chosen with equal probability. Time, about 20 cycles.



896 G. MARSAGLIA

1]

_ 1832 164 52

h (x) = 234 _ 4 4+ 194 p + .22 by (
b= oag M Wt gy MW F oG

o LN DD LN e v

'_s2_ hy (x) (vertical scale doubled) :
2048

e M m"',,mmm" Im’.‘r__ . “m“‘- mmh‘- !"Db., ”m"m” Lo mm’“-l._"" R

tan i
ity r bl

. -
°

=

i - ,
L
2048

T

1832
2048

Fi1c. 1



RANDOM VARIABLES VIA UNIFORM VARIABLES 897 .

(iii) It is more difficult to generate z; with density ks . Most of the “teeth’” in
h; may be replaced by triangles, so that z; = e; 4+ d; min(u. , us) will do, where
the pair (e;, d;) is chosen with a certain probability. The probabilities associated
with these pairs are all different so that the computer must spend some time find-
ing the appropriate one, and a few other parts of h; must be handled by even
slower methods, but the entire procedure shouldn’t take more than 200 cycles.

Thus, to generate a random variable z with density A, we use u: to choose one
of the above methods, generate a number, and call it z. The average time is
around 15 cycles.

ExampLE 2. The normal distribution. We describe a method for generating a
random variable z with the absolute normal density:

f(z) = (2%—% e 0 <z

A random = may be attached later. The tail of f offers some difficulties which we
avoid by using a suggestion of D. MacLaren. If z and y are independent with
density f then the distribution of z, given that z° + 3° £ 9, is h in (2). Hence
weputp = 1 — ¢ *° = 989 and write

f(z) = ph(z) + (1 — p)i(=),

where
t(x) = i-i——z; [f(z) — ph(x)].

To generate a random variable x with density f in terms of u,, us, -+, we
test: is us < p? Then:

(3) If wa < p, use the method of Example 1 on u.), us, *-- to generate z.

() Ifp = wm < 1, put

(3) 2 = (9 + 2")},

ur + us
where p has the exponential distribution and ws + u3 < 1. The right side of (3)
has density . We may use any of several methods for generating p. The time

necessary to generate x in this way is relatively long, but we can afford to be
extravagant since we use this method only 1 percent of the time.

Remarks. The quick parts of the mixtures above are based on representing
a random variable in the form ¢ + bu where a and b are discrete random
variables and u is uniform on the interval (0, 1). It is easy to show that any
random variable may be so represented, in much the same way as the funda-
mental result in analysis that a measurable function is the limit of a sequence of
simple functions. The problem is to choose the discrete distributions of @ and b
in a suitable way to ensure short running times, consistent with the number of



898 G. MARSAGLIA

storage locations which can be allotted for the program. Only a certain number
of the probabilities for the values of @ and b can be stored; if @ and b are to have
an infinite set of values, then the machine must compute the probabilities from
some point on, or else @ and b can be assigned a finite set of values and then the
residual portion of the distribution can be treated by other means, as in the case
of ks of Example 1.

At any rate, there is a wide variety of reasonable ways of assigning distribu-
tions to @ and b. The one chosen in Example 1 requires a moderate amount of
storage, less than 1000 locations, and is quite fast. It can be made even faster by
increasing the number of rectangles in h; or ke, at the expense of additional
storage space. An assignment of distributions for @ and b which requires less
storage space than that suggested above is suggested by the rectangles in Figure 2.
The idea there is to let = u, u + 1, 3u, $u + 1, 3u + 2, - - -, with the greatest
frequencies possible. A program based on that resolution of h generates a random
variable z with density » by putting z = u about 48 percent of the time, z =
u -+ 1 about 11 percent of the time, x = u/2 about 11 percent of the time, and
S0 on,

Fia. 2
REFERENCES

[1] O. Taussky anp J. Topp, “Generation and testing of pseudo-random numbers,’’ Sym-
posium on Monte Carlo Methods, John Wiley and Sons, New York, 1956, pp. 15-27.

[2] A. ROTENBERG, ‘‘A new pseudo-random number generator,” J. Assn. Comp. Mach., Vol.
7 (1960), pp. 75-717.

[3] MERVIN E. MULLER. ‘‘A comparison of methods for generating normal deviates on digital
computers,” J. Assn. Comp. Mach., Vol. 6, (1959), pp. 376-383.

[4] MErvVIN E. MULLER, ‘“‘An inverse method for the generation of random normal deviates
on large-scale computers,’”’ Math. Tables Aids Comp., Vol. 12 (1958), pp. 167-174.



