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In the case of a sample (or of a finite population) of 2n + 1 members, it is
easy to show by an argument similar to the one used in the proof of the theorem,
that the measure S lies between —n?/(n + 1) and nl/(n + 1)%.

Finally, we note that |S| < 1 can be obtained in a different manner, [1], prob-
lem 5, p. 256.
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USE OF WILCOXON TEST THEORY IN ESTIMATING THE
DISTRIBUTION OF A RATIO BY
MONTE CARLO METHODS!

By Lincornn E. Mosgs

Stanford University

1. Introduction and summary. If r = z/y is the ratio of two independent con-
tinuous positive random variables, its distribution can be estimated by generat-
ing random samples from the distribution of z and y, and then proceeding in
various ways. It is shown, using well-known results in the theory of Wilcoxon’s
test that the uniformly minimum variance unbiased estimate of H(4) =
P(r £ A) is obtained by computing Wilcoxon’s statistic for therandom variables
Ui = &, v = Ays(d = 1, .-+, N). The variance of the estimate of H(A4) is
readily estimated. The computations required by this approach are more arduous
than those needed to estimate H(A) from the quantities r; = x;/y., but may be
worthwhile where the major part of the computations lies in generating the z; and
y. . Extension of the reasoning leads to choosing different numbers of z’s and y’s
if they are of different complexity to generate. Further, if the distribution of one
of the quantities « or y is known then an effectivity infinite sample from that
population is already available and the distribution of r can be estimated by
sampling only the variable with unknown distribution, which may (or may not)
result in economy of effort.

2. Results. Let & and y have continuous ¢.d.f.s F and G respectively, with
F(0)= G(0) = 0. Let it be desired to estimate by Monte Carlo methods
(1) H(A) = P((z/y) = 4),
where z and y are independently distributed.
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A straightforward method of estimating H(A) is to construct N independent
pairs (z:, ¥:),¢ = 1, -+, N, and for each pair to define Z;(4)= 1if z;/y; =
r; < A and Z;(A) = 0 otherwise. Then H(4) = N* D Z; is an unbiased esti-
mate of H(A) with variance N "'H(A)[1 — H(A)], which can be estimated from
the results in an obvious way.

Use of a well-known multiplicative device leads to estimates of smaller vari-
ance, as follows:

H(A) = P((x/y) = A) = P(z = y4).
Define
U = X3 V; = Ay,- .

Then we define Wilcoxon’s test statistic in the Mann-Whitney form,
N
U=N2 Fi(),
=l

where by Fx we denote the sample c.d.f. of the u; .

Lehmann [3] has shown that the uniformly minimum variance unbiased esti-
mate of H(A)= P(u < v) is U/N* = H(A).

Further, the variance of this estimate is, except for obvious constant factors,
the variance of Wilcoxon’s statistic under the alternative hypothesis, given by
Van Dantzig [4] and cited by Birnbaum and Klose [2]. This variance in our nota-
tion as as follows:

FIHA)] = (/NI — 1)¢" + (N = 1)7* + pdl,

o=[ rwa)-2,
v=[ e (L) arw - v,

o=1-p=[rwaa (L) - .

where

To estimate o’[H (A4)] the integrals above can be replaced by the corresponding
sums from the sample data.

In general, if m observations are taken on z, and n observations are taken on
y (rather than N on each, as above) the estimate and its variance are

@) A(4) = (1/mn)U = (1/n) ; FE(v;)

(3) FH(A)] = (1/mn)[(m — )¢’ + (n — 1)¥* + p(1 = p)].

If one of the two random variables were very much more difficult to sample
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than the other, m and n could be chosen to balance cost against precision in the
light of this expression for the variance.

If one of the two random variables has an explicitly known distribution, say
F(t) is known, the distribution of r can be more precisely estimated (and perhaps
more economically estimated) by sampling y and using numerical integration. In
particular

H(4) = (1/n) gmv» ~ (1/m) X P(4y)

is an averége of independent identically distributed random variables. It has
mean

BUA(A)) = B (F(4y)} = [ () d6 (ﬁ) _ H(A)
and variance

()] = (1/n) var F(Ay) = (B(F*(4y)) — (BF(49))?)

— (1/n) [fom F(1) d& (fl) — (f: F(t) dG (i)ﬂ

= (l/n) ¢27

and this is strictly less than ¢’[H(A)] which uses m observations on z rather than
knowledge of its distribution.

A few further matters deserve comment. First, the optimum properties of
A(4) (andI;T (A)) would seem to commend the use of this procedure where the
distribution of the ratio is to be estimated at not merely one point, A, but at a
set of points 4, , - -+, 4 . However, no justification beyond intuitive appeal is
offered here. Second, the entire exposition has assumed both z and y to be strictly
positive random variables. Actually, if y is positive, then no modification of the
text is necessary when z is allowed to take both positive and negative values.
Further, if either z or y is always of one sign, the situation is essentially un-
changed. If both x and y take values of both signs, a somewhat more complicated
adaptation of the procedure is necessary, and it is not immediately evident what
optimum properties the estimate enjoys. Finally, something can be said about the
amount of savings in sample available by this estimation procedure. Birnbaum
and Klose [2] give sharp upper and lower .bounds on the variance of U. Their
sharp upper bound (Theorem 3.2) shows that zero savings can occur in certain

-extreme situations. Their sharp lower bound for p < % and m = n (Theorem 3.5)
shows that maximum possible savings, as expressed by that bound, grows with-
out bound as p tends to zero. Some numerical examples are given in [1].
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ON THE EXACT DISTRIBUTION OF A CLASS OF
MULTIVARIATE TEST CRITERIA
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1. Introduction and summary. It is known that the moments of several test
criteria in multivariate analysis can be expressed in terms of Gamma functions.
Various attempts have been made to determine the exact distributions from the
known expressions for the moments. Wilks [11] identified such a distribution with
that of a product of independent Beta variables, and he gave explicit results in
some particular cases. Later, Nair [5], using the theory of Mellin transforms, ex-
pressed the distributions as solutions of certain differential equations, which he
solved in some special cases. Kabe [3] expressed them in terms of Meijer G-func-
tions. Asymptotic expansions of the distribution functons have been given by
several authors; notably by Box [2], Tukey and Wilks [8], and Banerjee [1]. In
this paper we give exact results in some important cases, in which it is found
that the distribution is identical with that of a linear function of Gamma
variates.

2. The distribution of a linear function of gamma variates. Let X, X,
.-+, X, be n independent random variables having the frequency functions

(21) f(xj) = {x?i_l/2pir(pj)}e_éw) 0<z; < °°7j =12 ---,n

Then the characteristic function (c.f.) ¢(¢) of the variable Z = > (X;/a;),
as being given positive constants, is

(2.2) o(t) = ]I:Il afi(a; — 24t) 77,

By inverting this c.f. we find that the fi'equency function (fr.f.) of Z is given by
the expression

f(2) = {ad'ad? -+ a2 /25T (Xp) e P T py, ps, oy Das
Zpi 5 %(al - 0[2)2, %(al - ag)Z, ] %(al - Oln)Z],
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