VARIANCE COMPONENTS IN THE UNBALANCED 2-WAY NESTED
CLASSIFICATION

By S. R. SEARLE
New Zealand Dairy Board, Wellington, New Zealand

Introduction. Sampling variances of estimates of components of variance
obtained from data that are balanced (having the same number of observations
in all subclasses) are easily derived because the mean squares in the analysis of
variance are independent and distributed as x*. The variance component esti-
mates are linear functions of the mean squares and their variances can be derived
accordingly, although their distributions are, in general, unknown. When the
data are not balanced, however, and there are unequal numbers of observations
in the subclasses the mean squares are no longer independent and they do not
have x’-distributions. Methods of deriving expressions for the sampling variances
of the variance component estimates are developed for these situations in an
earlier paper [3] and applied to the 1-way classification. A second paper [4] gives
these expressions for the 2-way factorial  classification, and extension to the
2-way hierarchical (nested) classification is presented here.

Model and analysis of variance. The earlier work discussed sampling variances
of variance component estimates obtained by Henderson’s Method 1 [2] from
data having unequal subclass numbers, based on the completely random model,
namely Eisenhart’s Model II, [1]. The same situation is considered here for the
2-way nested classification.

The linear model for an observation z;j; is taken as

Tige = p + a;i + Bij + eiqn

where u is the general mean, «; is the effect due to the 7th main classification, g;;
is the effect due to the jth sub-class within the ¢th main classification, and e,
is the residual error term peculiar to z.; . We suppose the number of classes in
the main classification is @, so that ¢ = 1, - - - , a; and that there are ¢; sub-classes
within each of these so that j = 1, - -+ , ¢; . The total number of such sub-classes
will be represented by b, giving b = Y 7 ¢;. The number of observations in
the jth subclass of the sth class is taken as n,; . All terms of the model (except
u) are assumed to be normally distributed random variables with zero means
and variances o% , o5 and o> . These are the variance components to be estimated,
along with the sampling variances of their estimates.
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1162 S. R. SEARLE
The customary analysis of variance can be written as

Analysis of Variance

Term d.f. Sums of Squares
Between main classes a—1 Te — T
Between subclasses within main classes b—a Tw — Ta
Within subclasses N-b To — Ta
Total N -1 T, — Ty

where, with the customary notation for totals and means, namely
Ti.. = Z ;xm y n;,. = Zn,-,- and . T;.. = a:i../ni.
J J

we have the uncorrected sums of squares
~2
T, = Z Ne i
%

Tap = 2. 2 Ny,
1 J
S5 S

T,

Il

and
T, = N#'...,

N being the total number of observations, N = > D imi

The variance components can be estimated by equating each line of the above
analysis of variance (except that for “total’”) to its expected value. Denoting
the resulting estimates as 6% , 65 and 42, the equations for obtaining them are,

as given in Section 10.17 of [5]
T, —T; = (N — k)é% + (ki — ks)6f + (a — 1)6%

(1) Ta-—T. = (N — k)ss + (b — a)é
T, — Tay = (N — b)és.
The k’s are functions of the n;;’s, namely
k, = Zinfn/N

ks = Z an,/N
T J

and

kw = Z (;nf,)/m

The notation here follows that used previously in [4].
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Variances and covariances required. The within sub-classes sum of squares,

T, — T., has a x*-distribution with (N — b) degrees of freedom and hence
the variance of 43 is
(2) var (¢2) = 205/ (N — b).

Furthermore, T, — T. is distributed independently of Ta, Tas and T; so that
the covariances of ¢2 and &3 with % are obtained directly as

(3) cov (62, 62) = —(b — a) var (82)/(N — ki)
and

cov (6%, 83) = —[(ku — ks) cov (63, 6%) + (a — 1) var (62))/(N — k)
(4) = [(be — k) (b — @)/(N — k) — (@ — 1)] var (62)/ (N — k).

This independence property is also used for obtaining the variances of ¢% and
6% and the covariance between them as linear functions of var (¢67) and the
variances and covariances of T, , Ta and T'; . Thus

var(Tw — Ta) + (b — a)® var (67)
(N — kp)?

I

(5) var(63) =

and
(N — k)N — ki)® var (6%)
=var [( N— k)Ta — (k2 — ks)Tap — (N — ki) T4
(6) + [(N — ks)a — (ki — k)b — (N — ki) I* var (6%)
and
(N — k) (N — F) cov (6%, 63) =

7 cov (Ta — T7)(Tas — Ta) + (a — 1)(b — a) var (82)

— (N = k) (ke — ks) var (63).

The second term in each of these expressions can be obtained from equation (2)
and the first can be found as a linear function of the variances and covariances
of T, Tas and T, . These we now proceed to find.

