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1. Introduction. Suppose the random variables X;, X., --- are known to
be independent and identically distributed, with a continuous cumulative dis-
tribution function which is otherwise unknown. The problem which this paper
discusses is the familiar one of testing the hypothesis that the cumulative distribu-
tion function is equal to a given completely specified cumulative distribution

function G(z). By using the random variables G(X;), G(Xz), --+ in place of
X1, X», --- , the problem becomes that of testing the hypothesis that the
common cumulative distribution function of G(X;), G(Xz), --- is the uniform

distribution function U(x), where U(z) = x for 0 < 2 £ 1. For the remainder
of the paper, it will be assumed that the problem has been reduced to this form,
so0 that there is no loss of generality in assuming that G(z) = U(z), and.that all
distributions considered assign probability one to the closed interval [0, 1].

Let Yi(n), Ya(n), -+ -, Yo(n) denote the ordered valuesof X, - -+ , X, , where
0=Yi(n) £ Ys(n) £ --- = Y.(n) = 1. For convenience, Yo(n) is defined as 0
and Y,,1(n) is defined as 1. T(n) denotes the closed interval [Y;_;(n), Yi(n)],
and T;(n) denotes the length of this interval, fors = 1, --- , n 4+ 1. The Ti(n)
are known as sample spacings.

Let p be a fixed quantity in the open interval (0, 1). The set S.(p) is defined
as the union of the shortest sample spacing, the next shortest sample spacing,

-, until the total length of the sample spacings included in S,(p) is exactly
equal to p. With probability one, this will require the use of a portion of the last
sample spacing used, which for convenience will always be taken as the left-hand
portion of the sample spacing broken up. The chance event C,(p) is defined as
that event which occurs when and only when the random variable X, 4, falls in
the set S.(p).

If the hypothesis of a uniform distribution is true, the chance events Ci(p),
Ce(p), - -+ are independent events, each with probability exactly equal to p. If
the hypothesis is not true, the chance events are not independent and their prob-
abilities are not all the same. However, the definition of the set S.(p) clearly
favors the inclusion of those sections of the unit interval at which the true density
function is relatively high, and it seems reasonable to suppose that the condi-
tional probability of C.(p) given X, - - - , X, has a high probability of approach-
ing some limit greater than p. This conjecture is proved by the theorem of
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Section 2. Some applications to testing the hypothesis of a uniform distribution
are discussed in the rest of the paper. The tests discussed reject the hypothesis if
the proportion of events Ci(p), C2(p), --- which occur is “too far’’ above p.

2. The basic theorem. Throughout this section it is assumed that the common
cumulative distribution function F(z) of X;, X,, -+ assigns all probability to
the interval [0, 1], and has a derivative f(x) which is bounded and has at most a
finite number of discontinuities. For any nonnegative ¢, Q(¢; f) denotes 1 —
fo[1 + tf(z)] exp [—tf(x)]dz, and M (¢; f) denotes

1 — [of(@)[ + tf(2)] exp [—tf()]da.

It is easily verified that Q(¢; f) is a continuous and strictly increasing
function of ¢ for nonnegative ¢, with @(0; f) = 0, lim,,., @(¢;f) = 1. Denote by
t(p) the unique solution in ¢ of the equation Q(¢; f) = p.

THEOREM. The conditional probability of the event C.(p) given X1, -+, Xa
conwerges to M (t(p); f) with probability one as n increases. Also, M (¢(p);f) = p,
with equality holding if and only if f(x) = 1 almost everywhere on [0, 1].

