ON THE GENERAL TIME DEPENDENT QUEUE WITH
A SINGLE SERVER ‘

By J. KemiLsoNn AND A. KOOHARIAN

Sylvania Applied Research Laboratory

1. Introduction. In a previous paper [1] we discussed a multi-dimensional
phase space model of queuing processes. The approach was developed in detail
there for a time dependent queue subject to Poisson arrival and general service
time distributions. The present paper extends this approach to the study of a
time dependent queue with a single server subject to general arrival and general
service time distributions. For this case we are able to carry out the analysis in
detail in terms-of the state densities introduced in [1]. The problem leads to
simultaneous Wiener-Hopf equations with an analytic side condition. We
resolve the problem by establishing its equivalence to a Hilbert problem (in the
sense of [2]), for which we can give an explicit solution.

The analysis of the time dependent problem is valid whether the system tends
to an equilibrium state or not. Thus we are able to derive expressions for the
system regeneration time and server occupation time distributions which are
valid for unstable as well as stable queues (Section 7).

A brief outline of the paper follows. In Sections 2 and 3 we describe the appro-
priate phase space for the system and develop the corresponding differential
equations, boundary conditions and initial conditions for the general time
dependent problem. The solution of this problem is based on the analysis of an
associated “first passage” problem which we formulate in Section 4. In Section
5 we take advantage of the essential Wiener-Hopf character of the problem in
order to reduce it to an integral equation. In Sections 6 and 7 we show how to
formulate an equivalent homogeneous Hilbert problem for which we give an
explicit solution. Next in Section 8 we generalize the first passage problem for
arbitrary initial conditions thereby obtaining an associated inhomogeneous
Hilbert problem whose solution is shown to be intimately related to that of the
preceding homogeneous problem. Finally in Section 9 we show how the results
from the first passage problems can be used to obtain the complete solution
of our original general queuing problem of Section 3. In the concluding Section
10, we point out some connections between this work and that of Lindley [3]
and Pollaczek [4].

A few remarks are in order here concerning the nature of the arguments we
present in deriving the basic equations describing our process in Sections 2, 3,
and 4. The basic quantities we work with are the densities of the time dependent
probability distributions over the state space. It is not a prior: evident that
these densities exist, let alone possess the requisite smoothness properties for
the derivations in Sections 3 and 4. Our justification for the arguments in these
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768 J. KEILSON AND A. KOOHARIAN

sections is twofold. First because the analysis proves constructive, we are able
to demonstrate that for sufficiently smooth initial distributions (C?), our integro-
differential-difference equations indeed possess a solution (existence of the state
densities), the solution is unique, and it inherits the smoothness of the initial
conditions, thereby providing an & posterior: justification of the derivations.
However, we also wish to accommodate initial distributions which are “con-
centrated”, that is initial probability distributions with delta ‘‘function”
densities. In this case our state densities together with their partial derivatives
exist only as generalized functions (in Schwartz’ sense of distributions [5]).
We would then take as our starting point the basic pair of integral equations
(4.18), (4.19) with f(¢ — z) in place of 6(zx — ¢) which on the one hand could be
formulated directly thereby avoiding the differential argument with a certain
sacrifice of facility, and on the other hand having a limiting validity in the dis-
tribution theoretic sense of Schwartz when f( — z) tends to 6(x — ¢), or more
generally when the initial conditions (3.9) tend to distributions in the sense of
[5].

2. Phase space. Following [1] we observe that the instantaneous state of the
non-vacant queuing system is completely characterized by the triple (m, z, y)
where m is the queue length, z is the elapsed time since entrance of the item into
service, and y is the elapsed time since the last arrival to the queue. For m =
1,2, ---,1ie., when there is a queue, we denote the probability density that the
system is in the state (m, z, y) at time ¢ by W, (z, y, £).

The motion on the set of states {0, z, ¥} requires separate consideration. When
a “customer” arrives at an idle server, the system coordinates z and y remain
equal until a completion or subsequent arrival occurs. It is convenient to describe
the set of states of the system during this phase by {z} and the associated density
at time ¢ by F(z, £). The density of states {0, z, y} accessible to the system fol-
lowing the depletion of a queue will be denoted by Wy(z, ¥, t). Whenever a system
is in such a state, moreover, y > z so that Wo(z, y, {) = 0 for y < z. Finally
there is the sets of states {y} in which the server is idle and a period of time y
has elapsed since the last arrival whose density at time ¢ will be denoted by
E(y, ).

The set of mutually exclusive and totally exhaustive states {z}, {y}, {m, z, y}
constitutes a phase space I' in which the temporal evolution of the system can
be discussed.

3. Derivation of equations. If A(y) denotes the density function for the inter-
arrival time distribution and D(z) that for the service time distribution, then

continuity of flow in T' during a time interval A [1] requires
Wm(x + A7 Yy + A; i+ A) = Wm<x, Y, t) [1 - >‘(y)A][l - ﬂ(x) A],
m=0,1,---,

(3.1)

to first order terms in A. (%) A and 5(z) A are simply the first order probabilities
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of an arrival and a service completion, respectively, occurring in the intervals
(y, y + A) and (z, x + A), respectively, conditioned on the system’s having
the coordinates z and y, respectively. The significant relationships for A and » are

(320) AW =@ ew [~ [ dy |
and
(3.2b) D(z) = n(x) exp [—foz n(z’) dx’].

By rearranging terms in (3.1), dividing by A and taking the limit as A — 0,
we obtain

an an an p— - oo
(33) T + oz + ay + D\(y) + "l(x)]Wm =0, m=0,1,

on the interior of T. By a similar continuity argument

(3.4) L ‘;4:' +A@E = [ " Wz, g, On() do + n(y)F(y, £),

35 2+ T+ 1) + @IF = 0.

In order to complete our mathematical description, it is necessary to specify
the boundary conditions on I' together with some initial conditions. The deriva-
tion of the boundary conditions requires a consideration of the motion of the
system in T' when arrivals and completions occur. Omitting the argument, which
is essentially that in [1], we find that the appropriate boundary conditions on
0=z < « are

(3.6a) Wo(z, 0,t) = 0,

(3.6b) Wiz, 0,) = M2F(z, ) + [ Wals, v, 0h) dy,

(3.6¢) Wa(z,0,t) = ‘[ Wai(z, y, ON(y) dy, m=2,3,---,
andon0 =y < ®

(3.7) Wal0,,0) = [ Wes(o,g On@)ds,  m=0,1,---
and

(3.8) E(0,#) =0 and F(0,8) = f: Ey, OM(y) d.
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Finally the most general initial conditions we could consider are
E(y) 0) = EO(Z/), F(x) 0) = FO(x)) Wm(xy Y, 0) = WOm(x: y):

(3.9)
m=0,1,"‘,

subject to the normalization

C ] C ] 0 @ 400
(3.10) fo Eo(y) dy + fo File) do + 3 fo fo Wonle, y) dz dy = 1.