Matrix methods. The sampling variance of a quadratic function, x'Fx, of
normally-distributed random variables represented by the vector x is 2tr(VF)?
where V is the variance-covariance matrix appropriate to the variables in x.
The covariance between two quadratics x’Fx and x'Gx is 2tr(VFVG). These
results can be applied to obtain the terms needed for equations ( 5) through (7)
using matrices similar to those employed in Searle, [4]. First we define square
matrices U;;, Ui. and Uy of order n;; , n;. and N respectively, with all elements
equal to one. Square matrices of order N with U-matrices in the diagonal and
zeros elsewhere are defined as D-matrices; thus D has the matrices Us; in its
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diagonal, for all values of 7 and 7, and D, has the matrices U;. in its diagonal, for
all values of 7. The variance-covariance matrix of the N observations arrayed
inorder k = 1 - - - m;; within j-classes within each ¢-class can now be expressed as

(8) V = ¢%D, + 0iDap + 21,

I being an identity matrix.

Defining C; and C, similar to D,; and D, only with matrices (n:;)™'Us; and
(n:.)7'U.. in the diagonal enables the quadratics in the analysis of variance
to be written as

T, = x'Cx
Top = x'Capx
and
T; = x'Uyx.
Thus
var (T,) = 2 tr (VC,)?
(9)

= 2 tr (62D + 058DwCa + 05Ca)’

after substitution from (8). This is a quadratic in the variance components
which can be expanded, through the special form of the matrices, in terms of
the m,;’s using the expressions
ks = 20 > nis ks = 2. (22 mij)/na.
7 i J

z

ke = Z (Zj: ne)'/mi. kr = Z; (Zj: ni;) /.

Thus
var (T,) = 2(N kloi + k70’§ -+ aaﬁ + 2N katr?,cr,% + 2N o%a'ﬁ + 276120‘290'3).
A similar procedure for the other terms in (5), (6) and (7) leads to the following

results:
var (Ta) = 2tr (VCa)?
= var (Ta) + 2[(Nks — kr)op + (b — a)oe + 2(N — ki) ojos]
var (T;) = 2 tr (VUy)?/N?
= 2(kio%s + ksop + 03)’
cov (ToTw) = 2tr (VCoVCas)
= var (T,) + 2(ks — kir)op
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cov (T.T;) = 2 tr (VC,VUx)’/N

2[(ke/N)oe + (ks/N)os + o

+ 2(ks/N)o%oh + 2kioo? + 2ksoiol]
2tr (VCuVUy)/N

cov (TaTy) + 205(ks — ks)/N.

Results. Substituting the above expressions into (5) leads, after simplifica-
tion, to

cov (TaTY)

var (62) = 20\ o + )\20’3 + Ns 05 + 2\ 0% ag + 2 o o +2)\ea'§ai)
* (N — k)*(N — kw)?

where

M= (N — k)’ [ls(N + ki) — 2ko/N],

A = kg[N (ke — ks)* + ks(N — ki)’] + (N — ks)’Fr
— 2(N — ks)[(kie — ks)ks + (N — kup)ke/N]
+ 2(N — ki) (ks — ka)ks/N,

M= [(N—Fkp)(N—1)(a—1) — (N —k)*(a— 1)(b—a)
+ (ks = ks)*(N = 1)(b — a)l/(N — b),

M= (N — ku)’lks(N + ki) — 2ks/N],

N = (N — k)’ (N — k),

and
N = (N — k) (N — k3) (ki — ks).

Similarly, expression (6) becomes

var(s3)

_ 2(ky + Nky — 2ks)os + 4(N — ki) oj o + 2(b — a) (N — a)ot/(N — b)
B (N — k)?

and (7) reduces to
(N — k) (N — k) cov (8%63) = 2[ks — kz + (ks — ks)/Nlos
+2(a — 1)(b — a)os/(N — b) — (N — k) (ks — ks) var (63).

These variances are in terms of the unknown variance components o5 , o5 and
o2 so that estimation of the variances in any particular case is only possible by
replacing the components in these formulae by their estimates.
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Balanced data. The above formulae reduce to the well-known results for
balanced data when all the n,; are put equal, to n, say. Suppose that all levels
of the main classification have ¢ sub-classes so that b = ac. Then, for example,

2y _ 2(an® + acn® — 2an’)of + 4an(c — 1) oh o> + 2a(c — 1)a5/ac(n — 1)
var(és) = a*n2(c — 1)2

which reduces to

2y _ 2 [noh + ob)° 7s ]
var(ds) = n2[ alc—1) " actn —1)]"

This is the result obtained directly for the balanced case when T, — T, and
T, — Ta are distributed independently as x* with a(¢ — 1) and ac(n — 1)
degrees of freedom respectively. Their expectations, obtained from equation
(1), are

E(Ta, — Ta) = a(c — 1)(nos + o%)
and
E(T, — Ta) = ac(n — 1)o%

and their variances equal twice the square of their expectations divided by their
degrees of freedom. The variance of the estimate of o3 , namely

é2=___];[T'ab'_7,a_' To—'Tab]
# " nlalc=1) ac(n — 1)’

1s accordingly as shown above.
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