The remainder of this section is devoted to proving this theorem. The intro-
duction of some detailed notation is necessary. Let Zi(n), - -+, Z.41(n) denote
the ordered values of T:i(n), -+, Thta(n), where 0 < Zi(n) £ -+ £ Zpja(n)
and D_™' Z,(n) = 1. With probability one, Z;(n) < Z,ua(n) fori =1, ---,n.
Ja(p) is defined as the largest integer such that » % )Zi(n) < p. The set
S.(p) as defined above is the union of J.(p) + 1 closed subintervals: the J,.(p)
subintervals [Y:(n), Y1(n)] such that Y,u(n) — Yin) = Z;(n) for some
j £ J.(p), plus the subinterval [Yi(n), Yi(n) 4+ A], where Yip(n) — Yi(n) =
Z . m+(n), and A is chosen so that the Lebesgue measure of S,(p) is exactly p.
N.(t) denotes the number of the quantities Zi(n), -+, Z,41(n) which are no
greater than t/(n + 1), and R,.(t) denotes (n + 1)7'N.(t). L.(t) denotes
el +1)Z¢(n), and K,(t) denotes the total probability assigned by F(z) to
1:Z2¢(n)= n
the union of the N,(t) intervals [Y;(n), Y;u(n)] such that V;.(n) — Y;(n)
< t/(n + 1). That is,

K.(t) = 2 [F(Yjn(n)) — F(Y;(n))).
§:¥j41(n)—Y;(n)<t/(n+1)

LeMMA 1. L,(t) converges to Q(t; f) with probability one as n increases.

Proor oF Lemma 1. L,(¢) = [¢u/(n + 1) dN.(u), the integral being Rie-
mann-Stieltjes. Then L,(t) = [§ udRn(w) = tR.(t) — [& Ra(w) du. In [1] it was
proved that

R.(u) — [1 - folf(x) exp (—uf(z)) dx]

converges to zero with probability one asn increases. Then, with probability one
as n increases, L,(f) converges to

t[l - folf(x) exp (—tf(z)) dx] —fot [1 - folf(x) exp (—uf(x))dx] du,

sup
0

U=
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and this last expression is easily seen to be equal to Q(¢; f), completing the proof
of Lemma 1.

Lemma 2. K,.(t) converges to M (t; f) with probability one as n increases.

Proor oF LeEmMma 2. By the assumption about f(z), for any given positive v it
is possible to break the interval [0, 1] into a finite number of subintervals, such
that in the interior of each subinterval there is a variation of f(z) which is no
greater than v. Suppose there are b(y) such subintervals, the endpoints of the
¢th such subinterval being denoted by c¢;, d:, with ¢; < d;. m; denotes
inf,,<z<q; f(x), and M; denotes sup.,<s<s; f(z), where 0 = M; — m; = v. ¢
denotes F(d;) — F(c;), and N; denotes the number of values among X3, - -+, X»
falling in the closed interval [c; , di]. N; has a binomial distribution with param-
eters n, ¢; . It may be assumed that ¢; is positive, since if ¢g; = 0 the interval
[ei, di] can be ignored in what follows.

Denote by Y1(i) < Y5(i) £ -+ £ Yy,(3) the ordered values of the N,
observations in the interval [c;, di. Yo (¢), Yx,41(7) denote c;, d; respectively.
T7(3) denotes Y7(¢) — Y;4(4) forj = 1, ---, N; 4+ 1. ;N,(t) denotes the
number of the quantities T7(z), --- Tw;+1(¢) which are no greater than
t/(N; + 1), and ;R,(¢) denotes (N; + 1) %N, (). Since (N; + 1)/(n + 1)

converges to ¢; with probability one as n increases, it follows from [1] that

w01~ [ [42]]

sup
t=0

converges to zero with probability one as n increases. From this it follows by the

same sort of calculation used in the proof of Lemma 1 that > T7 (3)
FiT e (E)St/ (Ni+1)

d; — ¢ —f:[l +i%2]exp[—lyf]—f)]dx = p;(1),

say, with probability one as n increases. > #:7] (D2t (D) T7 (¢) can be written as
ZM}' ()<t Wi+D) T7(3) where t* = ¢(N; + 1)/(n + 1); and because (N; +1)/
(n + 1) converges to ¢; with probability one as n increases, and p;(?) is a con-
tinuous function of ¢, it follows that #:T] (Dt (D) T;.'(z') converges to p;(gid)
with probability one as n increases.