4. The basic first passage problem. The mathematical character and analysis
of the system (3.3)—(3.8) is closely related to that of an associated “first passage”
problem which we define below. The first passage problem, moreover is not
without interest in its own right in providing a natural framework for the dis-
cussion of server occupation time and system regeneration time distributions.
The basic first passage problem is defined as follows: at time ¢ = 0 an item to
be serviced arrives at an idle system and enters service directly; we are then
concerned with (a) the joint probability densities Wan(z, v, t), F(z, t), E(y, t)
that the system at time £ is in the state (m, z, y), (z), (y), respectively, and that
the system has not returned to the initialsstate, m = 0, x = 0, y = 0 which
we term the regeneration state, and (b) the probability distribution R(¢) that
the system has regenerated by time ¢. The server occupation time distribution
S(t) is directly available from the first passage density E(y, t).

The following slightly modified set of equations (cf., Section 3) govern the
problem

Wn | Wn | W, = = ...
(4.1) 3l + oz + 3y + D\(y) + ﬂ(x)]Wm =0, m = 0,1, ’

2) LS4 WE = [ Walo, 1 0n(a) dz + 1()F G, 0,

oF . oF
(4.3) o + P + \(z) + 9(z)]F = 0,
(44a) - [ s o,
(4.4b) S = R + [ " By, 1) ay,
(4.5a) Wo(z, 0,1) = 0,
(4.5b) Wila,0,0) = N@)F(z, 1) + [ " Wolz, v, M) dy,

(4.5¢) Wm(x: 0, t) = f Wna(z, Y, t)MZ/) dy, m=23,---,
0



SINGLE SERVER TIME DEPENDENT QUEUE 771

(46) Wm(o; Y, t) = »/0‘ Wm+l(x) Y, t)'ﬂ(x)dx; m = O: 1: R}

(4.7) E(0,t) =0 and  F(0,t) =0,
with the initial conditions
(4.8) Wy(z, y, 0) = 0, m=0,1,---, E(y, 0) =0,
F(z,0) = é(x — 0), and R(0) =0,

where § is the delta distribution function. While the modifications (4.7) together
with the initial conditions (4.8) achieve some simplification over the preceding
system, the essential mathematical character of the equations (4.1)—(4.8) is
the same; we shall show in Section 9 how the analysis of the first passage problem
serves to generate the complete time dependent state densities of our original
problem.

We first make a formal reduction of (4.1)—(4.8) by introducing the following
transformations suggested by the form of the equations:

(4.9a) Wa(z,y,t) = exp(—[L(y) + N(z)])Wn(z,y,1),
(4.9b) E(y,t) =™ gy, 1), -

(4.9¢) F(z,1) = exp(—[L(z) + N(2)])5(x, 1),
where

L(y) = fov Ay dy and N(z) = ‘[ 7(z’) da’.

Under these transformations (4.1)—(4.8) become, respectively,

OWn | OW, | W

(410) “Zr 4T+ Tom o, m=0,1,-
(411) e+ & — 50D + [ W, 4, 0D() da,

(4.12) g—§F+Z—:=O=>§=f(t—x),

(4.13a) "~ Wo(z,0,1) =0,

(4.13b) Wwi(z,0,t) = flz — t)A(z) + fo ) Wo(z, y, ) A(y) dy,
(4.130) Wa(z,0,0) = [ T (e, DA dy, M= 2,3, -
(414) Wnl0,5,) = [ Woa(e,0,0D@) dt,  m= 0,1,

(4.15) 8(0.¢) =0 and  f(¢) =0, t>0,
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and finally the initial conditions
(4'16) Wn(2,9,0) =0, &(y, 0) =0, (, 0) = f( —z) =8z — 0).

Continuing the formal reduction, we introduce the generating function
G(s,2,9,8) = 20 8"Wn(3,9, 1),

in terms of which (4.10) becomes

_8§
ox

G
+5__O;

G
(4.17) e + ”

(4.13) and (4.16) yield

@18)  Gls,2,0,0) = sd(@)ia — 1) +5 " s,z D A(Y) dy;
while (4.14) gives

@19)  sG(s,0,y,1) = fo " (s, 2,9, 0)D(x) dv — fo " 6(0,3,y,)D(x) dx.

The general solution of (4.17) subject to the initial condition G(s, z, y,0) = 0
for 2, y = 0 can be represented in the form )

(4-20) G(87 Z, Y, t) = 91(87 z—y,t— y) + 92(87 z—y,t— SC), for z, Y, ¢ 2 O,

where G; vanishes for # < y or ¢ < y and G vanishes for z > y or ¢ < z. Equa-
tions (4.18) and (4.19) then yield the basic pair of simultaneous non-
homogeneous integral equations

Gi(s,2,t) = sA(z)é(x — ¢t) + s f: Gu(s,x — y,t — y)A(y) dy

(4.21) )
+ Sf G(s,x —y,t —x)A(y) dy, for z,t = 0,
0
s6i(s, —9,00 = [ @ila,z —y,1 —)D() do
(4.22) + fo [gz(s, r—yt—2x)— G0,z —y,t— x)] D(z) dx,

for y,¢ = 0,

where we have used the fact that G;(0, z — y, t — y) = 0, a consequence of
(4.13).

6. Method of analysis.- The basic character of the system (4.21)-(4.22) is,
as will become clearer presently, of the Wiener-Hopf type. Our method of
analysis, accordingly, will be to take transforms with respect to z, y and ¢ In
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the process of resolving the transformed equations, an auxiliary analyticity
condition arises which serves to uniquely determine the ‘non-homogeneous”
term involving the basic function Go(z — ¥, ¢t — z) = G0, 2 — y, t — x).

Since Gi(s, z, t) and Gy(s, —y, t) are zero for negative ¢, if we assume that we
may take Laplace transforms in (4.21) and (4.22) with respect ¢ for ¢ = 0,
there then results the set of equations (denoting the transform by tilde) for
z=0

Gi(s,z,p) = sA(z)e ™ + Sfo Gi(s,z — y,p)e ™A(y) dy

(5.1) 3
+ Sfo Ga(s,x — y, p)e TA(y) dy,
and fory = 0
(s, —up) = [ 8ils,z = 1,9 ™D(x) do
(5.2)

+ fo Cy(s,x — y,p)e ”D(x) dx — l Gz — y,p)e °D(x) dz,

where we have set (0,2 — y,t — z) = Go(z — y, t — ).

