ASYMPTOTIC EFFICIENCY IN POLYNOMIAL ESTIMATION!

By Paun G. Hokn
Umnaversity of California, Los Angeles

1. Summary. Asymptotic formulas are obtained for the generalized variance
of the least squares estimates in polynomial regression under the assumption that
the basic random variables are those of a stationary stochastic process, or a slight
generalization of such a process. These formulas are used to study the informa-
tion obtained by increasing the number of observational points in an interval
and by increasing the length of the interval.

2. Introduction. In an earlier paper [1], some limited results were obtained on
the increased efficiency of estimation in polynomial regression due. to increasing
the number of observational points, under the assumption that the basic random
variables are correlated. These results were for two special stochastic processes
only. In this paper, somewhat more general stochastic processes are studied and
corresponding asymptotic formulas are obtained.

The same notation will be used here as in.[1]. Thus, 41, %2, - - - , ¥» will denote
random variables associated with the fixed values 2y, 22, - - - , Zx , and the re-
gression polynomial will be denoted by

E(y:) = Bo + B + -+ + Buti .

For convenience the interval (0, @) will be chosen as the interval over which
observations are to be taken. Furthermore, in the development of the theory, the
observation points ; , %2 , - - - , &, will be chosen to be the n equally spaced points
given by the formula x; = 46, where § = a/n. ,

The variables 41, %2, ++ -, ¥» will be assumed to be those of a stationary
stochastic process. Thus, the y’s possess a common variance, and the correlation
between y; and y; is a function of [ — j|6 only. As a result, the covariance matrix
S can be written in the form

1 U TR Y
S=q " 1 1 ot Tng
Thml Th—2 Th—3g *°° 1

Here r; denotes the correlation coefficient for two variables whose « values are

jé units apart.
As before, it is necessary to introduce the spacing matrix X given by the

formula
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1 & & - 0 )
2
Xl B @@
1 ns (nd)* - (nd)*

The measure of efficiency in the estimation of the 8’s that will be used here is
the generalized variance, or, equivalently, the square of the volume of the ellip-
soid of concentration. The generalized variance for best unbiased linear estimates
is expressible by means of a well known formula [1] in terms of the matrices
X and S.

3. Least squares estimates. From a theorem in the book of Grenander and
Rosenblatt [2], it follows that the least squares estimates of the coefficients in
polynomial regression are asymptotically efficient for stationary processes. There-
fore, in stuﬁying asymptotic efficiency, least squares estimates may be used in
place of Markoff estimates, provided one is dealing with stationary processes.
Since least squares estimates possess a simpler generalized variance formula than
Markoff estimates, it is convenient to work with them in studying the asymptotic
efficiency of various spacing designs. For least squares estimates, the generalized
variance of polynomial regression coefficients is given [2] by the formula

| X'8X]|
(1) GV. = XXE"

Now consider any continuous correlation function p(¢) defined over the closed
interval [0, a]. Since it may be approximated arbitrarily closely by a finite series
of the form

(2) p(t) = mf_‘:lcm exp { —amt},

where a,, > 0, it will be assumed that the correlation function is of this type.
Because p(0) = 1, it is necessary that > ¢m = 1. In terms of this correlation
function the value of r; will be given by

i = 0(G8) = 3 omoxD (et}
Then S assumes the form 8 = o*(w;;) where
wi; = i‘:lcm exp { —axdlt — jl}.
Let S, = (w{™) where w{® = exp { —and|i — j|}. Then S may be written as
S = a?i CnSm -
As a result

N
(3) X'8X = ¢*Y cnX'SnX.
m=1
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Consider the typical term, a{f],j41 , in X’S,X. Postmultiplying S, by X and
premultiplying the result by X’ will show that a{f,;;1 can be expressed in
the form

alin = 2; Z; (28)*(y8) e~ om0,
a=1 y=

If the substitutions 4 = zé and v = yd are made, it will be seen that this sum
possesses the same asymptotic value with respect to 1/8 as the integral

N [* % i —amlu—sl
(4) (6_) fo‘/; u'v’e du dv.

The typical term in X’SX will be denoted by ;44,41 . From (3) it follows that
N
(5) bit1,j01 = Uzzlcmagi)l,i+l ) )

and therefore that the asymptotic value of b;41,;41 is obtained by substituting
the asymptotic value of a{™} ;4 into (5). In view of formulas (2) and (4), this
asymptotic value may be written in the form

1 2 . a pa 'y
(6) bi+1,j+l~(s‘) o j;]; w'v’p(u — v) du dv.

Similar considerations will show that the typical term in X'X is given by the
single sum Y m; (28)*(x8)’, which possesses the asymptotic value

1 a o+ _ ai+j+l
) Q)il“w'aa+j+lf

It now follows from (1), (6), and (7) that the asymptotic value of the gener-

alized variance is given by
2 a pa
(E) f f wvp(u — v) dudv
) 0 Yo
1 o P .
si4+j+1
Since the factors in 1/8 cancel, this asymptotic expression reduces to

o f f uv’p(u — v) du dv
0 Y0

2

G V.~

(8) G.V. ~ o

t+j7+1

4. Nonconstant variance. The preceding results were based on the assumption
that the process is stationary. This assumption is certainly a realistic one for
many applications, at least as far as the correlation function is concerned. A more
general situation, in which the variance is assumed to be a continuous function
of time in the closed interval [0, a], can be treated by the same methods as those
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just employed and will be found to yield similar conclusions with respect to
asymptotic efficiency.