Denote the total probability assigned by F(z) to the union of all the sub-
intervals (Yr_1(3), Y7 (3)) with Y7 (i) — Yiu(d) S t/(n + 1) by 0:(1).

mi > TIG) S 0:(t) £ M, S TG

§:7 ] ()St/ (n+1) 317§ ()5t / (nt1)

converges to

and
Y/
T5(7)
P OPTVCERY

can be written as p:(git) + 8:(n), where 8,(n) converges to zero with probability
one as n increases.
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b(v)

Ka(t) = 2, 0:0) + e,

where ¢, represents a term that takes account of the fact that at most 2b(y) of
the original subintervals (Y;_1(n), ¥;(n)) were broken into two parts by the
points ¢;, d; . Clearly, e, converges to zero with probability one as n increases.
Then

b(v) b(v) b(v) b(v)

Z=: mapi(qit) + =Z md(n) + e £ Ka(t) < ; Mipi(git) + ; Msi(n) + €.

By taking v small enough, > 2% mip,(git) and D> 2P Mpi(git) can both be
made arbitrarily close to M (t; f). Since 8,(n), -+, &(n), e approach zero
with probability one as n increases, Lemma 2 follows immediately.

Define the set T'»(t) as the union of the intervals (Y;_i(n), ¥;(n)) for all j
for which Y;(n) — Y,_(n) < t/(n + 1). It follows from Lemma 1 that the sets
S.(p) and T (t(p)) differ by a set whose measure approaches zero with prob-
ability one as n increases. It follows from Lemma 2 that the total probability
assigned by F(z) to the set Tx(t(p)) converges to M(t(p); f) with probability
one as n increases. Therefore the total probability assigned by F(z) to the set
Sa(p) converges to M (¢(p); f) with probability one as n increases. Since the
probability assigned to S.(p) by F(z) is the conditional probability of the
event C,(p) given Xy, -+, X, , the first part of the theorem is proved. The
second part of the theorem is a direct consequence of the following lemma.

Lemma 3. Q(¢t; f) < M(¢; f) for oll f(x) and for each positive t, with equality if
and only if f(x) = 1 almost everywhere on [0, 1].

Proor or Lemma 3. M(t; f) — Q(¢; f) can be written as

[0 [ + @)L — #(2)] exp (—tf(2)) da.

The function [1 4+ ¢f(x)] exp (—f(x)) is equal to unity when f(x) = 0, and de-
creases strictly monotonically toward zero as f(x) increases. Then M(¢; f) —
Q(t; ) can be written as

fz»f(x)q (1 = f @)L + tf(x)] exp (—tf(x)) da
+ [ 0= J@I+ @) exp (~47(z)) do.
z:f(z) 21

The first of these integrals is at least equal to (1 + t)e " [om< [ — f(z)]dz,
with equality if and only if the subset of [0, 1] where f(z) < 1 has measure zero,
and the second of the integrals is at least equal to (1 4 t)e ™ [,/ s1[1 — f(2)] de,
with equality if and only if the subset of [0, 1] where f(x) > 1 has measure zero.
Therefore

MG - QL z (140 U

1 —f(z)]de
z:.f(2)<1

+ j;:m)gl [ = f(x)] dx] =0,
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with equality if and only if f(z) = 1 almost everywhere on [0, 1]. This completes
the proof of Lemma 3, and of the theorem.

3. Application of the theorem to a nonsequential test of fit. Let W; denote the
random variable which is equal to one if the event C;(p) occurs, and is equal to

zero otherwise, for ¢ = 1,2, --- . Define V, as Wy 4+ .-+ 4+ W, . If the hy-
pothesis of a uniform distribution for X;, X,, --- is true, then V, has a bi-
nomial distribution with parameters n, p. If X;, ---, X,41 are observed, a

possible test of the hypothesis is to reject when V,/n = dn(a), where dn(a) is a
constant chosen to give the desired level of significance . If n is large, then
d.(a) is approximately p 4+ z.[p(1 — p)/n], where (2r)™* [2 exp (— &) dt =
&,
The consistency of this proposed test will be shown if it is shown that V,/n
converges stochastically to M (¢(p); f) as n increases, since M(t(p); f) > p if
the hypothesis is not true, and the critical value for V,/n approaches p as n
increases. The convergence of V,/n to M (t(p);f) is shown as follows.