In order to emphasize the Wiener-Hopf character of the above system of
equations, we introduce the following convention: to any function f(z) on
— o < x < o we shall associate its positive and negative half-line components

defined as follows
6 rw={ 20 r@-{%, %}

so that f(z) = ff(z) + f () on —» < z < . In addition we shall employ
the + and — indices as superscripts for such decompositions of unknown func-
tions and as subscripts for known functions.

In terms of this convention the equations (5.1), (5.2) can be expressed in
the form for z = 0:

&l (s,z,p) = sA(2)e > + s fo Gr(s,z — y,p)e P Ve AL (y) dy

(5.4) 3
+ 8'4 8 (s,z — y,p)e ™A (y) dy,
fory =0
Gz (s, —y,p) = f & (s,z — y, p)e? Ve "D (z) da
0
(5.5)

- /0 oz —y,ple "Do(z) dx +fo Cr(s,z — y,p)e ”Dy(z) dx.



774 J. KEILSON AND A. KOOHARIAN

Our next step is to formally extend these equations to hold on (—w, )
by introducing unknown functions L™ (s, z, p) and sR*(s, —y, p) (noting that
(5.5) is 0(s)) into (5.4) and (5.5), respectively. Now we assume that equations
(5.4), (5.5) so modified are Fourier transformable with respect to z and -,
respectively. It is crucial to point out here that this assumption requires that
G2 (s, z, p)e ™ and Gf (s, z, p)e ** be Fourier transformable. We shall see in
the following section that the problem indeed permits such transformability
when Re(p) > 0. Denoting the Fourier transform of a capital or script-lettered
function by the corresponding lower case letter, we obtain

g1 (s, 0, P)[1 — say(w + 1p)]

(5.6) . _ . . _
= say(w + ip) + sg2(s, w + ip, p)ay(w + ip) + 1 (s, w, p)
and
2 (8, w, —d_(wo— 7
(57) g9z (s, w, p)[s ( ip)]

= d_(o — 1p)gi(s, o — ip,p) — d—(0 — ip)go(w, p) + sr¥(s, w, p)»

on —x < w < ©, where

(583:) gf(s, w, p) = .[ g‘l*'(s’ z, p)ei«’dt dr = ‘/0- Qi’-(s, z, p)eiwz dx,
© » o )
(58b)  ga(s,0,p) = [ Ga (s, —y,ple " dy = [ LG (s,y,p)e™ dy,

(5.8¢) d—(w —ip) = [w Di(y)e ™ dy = ‘/(; Dy (y)e "™ gy,

and where I ~ and r* are arbitrary except that they must be the Fourier trans-
forms of an L~ and R™ function, respectively. In general the Fourier transform
of a “~” function is a bounded analytic function in the upper half plane of the
transform variable while that of a “—?’ function is bounded analytic in the lower
half plane. Thus in (5.6) and (5.7) the + and — indices acquire the significance
of denoting the upper and lower w-half planes, respectively, of bounded
analyticity. Since we take the Fourier transform of (5.5) with respect to —y,
however, in order to obtain the appropriate form for G; (see (5.8b)), we find
D, transforms into d_ (i.e., a transform which is bounded analytic in the lower
half-plane, see (5.8¢)).

To bring (5.7) into a form compatible with (5.6), we make the transformation
of variable w — w + 4p, which leads to

92 (8, @ + ip, p)[s — d_(w)]
= d_(w)gi (s, w, p) — d_(w)gs(w + ip, ) + 57 (s, @ + ip, D).

Denoting gz (s, @ + ip, p) and g5 (w0 + ip, p) by hz (s, w, p) and hy(w, p), re-
respectively, in keeping with the assumed behavior of G and G;, we may re-

(5.7a)
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write equations (5.6), (5.7a) in the form
(59) [gi}.(s; @, p) + h;(s; w, p) + 1]¢+(37 w, p) = d)-(S, W, p),
[g-l'-(s’ w, p) + h;(& w, p) + 1]¢-(3, w) = ¢+(S, w, p)

(5.10)
— d_(w)[1 + k5 (w, p)],

respectively, where
(5.11a) ¢+(8, w,p) =1 — sai(w + p),
(5.11b) ¢ (s, 0,p) =1+ ha(s,0,p) +17(s, 0 ),
(5.11¢) Y(s,0) =8 — d_(w),
(5.11d) v(s, w,p) = s[l + gi(s, », p) + (s, 0 + ip, p)].
Now eliminating the common term between (5.9) and (5.10), we reduce the
problem to the single equation on —© < @ <
$+(s, 0, D)V (s, 0, p) — & (s, @, P)Y—(s, w)
= ¢+(s, &, p)d_(w)[1 + Ay (w, p)]
To emphasize the basic character of the problem with respect to its w de-
pendence, we rewrite (5.12) as
(5.13) Xt(e) — X (o) = x(0), —o <o < o,

(5.12)

where
Re(w) =0, X" =¢", X = ¢y_+d_(1+hy)

(5.14)
and k= —sayd_(1+ hy).

In general the functions X*, X~ and « involved here depend on s and p as well.
Whether this dependence is suppressed or not, any conditions or equations
involving analyticity, integrability, etc., with respect to w are meant to hold
uniformly for 0 < s < 1 and Re(p) > 0.

In this form we may characterize our problem as follows: it is required to
find a sectionally holomorphic function X (w), bounded at infinity and satisfying
the boundary condition (5.13), where X*(s) (respectively X (¢)) signify
the limiting values assumed by X(w) along curves such that Im(w) — 04
(respectively Im(w) — 0—), and where k (though here an unknown) possesses
a well defined Cauchy integral. X is given directly in terms of «x by the Plemelj
formula [2] as
(5.15) X(o) = o= [ 29D o 4 p(a)

Ml V—0 0 — W

with the additive polynomial in w, P, reflecting the prescribed behavior of X at
infinity. In our case, (5.14) together with (5.11) require that P(w) = s. We
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will assume throughout the following that
(5.16) a(c) =0 or d_(e) >0 (or both),

as ¢ — == . The basic role of this assumption will be in evidence at several
points of the analysis. At this point, in particular, it serves to assure the existence
of the Cauchy integral in (5.15). A further discussion of the significance of
these conditions on the arrival and service distributions will be given in Section 7.