The demonstration of this last statement can be carried out by considering o,
as a polynomial in ¢. The resulting change in the matrix S, will change the
integral (4) to the integral

2 a pa
(9) (_;._) j;\/(; u'v’e_a"'lu—vla'uo',, dudv,

where, say,
ou =y + v + - + vl

The substitution of this quantity in (9) will show that (9) reduces to

2 s 8 a pa
(10) (}_) E Z oY f f uz+pva+q e—amlu—v| du dv.

6/ =0 g=0 0Jo
As a result, the asymptotic value of (10) is of the same form as for (4), and
therefore one would expect the same type of asymptotic efficiency properties to
hold. Such properties will be considered in the next section.

5. Adding observations. The result given by (8) shows that when a large
number of observations has been made in an interval the amount of information
gained by taking additional observations is negligible. Thus, if the number of
equally spaced points in an interval is doubled, which means that 6 must be re-
placed by 8/2, the same asymptotic value of the generalized variance is obtained
because (8) does not depend upon §. This holds regardless of the nature of the
correlation function, provided that it is continuous. It holds not only for any
stationary process but also, in view of formula (10), for a stationary process
that has been modified to permit the variance to be any continuous function of ¢.

If the y’s are independent random variables, the generalized variance will ap-
proach zero as & approaches zero, and therefore it certainly pays to add observa-
tions in this case. In view of this fact, it is clear that the size of the sample needed
before one can conclude that it is hardly worth while taking additional observa-
tions depends rather heavily upon the nature of the correlation function. For the
purpose of observing how the value of the generalized variance changes as the
nature of the correlation function changes, consider the special correlation func-
tion p(t) = e ** that was considered in [1], and assume that ¢ = 1. Suppose the
value of « is changed to the value 2«. This is equivalent to squaring the value of
the correlation coefficient between any pairs of y values, and hence in weakening
the correlation relationship to this degree. For any particular value of ¢ and «
this effect of doubling o can be determined numerically by means of formula (8);
however, it is difficult to make such a comparison for a general o unless « is very
large. Therefore, consider next an approximation to (8) which is valid for large
values of a.
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a u
I; = f f e dv du.
0 Yo

The value of bi41,;41 in (6) will then be given by the quantity (I;; + I;)/é"
Repeated integration by parts in the first integration will show that I,; can be
expressed in the form

Let

! gt i ot +_7'(j— 1) @t
Yoali i+l at+g o? 1+75—1
jG—1)---1 a* (i —1)---1 / —au
— o ey ey gy D du.

For large « the first term will dominate this expression; therefore I;; may be
approximated by
1 gt
T ati g1
The double integral in (8) will therefore be approximated by twice this value;
consequently, for large o, the generalized variance in (8) may be approximated by

9 ai+i+1
(11) GV mleit 1| @™
T-O-J-H—f Aa(k+1)2 ’

i+i+1
where 4 = [1/( + 7 + 1)|.

In making comparisons by means of the generalized variance, it is convenient
to consider the quantity introduced in [1], namely,

G. V. (e a) J/*
[G. V. 2e, a)]

The value of this quantity gives the number of replications of an experiment in
the given interval needed to yield the same estimation information, as measured
by the generalized variance, as that obtained through doubling the value of .
From (11) it follows that the value of this quantity is 2 here; therefore when a
large number of observations has been made, doubling the value of a large «
yields the same estimation information as repeating the experiment. If the typi-
cal element in the covariance matrix (X’X)™(X’SX)(X’X)™" is computed,
using the same approximation as before, it will be seen that doubling the value
of @ multiplies all elements of this matrix by %; therefore in the sense that the
variance of each estimate is multiplied by 3, the efficiency of estimation is doubled
through doubling «.

The preceding results show that doubling the number of observation points in
an interval gives rise to two counteracting effects. The favorable effect arises
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from doubling the size of the experiment. The unfavorable effect arises from in-
creasing the correlation between neighboring variables. For large samples, these
two effects approximately nullify each other. Since the preceding result, that
adding points does not help much here, holds for a large value of «, and hence
for a weak correlation relationship, the advantage of adding observations in a
fixed interval would be expected to be even less when there exists a strong corre-
lation relationship. Some numerical results in this connection may be found
in [1].

6. Extending the interval. A second form of comparison which is of interest in
regression problems is that arising when the interval over which observations are
to be taken is extended, This comparison for the same correlation function as in
Section 5 can be made by replacing ¢ by 2¢ in (8) and then calculating the
quantity )

(12) [G. V. (e, a) :I”("“) .

G V.(a,20a)

When « is large, the approximation given in (11) may be used, in which case
the value of this quantity will reduce to 2***. Thus, when « is large and a large
number of observations has been made, doubling the number of equally spaced
observations by doubling the length of the interval gives approximately as much
estimation information as 2*** replications of the experiment in the original inter-
val. This result was obtained in [1] by using other methods.

When « is not sufficiently large to justify the use of approximation (11),
numerical methods are needed to observe what effect doubling the length of the
interval has on the generalized variance. Thus, calculations for o = 1, a = 1,
and k = 2 by means of formula (8) yielded the value 15 for the quantity given
in (12). Under independence the value would have been 8; therefore there ap-
pears to be even greater advantage in extending the interval when strong correla-
tion exists than under independence.
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