For convenience, let X (j) denote the sequence (X, -+, X;), and let Q;
denote W; — M(t(p); f). Define r; as E|E(W ;| X(j)) — M(t(p); f)|. Since
E(W,| X (7)) is simply the conditional probability that C;(p) will occur, given
X (j), the theorem of Section 2 shows that r; approaches zero as j increases.
Clearly, 0 < r; < 1 for all j. If

i <j, B(QQ)) = E{E(QQ;| X(j))} = E{Q:E(Q; | X(4))}
since if 4 < 7, Q; is a uniquely determined function of X (j). Also,
E{Q:E(Q; | X(j))} £ EQE(Q;| X()| = E{Qi [E(Q; [ X(1))}
S EEQ;i XU =15,

the last inequality holding because |Q;| < 1 with probability one.

_S_
B(Vajn — M((p); 1) = B (n—l > Qi)

= n"‘z [12::1 E(Qz) + 2 ;E(Qt Q])] < n_z [n + 2% Tj] < n—]. + 27&—121‘]-’

and because r; approaches zero as j increases, this last expression approaches
zero as n increases. Therefore E(V./n — M(t(p); f))’ converges to zero as n
increases, and the stochastic convergence of V,./n to M(t(p); f) follows from
Chebyshev’s inequality.

The value of the statistic V,/n may change if the values of X, -+, Xop1
are permuted. In most fixed sample size tests of the hypothesis, the statistic is
invariant under permutation of the observations.

4. A sequential test of fit. When the hypothesis of uniform distribution is
true, Wy, Wy, -+ are independent random variables, with P(W; = 1) = 3
fors = 1,2, --- . When the hypothesis is not true, Wy, Wy, --- are not
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independent, but it has been shown that P(W, = 1| X, ---, X,) converges
with probability one to M (t(p); f) as n increases, where f(z) is the common
probability density function of X;, X,, --- . Wald’s sequential test [2] that
a binomial mean has a given value p against the alternative that its value is
p1(pr > p), with error probabilities «, 8 can be applied to the test of uniform
distribution, as follows. Let a,, denote

log [8/(1 — a)] + mlog [(1 — p)/(1 — p1)]
log [p1(1 — p)] — log [p(1 — py)]

and r,, denote

log [(1 — B)/a] + mlog [(1 — p)/(1 — p)]
log [p1(1 — p)] — log [p(1 — py)] '

The test continues as long as a,, < Wy + --- + W,, < r, . The first time that
these inequalities do not hold, the hypothesis of uniform distribution is accepted
Wi+ -+ + W, £ an,and isrejected if Wy + -+ + W, = 7, .

When the hypothesis of uniform distribution is true, W,, W,, --- are
independent random variables with P(W,; = 1) = p, and therefore the prob-
ability of acceptance and the expected number of observations of the sequential
test are known, at least approximately, through the Wald approximations. In
particular, when the hypothesis is true the probability of its rejection is approxi-
mately a.

Since it has been shown that when the common probability density function
isf(z), P(Wn, = 1| Xy, ---, X,) converges with probability one to M (¢(p);f)
as n increases, it is tempting to say that when the common probability density
function is f(x), the sequential test has approximately the same properties as the
Wald test for the binomial case when the binomial mean is equal to M (¢(p);f).
However, there are certain obstacles, which will now be discussed, in the way of
doing this.

The first obstacle is the following. Even if P(W, = 1| X,, ---, X,) were
close to M (t(p);f) for all n, might the small differences lead to large differences
between the properties of the proposed test and the properties of the Wald
binomial test? A negative answer to this question can be given, since the proper-
ties of the Wald test vary continuously with the binomial mean.

A second obstacle is the following. Convergence with probability one as n
increases does not rule out fairly large probabilities of large differences between
PW,=1|Xy,---,X,) and M(¢(p);f) for small values of n. Might this lead
to large differences between the properties of the proposed sequential test of
uniformity and the Wald binomial test? The exact answer to this question re-
mains unknown, and may be in the affirmative in general. However, if « and 8
are small, a large number of observations will be taken, as is obvious from the
form of the Wald test. For the later observations in the sequence, the conver-
gence theorem applies. From the form of the decision boundaries that the Wald
test applies to the random walk, it is easily seen that even large disturbances in
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P(W, =1|Xy, ---, X,) for a relatively few initial values of n will have only
a small effect on the properties of the test. Thus this second obstacle diminishes
as « and B become smaller.