The analyticity condition. We have in particular, from (5.15) that for Im(w) < 0

(5.17) X ) = o [ ") gy

or, substituting from (5.14) and (5.11)
[s — d(w)l¢™(s,0,p) =5 — d_(w)[1 + ko (w, p)]
(5.18) o [*aslo (I +halopl g,

2_7;i—w g — W

We now observe that to each value of s such that 0 < s < 1, there exists a
(unique) pure imaginary value of w lying in the lower half plane such that
s — d_(w) = 0. ¢, consequently, can be holomorphic in the w-lower half plane
only if the right hand side of (5.18) also vanishes at the above described pairs
(s, ) for which s = d_(w). Applying this analyticity condition, we are directly
led to the following integral equation for the quantity 1 4 hq,

a+(¢r + 2p)d—(0')[1 + ho_(lf, p)] dd’.

o — w

- 1 [
(519) 1+hi(wp) =1—o [
Moreover comparison of equations (5.18) and (5.19) yields the basic identifica-
tion
(5.20) ¢ (s, 0,p) =1+ ho(w,p).

We have thus achieved a formal reduction of our original set of simultaneous
Wiener-Hopf integral equations to a single integral equation in the transform
variables. In the next section we shall take advantage of (5.20) to show that
¢~ also satisfies a Hilbert problem [2] for which we can give an explicit solution.

6. The associated Hilbert problem. Substituting from (5.20) into (5.12),
we obtainon —o < ¢ < o,

(6.1) [1 — sas(c + ip)I¥'(s, o, P)/s] = [L — a+(ec + ip)d_(0)l¢” (o, P).

We shall solve this boundary value problem for the unknowns ¢vt/s and ¢~ in

two steps. First we shall consider the special case of (6.1) for s = 1; namely,
[1 - d+(0‘ + zp)]u[/+(l, o, p)

(6.2) . -
= [1 — a+(o + ip)d_(o)]¢ (o, p), —° <o < o,
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Since it was previously established in (5.20) that ¢~ is independent of s, the
solution of (6.2) provides part of the solution of (6.1), ¢~ to be precise, directly;
¢¥(s, w, p) may also be obtained from the solution of (6.2) by means of the
relation

1 — ar(w + ip)

+
s @t ¥ Lo  Im()zo.

(63) ¢+(8: W, p) =S

We now rewrite (6.2) as
(6.4) A3(0) = Ky(0)A3(0), —®w <g< o,

where A3(0) = [L — ay(c + )W (1, 0, p), A3(c) = ¢ (o, p) and Kp(0) =
1 — a; (o + ?p)d—(s). In the form (6.4) we are able to identify our problem as
a Hilbert problem (in the sense of [2]), indexed by a parameter p, for the sec-
tionally holomorphic function A,(w). It only remains to determine those values
of the parameter p for which the “kernel” K, in (6.4) constitutes a well posed
Hilbert problem. There are several conditions required on K, which, as we shall
show, are satisfied when Re(p) > 0. First it is required that K, be Holder
continuous on —« < ¢ < «, which follows immediately for Re(p) = 0 if
we assume, in addition to (5.16), the existence of first moments for the arrival
and service time distributions. Similarly for Re(p) > 0 it is immediate that
K,(0c) #00n — o < ¢ < =, and that K, has a finite indexon — o < ¢ < o,
i.e., that the increment of argflog K,(c)] as ¢ goes from — « to -+« is finite.
Since Re(K,(e)) > 0 on —o < ¢ < « for Re(p) > 0, it easily follows
that the index is zero.

Thus under the restriction that Re(p) > 0, we can take advantage of the
extensive results available concerning Hilbert problems. The unique sectionally
holomorphic solution of (6.4) satisfying the boundary condition A,(w) — 1 as
w — o is given by
(6.5) () = exp [_1_ log K, () da] ,

2t e 0 — w

80 that in terms of the variables of interest,

(6.6) ¢ (o, p) = exp [21_1}2 f_ : log [1 — ay(o + ip)d_(0)] da]

g — w

for Im(w) =< 0, Re(p) > 0.

Our analysis requires for consistency not only that ¢ (w, p) be holomorphic
in Im(w) < 0, but also, in view of (5.20), that the nature of its dependence on
® be such that ¢~ (w, p) — 1 have the character of a Fourier transform, hereafter
called F-character, which is immediate for Re(p) > 0. In view of (5.7a) and
(5.20), moreover, ¢ (0w — #p, p) — 1 = go(w, p) which is required to have
F-character in w and L (Laplace)-character in p. The F-character of gj(w, p)
for Re(p) > 0 follows from the structure of (6.6) and the L-character of

a (o + 7p).
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To conclude this section, we shall show how the rest of our basic variables,
g7, k7 and g7, may also be obtained directly in terms of ¢, and that our assump-
tions regarding the F- and L-character of these functions are verified. From (5.9)
we have

¢ (o,p) — 1 + sa(o + ip)

+ - -
(6'7) 91 (8, ag, p) + h2 (sy ag, p) - 1 — 8(1+(0' _I_ 'Lp)

’

for —o < ¢ < « and Re(p) > 0.
Clearly we may consider (6.7) as a boundary value problem for the unknowns
g¥ and hz, for which the Plemelj formulae yield the solution

- _ =1 ("T¢ (0,p) =1 +sar(c +ip) 1 ]
hs (S’ @, p) = '2‘; _w[ 1 — Sa+(0' I 747) pr— do'; Im(w) =0,

or by contour integration and (5.20)

_ _ =1 T haGo,p) 1] .
68)  msep) =55, [1 e ) 7=l

and similarly,

+ _ sap(w + ip)
N R
. +—1-. °°|: ki (o, p) — - 1 ]da.
21t Lo |1 — sa.(0c +1p) o — w

Finally by (6.8) and the fact that gz (s, w, p) = hz(s, @ — ip, p), we have

_ _ -1 [ _gile,p) 1 ]
(6.10) g2 (S, w, p) - é’ﬁ | I:]- — Sa+(0') c— dm

(6.9) may be correspondingly rewritten as

+ _ _8a4(w + ip)
gi(s,0,p) = 1 — sa*(w + ip)
(6.11) w _
+L |: go (o, p) . 1 :Ida
2 w1l —sa3(6) o — (w+ip)]

That expressions (6.8)—(6.11) for Re(p) > 0 do, indeed, possess the requisite
F- and L-character assumed previously of gf, gz and hz is immediate.

7. The regeneration times and occupation times. The Laplace transform of
(4.11) with respect to ¢ yields

1) Ly =Dy + f & (z — g, p)e PDy(z) da,
ay [}

where we have utilized (4.16). The Fourier transform of (7.1) with respect to
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—y (noting that (7.1) holds for — o < y < ) then yields
(w0 — ip)e (o, p)
= (1 + go(w, p))d—(0 — ip) = ¢ (0 — 1p, p)d(0 — 1p),

where we have taken account of (5.20) to bring in ¢ .

We are now in a position to determine the system regeneration time distribu-
tion R. Taking the Laplace transform of (4.4a), we have, in view of the initial
condition R(0) = 0,

(7.2)

pk(p) = [ B, p)AG) dy.
Equivalently in terms of our basic transform variables, we have
~ 1 [ -
(73) pk(p) = o [ € (0, p)as() do,

or substituting for ¢~ from (7.2),

1 [*ay(o)d_(s — ip)¢ (¢ — ip, p)
(7.4) pR(p) = 5 —~— do

If we make the transformatlon of variable ¢ — ¢ + ip for Re(p) > 0 in

(7.4), we obtain
0—ip
(7.4a) pR(p) = 1 a(o + zp)da—(tf)qﬁ (o, p)
—0—3p
In view of the half planes of analyticity of the functions in the integrand of
(7.4a), we have

(7.4b) pE(p) = 2m

where the contour @ is the real axis indented into the lower half plane at ¢ = 0.

We next establish a relationship between the integral in (7.4b) and y*.
Applying the Plemelj formulae once more to (5.12) and taking account of (5.20),
we find

(1 — as(e + p)W*(1, 0, p)

(7.5) -1+ _[ [1 — a+(<r —621)_)](5)—(0)¢_(7’ p) do

a+(<r + 2p)d—(0)¢ (o, p)

for Im(w) = 0 and Re(p) > 0. Since w lies in the upper half plane, however,
f d—(a)‘b (‘7: p) =0

g — w
so that taking the limit of (7.5) as w — 0 we obtain the relationship

[1 — a;(ip)W*(1,0,p) =1 — 2; a+(o + zp)d;<a>¢ (0,p) 4,
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where €@ is the contour described above. Hence
(7.6) pR(p) = 1 — [1 — a4(sp) W (1,0, p).

Next we determine the occupation time distribution S. The Laplace transform
of (4.4b) yields

S(p) = R(p) + fo - &(y, p)e ™™ dy,

whence

@D ) = R) + o [ o) [

It follows from (7.7), (7.4), (7.2), (5.20) and (5.19) that

(7.8) pS(p) =1 — [1 — d_(—ip)l¢ (—1p, p), Re(p) > 0.

We observe that the expressions obtained above for B and S possess the re-
quired L-character for Re(p) > 0 as a consequence of the fact that ai(c + ip)
and ¢ (o, p) do uniformly with respect to ¢ such that —» < ¢ < . Hence
for Re(p) > 0, these expressions are valid and meaningful with no further
restrictions. ’

As we shall see next, however, we must consider a ‘“‘stability” condition, i.e.,
a condition between the mean arrival and mean service times, in order to study
the limit of R(¢) and S(¢) as ¢ — o, or equivalently, the limit of pR(p) and
p8(p) as p — 0. Weseefrom (7.6) thatlim,.o, pR(p) = 1 is assured provided
lim p.04+ ¥7(1, 0, p) exists and is finite. Returning to (6.2), we have

+ _ {1 —=ay(o +ip)d_(a) | -
(7-9) ¥ (19 o, P) = [ 1 — a+(¢r T ip) ]¢ (Uy p)’
which constitutes a well posed Hilbert problem for ¢*, ¢~ for Re(p) > 0. To
see this we need only observe that the kernel involved in (7.9) does not vanish
on —» < g < » for Re(p) > 0, and that since the real parts of the numerator
and denominator of the kernel are positive, its index is zero. The formal limit of
the boundary value problem (7.9) as Re(p) — 0+ is

(7100  ¢*(1,0,0) = [1;1“_%(;‘)] $7(0,0), —w <0<

The kernel of this limiting problem is also well defined and non-vanishing for
o # 0 provided |a+(c)| < 1 for ¢ ¥ 0. Furthermore we have

. 1 —ay(o)d_(o) ZTp
lim —— 2 =1 -2
o0 1 — ar(o) Ta
where zp and x4 are the mean service and mean interarrival times, respectively;

hence if the usual stability condition prevails, i.e., if 2» < x4, the kernel of
(7.10) does not vanish on —® < ¢ < o, and the index continues to be zero.
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Under these conditions it is easily shown that the solutions ¢*(1, w, p), ¢ (w, p)
of (6.2) for Re(p) > 0 converge to the solution of (7.10) as Re(p) — 0+.
Thus in view of (7.6) we have the result that our system always regenerates
under the stated conditions on a+(¢) and zp , x4 . This analysis shows, moreover
that under these same conditions limgeey-o+ ¢(w, p) exists and satisfies the
limiting Hilbert problem. It follows, in particular that limgeep).or ¢ (—7p, p)
exists and is finite, whence from (7.8) we have that lim,.o+ pS(p) = 1 as well.

The assumption that [a+(¢)| < 1 for ¢ > 0 in the discussion of the limits is
already contained in the previous assumption (Section 5) that ai(s) — 0 as
o — =0, Indeed, if there is a real value of ¢ = o9 such that

f“ AGE — 1] dy = 0,

0

then A (y) must have a lattice support of the form
o 2
(71) AW = 3 0y = 2]

where the C, = 0,n = 1,2, -+, and > _ny C, = 1. We shall refer to such
arrivals as “synchronous”. The special case of deterministic arrivals, A(y) =
8(y — T), is the most familiar example.

In the case of synchronous arrivals, the regeneration time density, dR/dt,
may be directly seen to be of synchronous form also. In such cases it can be
shown that the system does not approach a time independent limit as { — o,
even when the stability condition prevails, but rather tends to a periodic be-
havior. Because of the character of a. at infinity in the synchronous case, these
problems cannot be discussed directly within the framework of the analysis
presented above. Between arrivals, the service time completely determines
state transitions, however, so that the problem is amenable to analysis in a
lower dimensional phase space. When the service time density has a lattice
support and the arrival density does not, the problem can be analyzed within
the Hilbert framework even though d_(o) does not tend to zero as ¢ — == «. This
unsymmetric character of the Hilbert problem with respect to the admissability
of arrivals and departures with lattice support is due entirely to the unsymmetric
manner in which a, and d_ enter in (6.2). That the previously obtained solution
forms for the Hilbert problem continue to be valid in the case of lattice supported
service times may be seen directly by considering the limit of suitable approxi-
mating service time distributions for which the previous analysis holds.