A third obstacle is the following. What is the effect of those sample sequences
for which P(W, = 1| X;, -+, X,) is not close to M(¢(p); f) even for large
values of n? Since it has been shown that such sample sequences have a prob-
ability approaching zero as n increases, it is clear that they cannot have much
effect on the probability of rejecting the hypothesis, if « and 8 are small. How-
ever, these sample sequences may conceivably have a large effect on the expected
sample size, since the sample size is an unbounded function over all possible
sample sequences, and the expected value of an unbounded function can be
greatly affected even by small changes in the probabilities of large values.
Whether this effect on the expected sample size actually exists is an open ques-
tion. However, the probability that the sample size will be less than m, for any
fixed m, will not be affected much, since this probability is a bounded function.

5. Comparison of the sequential test with other tests. In trying to compare the
sequential test of uniform distribution with existing tests of this hypothesis, a
difficulty is that for very few of the existing tests (which are all predetermined
sample size tests) is even the asymptotic power known. However, in [3] the
asymptotic power of the test which rejects when Y% Zi(n) is “too large”
(n is a predetermined number) is found. Furthermore, in [4] it is shown that
this test is admissible among all fixed sample size tests. This test will be called
the “Z test” for convenience, and will be compared to the sequential test.

For computational purposes, p will be set equal to % and « will be set equal to

B. f(z) will be written as 1 4 ¢r(zx), where |r(x)| is bounded,
1 1
f r(x) dx = 0, f (z)de = D > 0,
0 o

and small absolute values of ¢ are of interest. After straightforward but some-
what lengthy calculations, it is found that ¢(1) = 1.6784 4+ .5693Dc” + o(c?),
and using this, that M (¢(3);f) = 3 + .5259Dc* + o(c’). Set o1 = 3 + .5259Dc’,
so that the power of the sequential test of uniform distribution against the
alternative f(x) = 1 + cr(z) is approximately 1 — a. Denote by E(a, ¢) the
expected sample size when the sequential test is used and the hypothesis of uni-
form distribution is true. Then from the known Wald approximations, it is
found that asymptotically
_ (1 — a)log (a/(1 — @) + alog ((1 — a)/a)
" 1log (1 + 1.0518D¢?) + % log (1 — 1.0518Dc?)
2log a — 4alog a + (40 — 2) log (1 — a)
—1.1067D2%* + o(cY

the approximation becoming better as ¢ becomes smaller in absolute value.

Next the sample size necessary to give the Z test level of significance « and
power 1 — « against the alternative f(z) = 1 4 ¢r(z) is found. Denote this

E(a,c)
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sample size by N(q, ¢), and denote by k(a) the quantity satisfying
(2m) 7} [fw exp (—3) dt = «

It is found directly from [3] that N (e, ¢) is asymptotically the solution for 7 in
the equation

| n% [1 B j;l (1 + cr(x))—ldx:l + k(tx) = k(l _ a),

{2 jod (1 + er(z)) P de — I:fol (1 + cr(x))_ldx:r}

the approximation becoming better as « decreases. Since k(1 — a) = —k(a),
N (e, ¢) is asymptotically equal to

() [2 + 10D¢* 4 o(¢®) + 2(1 + 10D’ + o(cﬁ))*]
D¢t + o(cY) )

From page 166 of [5], we find that —2 log « approacheslog 2= + 2 log k(a) +
k*(a) asymptotically as o approaches zero. From this, it follows that
lima,o N(a, ¢)/E(a, ¢) = 4.4268 + 8(c), where lim..08(c) = 0. Thus for «
and ¢ near zero, the sequential test of uniform distribution requires on the aver-
age only 1/4.4268 times the number of observations required by the Z test of the
same size and power against the alternative f(z) = 1 + cr(x), when the hy-
pothesis is true. This is a substantial saving.
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