Regeneration times in the absence of stability. We shall briefly consider the
problem of determining the limit as ¢ — « of the distribution of regeneration
times for the system in the absence of the usual stability criterion. Intuitively
it is clear that in this case there should be a non-trivial probability of the system’s
not regenerating. More precisely, in terms of (7.6) we should expect that
limg.o [1 — ar(ip) (1, 0, p) exist, but be non-zero so that lim..., R(¢) =
R(») < 1 in this case. We shall show that this case can be completely
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characterized in terms of a different Hilbert problem for the quantities
[1 — ay(e + p)W*(1, o, p) and ¢ (o, p) rather than ¥* and ¢~. The existence
and non-triviality of lim,.o[1 — a4+(ép) (1, 0, p) would thus be an imme-
diate consequence of the fact that the Hilbert problem in question; namely,

(712) (1 = as(o +p)W¥'(1,0,p) = [l = a(o + ip)d_(a) ¢ (o, D),

remain meaningful in the limit as p — 0. As (7.12) stands, however, the limit
of its kernel is [1 — a4(¢)d_(o)] which obviously is unsuitable since it vanishes
at ¢ = 0. In order to avoid this difficulty of the kernel vanishingon — e« < ¢ <
in the limit, as well as to insure that the index (see Section 6) in the limit is
zero, we consider the modified problem

{1 — ar(o + P (1,0,p)}"
(7.13) 1 — ay( ;
_ +(o + zp)d_(a)] _ . - -
- [L5le D (1 — (i) (oo (o, )
for the quantities { }* and { }~, which satisfies all the requirements (as well
as leaving the boundary condition at infinity intact) provided zp > z4, i.e.,
provided we are in the unstable case. Indeed, we have
.o |1 —ay(o + ip)d-(a)] T4
lim ki : =1-=
a0 p—-lg:-[ 1 — a.(ip)d_(s) Zp
which insures a zero index for the limiting Hilbert problem provided zp > x4 .
We thus have the result that in the unstable case, the probability of the sys-
tem’s not regenerating, i.e., not emptying is given by
i[5 2000]
f = do |,

(7.14) 1 — lim pR(p) = lim exp [—
20+ w0 27t Jeo T —w

where the limiting path lies in the upper half plane.

Special cases: E/G and G/E. We shall consider further the two special cases of
a general Erlangian distribution of interarrival times with general service times
and a general distribution of interarrival times with general Erlangian service
times. These two cases have the analytical property of permitting a complete
characterization of the root structure of the quantity 1 — a4(v + ip)d_(w)
in a half plane. When this situation prevails the Hilbert problem can be resolved
by direct factorization.

(i) When the interarrival times have a general Erlangian distribution

N
4@y) = L Pa@)e™,
where the P,(y) are taken to be real, positive valued polynomials (some obvious

generalizations are possible). Then the expression 1 — ay(w + #p)d_(w) will
have singularities {»(p) = —%(Am + ) and roots p,(p) in the lower «» half
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plane. Since 1 — a4(w 4+ ip)d_(w) has zero index and vanishes at infinity in the
closed lower half plane, {,(p) and p.(p), when weighted by their respective
multiplicities, will be in one to one correspondence, so that the (unique) solu-
tion of (6.2) is given by

(7.15) [ = arlo + P (L0 p) = I1 %,

where a, and B, are the associated multiplicities. (The expression for ¢ (w, p)
follows directly from (6.2) and (7.15).)
(ii) When the service time distribution is general Erlangian,

D(z) = g;:an(x) e ™

has singularities ¢, = %7, and roots p,(p) in the upper w half plane which
weighted by their respective multiplicities v, and 6, are again in one to one
correspondence, whence

- (@ = &)™
7.16 ,p) = _\W T Sn)
(7.16) ¢ (@, p) g [0 — pn®)P"
The simplest and most familiar example of (i) is the case of exponentially
distributed arrivals and general service times. In this case (7.15) becomes
w — Po(p)
w+i\+p)’

where po(p) is defined by the equation po + @ + [l — d_(p)] = 0; and
hence,

(7.17a) 1 — aw(w + P (1, 0,p) =

W — po(p)
w4+ 1p + A1 — d_(w)]’

It follows from (7.6) and (7.8) that
(7.18) pR(p) = V(A + p)lde(p)] and  p8(p) = d_lpo(p)],

respectively, for unstable as well as stable systems.
Similarly, the most familiar example of (ii) is that of general interarrival times
and exponentially distributed service times. In this case (7.16) yields

(7.17b) ¢ (v, p) =

w — 19

(7-193') ¢_(O), p) = w_—P*(IT)- ’

where px(p) is defined by the equation psx — ¢9[1 — a4(px + ip)]} = 0; and hence,

w — il — ar(w + 7p)] )

(7.19b) 1 — ar(w + ip)W (1, 0, p) = p——
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Again from (7.6) and (7.8), we have in this case

50\ _ px(p) — ingll — a,(ip)] sy px(p)

(7.20) pE(p) p(p) »ond - pS(p) = px(p) + ip’
respectively, regardless of stability. Hence for example in the unstable case, we
have from (7.20) that the system still regenerates with probability z./zp .

Finally to conclude the discussion of these special cases, we shall see in Sec-
tions 8 and 9 that knowledge of the expressions (7.17) and (7.19) effectively
generate the complete solution of their respective full queuing problems (Sec-
tion 3). The complete time dependent queuing problem corresponding to case
(i) recovers the results previously obtained in [1] for the M/G queue, while that
corresponding to (ii) appears to be entirely new.

8. The general first passage problem. In the next section we shall show how
the complete time dependent behavior of our original queuing problem with
arbitrary initial conditions can be directly obtained in terms of the solution of a
first passage problem subject to the same initial conditions. In this section we
show that the solution of the first passage problem subject to any given initial
conditions is itself, in turn, directly obtainable in terms of the solution of the
basic first passage problem discussed above. The mathematical relationship
between these two latter problems is simply that between an inhomogeneous
Hilbert problem and its associated homogeneous problem.

The general first passage problem, i.e., the first passage problem subject to
general initial conditions, must, of course, also satisfy equations (4.1) thru (4.7)
with the general initial conditions

Wn(2,y,0) = Won(z,9),m =0,1,---;  E(y,0) = Eo(y);
F(z,0) = Fo(z); and R(0) = 0;
replacing (4.8). It involves no essential restriction of the discussion to consider
the conditions
Wom(Z, y) = Cwbund(x — %o,y — Yo), m=0,1,--,
Ey(y) = Ced(y —y0), Folz) =Cr(x—12), and R(0) =0,

where Cw , Cz, Cr are non-negative constants such that Cw + Cz + Cr = 1,
8, is Kronecker’s delta, and § the appropriate dimensional ‘“‘delta function”.

The analysis of the above problem is so closely related to that of the basic
first passage problem considered in Sections 4 thru 7, that we shall content
ourselves with indicating only those aspects of the analysis differing significantly
from the preceding, leaving the details to the reader. The initial formal re-
ductions are identical down to the point (equation (4.16)) where the initial con-
ditions are brought in; in the present case we have

wm(x; Y, O) = CWamNeL(y)-FN(Z)a(x — o,y — yo)’ m = O, 1’ Tty
(8.3) &(y, 0) = Cue"3(y — wo),
F(xz,0) = f(z) = Cpe" ™V D5(x — x).

(8.1)

(8.2)
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As a consequence of the fact that the W,.(z, y, t) and hence G(s, x, ¥, t) now
carry nontrivial initial data, we choose the general representation for G (cf.,
(4.20))

G(s, z, 9, 1)
=G,z —yt—y) +G(sz2—yt—2) +G(sz—ty—1i

for z, y, t = 0 where G; and G; have the same ‘half line”’ character as before in
their dependence on the differences involved, and G; vanishes when z < ¢ or
y < t. Gs is thus seen to carry the initial data associated with the W,, ; indeed,
we have

(8.5) Gi(s, @, y) = Cws"e" ™ 5(x — 29,y — ), z,y = 0.

Substituting (8.4), (8.5) into the integral equation for G corresponding to
(4.18), (4.19), and then taking Laplace and Fourier transforms as before, we
obtain the basic pair of equations (cf. (5.6), (5.7))

(84)

L(zg) +N(zo) Pt

g1 (s, 0, P)[1 — say(w + ip)] = sCre a+(w + ip)
+ 892 (s,  + ip)ai(w + ip)

(8'6) + SN-HCWe—L(yo)+N(a:o)e—~iw:co
‘ar(w + ip; yo)l (s, 0, P),
and
g2(8, 0, P)[s — d—(w — ip)] = d—(w — ip)gi (s, » — ip, D)
— d_( — ip)go(w,p) +§"C
(8.7) ’ v

_eL(yo)+N(xo)eiwyod_(w — ,':p; xo)
+
+ sr7(s, @, p)
on —®» < w < o, where g7, gz, [, and r* have the same significance as pre-

viously, and

ar(w + ip; y0) = fo Ay + yo)e' " dy,

d_(w — ip; z) = f D(x + zo)e 77 gy,
o

At this point and precisely for the same reasons discussed above, we restrict p

to Re(p) > 0 and replace gz (s, w 4 ip, p) and go(w =+ ¢p, p) by he(s, w, p)
and Ky (w, p), respectively. It then follows from (8.6), (8.7) that ¢¥ and Az
satisfy the equations on —» < w < o« (cf. (5.9), (5.10))

lgf + hz + 1g4(s, w)
= & (s, w, p) + sKi(s, », D),
lgf + hz + 1W—(s, &, P)
= ¥*(s, 0, p) — d_(w)[ho(w, p) + 1] + sKa(s, w, p),

(8.8)

(8.9)
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where ¢, and y_ are the same (known) functions previously involved, & and
¥+ are structurally the same as ¢~ and ¢ in their dependence on unknowns
kT, gz, r"and I (cf., (5.11)), and

sKi(s, @, p) = sai(w + ip)[Cre™ @0 ¥ E0grm0 _ q)
+ say(w + ip; yo) s¥C et (30)6""‘0%’
(8.11) sKa(s, @, p) = d_(w; 7o) 8" C e 30N @0 giavo w0,

Thus we see that the general first passage problem described by (8.8), (8.9)
differs from the basic first passage problem (5.9), (5.10) only by the presence
of the additional known inhomogeneous terms K; and K, in (8.8) and (8.9),
respectively. Eliminating, as before, the common term [g7 + A7 + 1] between
(8.8) and (8.9), we obtain (cf., (5.12))

¢+(8: w)\I’+(S, @, p) - Q—(s: @, P)'P—(S, @, p)
= ¢+(s, w)d_(w)[1 + ko (w, p)] + sKi(s, », p),

(8.10)

(8.12)

where
(813) K3(8’ W, p) = 'p—(s) @, P)KI(S; w, p) - ¢+(8’ w)K2(8y w, p)

Next applying the Plemelj formulae to (8.12), and appealing to the analyticity
condition as discussed in Section 5, we obtain the following (nonhomogeneous)
integral equation for the quantity 1 4 Ay (cf., (5.19))

1+ hg(e, p) = a+(a + 1p)d_(a)[1 + ho (o, p)]
0% 2‘” c— w
(8.14)
1 Ka(d—(w) g, p) fOI' Im(w) <0
21 c— w % =
This relationship, in turn, leads to (cf., (5.20))
(8.15) & (s,0,p) =1+ hy(w, p) + sKu(s, o, p),
where

(8.16) Ki(s,w,p) =

[ Ky(s, 0, p) — Ko(d(w),0,P) ;-

g — w

2mi[s — d_(w)]

As in Section 6, (8.15) may be used in (8.12) to obtain the nonhomogeneous
Hilbert problem on —o < ¢ < 0,

. ¥ (s, 0, p)

(8.17) L oalo i)l =7

= [1 — ay(o + ip)d_(0)]® (s, 0, p) + Ki(s, 0, D),
where

(818) K5(sy o, p) = K3(s; o, p) - ¢+(S, O')d_(O')K4(S, g, p)°
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The solution of this nonhomogeneous Hilbert problem can be obtained directly
in terms of its associated homogeneous problem [2]:

+
(8.19) [1 — say (o + ip)]".(/_(s;:_’_gz =1 — ay(o + ip)d_(a)le (s, o, p),
—o <g < ®©

which is precisely the boundary value problem we arrived at in Sections 5 and
6 for the basic first passage problem (cf., (6.1)). It follows, in particular, that

(820) & (s,0,p) = 6 (&, p) [1 o [ : ,pé“(f’ ;;(’:,) iaw)]’

thereby exhibiting the fundamental role of the basic first passage problem in
generating the solution of the general first passage problem. We shall not pursue
the general first passage problem any further here since state densities, regenera-
tion times and occupation times are obtainable explicitly in terms of &, as we
have already seen (Sections 6, 7).

9. The general queue with arbitrary initial conditions. In this section we shall
reconsider the original queuing problem-described in Section 3, subject to arbi-
trary initial conditions, with the point of view of establishing its relationship to
the first passage problems discussed above. In particular, we shall assume that
we already have available the solution of the first passage problem corresponding
to the same initial conditions as the problem at hand (see Section 8).

If we compare the mathematical description of the original queuing problem
((3.3)-(3.8)) with that of the first passage problem ((4.1)-(4.7)) with the
corresponding initial conditions, we see that the basic unknowns W,, , E and F
are subject to the same equations as W, , £ and F (of the corresponding prob-
lem) with the single exception that

(38) F(0,0) = [ By, M) dy,
replaces
(4.7) F(0,t) = 0.
The immediate consequence of this exception is that
F(x’ t) — e“[L(a:)-HV(:E)]f-I-(t _ x)’ xz, ¢ g‘ O,

where £1(¢) = [5 E(y, t)\(y)dy must be carried in the analysis as an auxiliary
unknown, whereas previously we had

F(CII, t) — e—[L(:t)+N(a:)]f(t _ x),

with f7(¢) = 0. The consequence of carrying along this additional unknown
in the analysis is that we obtain the following basic pair of equations in the
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transform variables:

(9.1) [ef + bz + 1 + flo. = @ + 5Ky,

(9:2) [gf + b7 + 1+ 8y =W —dhy + 1+ + 5K,

where ¢, ¥_, K; and K, are defined as before (see (5.11), (8.10), (8.11)),
@ =h+1 +1+f w'=sgf+r"+1+1,

and
f(p) = f fH(e)e™™ di,
0
in place of (8.8), (8.9). Following the previous analysis again, we obtain (cf.,
(8.15))
(9.3) ® =14 f+ hy + sKq,

where K is defined as before by (8.16). It thus follows that & satisfies the same
Hilbert problem as®~ (see (8.17)) except that (1 + f) replaces 1 as the boundary
condition at infinity. It follows that

— _ (e L * Ks(s, g, p)
¥ o) = 1+ o o) [ 1457 [ it e |
whence
(94) @ (s,0,p) =& (s,0,p) + Ep)¢ (p),

gives the unique solution of our problem as a function of f, which, itself, remains
to be determined from (3.4) and (3.8).

Expressing (3.4) in terms of e, f and g (see (4.9)), taking the appropriate
transforms (noting that (3.4) holds on —® < y < ), we find

(p + iw)e (v, p)
= Ce g L [CeHO T L E(p) + g5 (0, p)ld(w — ip),
or, in view of (9.3) and (9.4),

(9.5)

wmi@~@€mm
T =@ (s, 0 —ip,p) +E(p)¢ (0 — 1p, p))d—(w — ip) + Ke(s, 0 — ip, p),

where

Ko(s, w — ip, p)
= (Cge™ W0 emP0PY0  [(1 LLEOTNE) T K (s 6 — ip, P)]d_(w — iD).

On the other hand, from (3.8) we have

(9.7) f(p) = % f_ : e (o, p)ay(c) do,
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or, substituting from (9.6)
f(p) [* ar(e)d_(c — ip)$ (¢ — ip, p) ,

©3) tp) = 27t Lw o —1p
' 1 [“a(o)ld(oc — ip)® (s, 0 — ip) + Ki(s,0 — p, )] ;
271 Joo o - 7’p '

Now the first integral on the right side of (9.8) is equal to p times the transform
of the regeneration time distribution for the basic first passage problem (see
(7.4)), while the second integral is the corresponding entity for the first passage
problem associated with the initial conditions under consideration; hence (9.8)
becomes simply

(9.9) tH(p) = ——F—,

where R, denotes the transform of the regeneration time distribution for the
associated first passage problem and R is given by (7.4).

In terms of our original variables, equation (9.9) takes the form

(9.10) 70, 1) = “Ba 4 f FO,t — ) °E gy,

dt o dt

ie., F(0, t), the probability per unit time of the system regenerating at time ¢,
is the probability per unit time that the system is regenerating for the first time
at time ¢ starting from the given initial conditions plus the probability per unit
time of its regenerating at time ¢ having last regenerated at time ¢'. (9.10) could
well have been posed directly and its solution (9.9) obtained immediately with-
out recourse to the analysis of the full problem. We have preferred to obtain
(9.9), however, as a by product of the analysis of the complete queuing problem
posed in Section 3 in order to show clearly how the additional difficulties of
the full problem may be dealt with within the framework of the general formal-
ism.

In concluding this discussion of the complete queuing problem, we remark that
on the basis of the direct relationships established above between the complete
problem and the first passage problem, the questions of stable and unstable solu-
tions, synchronous solutions, and the like for the complete problem may be
analyzed directly in terms of the corresponding considerations given for the first
passage problem (Section 7).

10. Some relationships with previous literature. In this final section we wish
to indicate briefly the relationship of the foregoing to that of F. Pollaczek [3]
and D. V. Lindley [4]. In [3] Pollaczek has considered the problem of determining
the server occupation time distribution for a simple queue subject to general
interarrival and general service time distributions. Under the assumption that
both the arrival and service distributions fall off exponentially, he was able to
derive (in an independent way) the following integral equation (cf., (5.19)) for
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a basic quantity I (translated to our setting):
i‘[ a+(a)d_(a — ip)l (o) do
c

27t c— w

(10.1) I'w) =1+

for which he was able to give (again by an independent argument) the solution
(cf., (6.6)):

(102) I (s, @ p) = exp [ 2% fo log [

Pollaczek’s analysis here, though of obvious importance in its own right, con-
tains no consideration of the significance for the general queuing problem of the
integral equation nor its solution beyond the immediate problem of determining
the distribution of the server occupation times.

In [4] Lindley has considered the problem of determining the distribution, F,
of waiting times for entry into service of arrivals to a simple queue in equilibrium
subject to general interarrival time and general service time distributions, with
a first-come first-served discipline. Under these conditions, he has derived the
following integral equation for F':

1 — say(a)d_(s — ip)]] do.

g — w

(10.3) F(z) = fom F(y) dG(z — y), r =0,

where G is a (cumulative) distribution function composed of the given inter-
arrival and service time distributions. In the event they possess densities 4 (y)
and D(z), respectively, it follows that the density of F exists on 0 < z < «
and its component there satisfies the integral equation

(10.5) () = Fog(a) + fo gz —y) dy, x>0,
where ¢ is the density of G on (— <, ©) and Fy = lim,,o; F(x) > 0 is the
probability of the server’s being vacant and the queue empty. Adding an un-

known function ! ~(z) to (10.5) and taking a Fourier transform with respect
to —z, we obtain

(10.6) ¥ (o) — ¢ (0) = —as(0)d—(a)¢ (o),

where

v (e) = Fy +f_ I (z)e " da,
¢ (o) = Fo + [wf+(x)e_i”z dz,

a.(c)d_(s) = /_: g(z)e"" dx.
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“The Plemelj formulae then yield for Im(w) < 0
1 [®a(0)d(a)¢ (o) ,
= g

271 - F—w

(10.7) ¢ (w) = Fo —

b

which is the p — 0 limit of (5.19) to within the multiplicative constant F, ,
the boundary condition at infinity. We thus have the result that the entire state
densities for the queue in equilibrium are available once the solution of Lindley’s
integral equation for the waiting time distribution is available. In place of
.considering (10.6) as a Plemelj problem leading to the integral equation (10.7),
it may also be analyzed as a Hilbert problem and resolved directly.
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