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FROM THE CHI-DISTRIBUTION (1 d.f.)!

By Zakkura GOVINDARAJULU?
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0. Introduction and summary. Numerous contributions have been made to
the problem of order statistics in samples from normal and exponential popula-
tions. For the problem of location with symmetry Fraser [1] derived a locally
most powerful rank test against normal alternatives. It is the Wilcoxon test
statistic with the ranks replaced by the corresponding expected values of order
statistics in a sample from the chi-distribution with one degree of freedom.
Gupta [5] considered the order statistics from the standardized gamma distribu-
tion with the parameter r defined on the positive integers (that is, from the
chi-distribution with even degrees of freedom) and derived expressions for the
kth moments of an order statistic and the covariance between two order sta-
tistics. He also presented a table of numerical values of the kth moments of an
order statistic accurate to six magnificant digits for £k = 1(1)N, N < 15 and
r = 1(1)5% where N is the sample size. It might be of interest to consider the
problem of order statistics in samples from chi-populations with odd degrees of
freedom. However, this problem seems to be more difficult than the one con-
sidered by Gupta [5].

In the present paper, the expected values for samples to size four and the
mixed and second moments (about the origin) for samples to size five, drawn
from the chi-population (1 d.f.) have been evaluated. Numerical values of
these to eight decimal places are computed. Section 2 contains general formulae
and some definite integrals used in the computation. The results in Section 3
have theoretical interest in showing the relationships between moments of order
statistics from chi (1 d.f.) and the standard normal distributions. In Section 4,
there is a discussion about the number of integrals required to evaluate the first,
second and mixed moments of order statistics for each N, given these moments
to N — 1 and the existence of the tables for the normal distribution. There is
also a discussion about the cumulative rounding error involved in using the
formulae recurrently.

1. Notation. Let X1v < Xonx < --- < Xy, be the order statistics in a

random sample of size N from the chi-population (1 degree of freedom) having
the probability density function (pdf)

f) = @/mi™ z

=0 z <0,
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and cumulative distribution function (cdf) F(z). Let Zyy < Zoy < - -+ < Zy.»
be the order statistics in a random sample of size N drawn from the standard
normal population with pdf and cdf ¢ and ® respectively. Note that when z = 0,
F(z) = 20(z) — 1 and f(z) = 2¢(x). Setting »{'y = E(X5y), we have the
well known integral

(k) N!

PTG DN — )l

LF @) — Fe)" " dF(z), i=1,---,N,k=1,2, -

0
For simplicity, we shall write v,y = »{ . Similarly, setting »; ;v = E(XinX PN,
we have
N! ff i1
%, = 7= q g g F
(13) T =D — 7= DN — ! ococyce o (2)
(F(y) = F@V™1 = FI" 7 dF (@) dF(y); 1<i<j<N

Consequently, »iy = ;. . Also set iy = E(Z% ) and wijin = E(Z;nZ;n);

1=7=j=N,k=1,2, . As before, we write u; y = ,u(l)andu“?; = UiiN .

2. Basic formulae. Following is a collection of formulae that are useful in
the computation of the desired expected values. Formulae (2.1)-(2.6), (2.10)
and (2.11) are true for an arbitrary distribution, for which the corresponding
integrals converge. Formulae (2.1)—(2.5) can be derived by writing every term
on the left side of each formula as an integral and summing underneath the
integral sign. Formula (2.6) follows by considering the variance of (Xy 5 + - --
+ X~w)/N.

. (k) o (k) (k)
11/$+1,N -+ (N - 7/)7’1(,1\' = Nv ViN—1 ;

@.1)
i=1,2---,N—1, k=1,2, -
(2 2) (l - I)Vi,j,N + (] - i)Vi—l,j.N + (N - .7 + I)V'i—l,j—l,N
' = Nvia,jan-, 1<i=j=N.

N
2.3) ; vin = N E(X).

N
(2.4) > viy = N E(XP).

N-—1 N .
(2.5) 2, viiw = AN - DB
N N

(2.6) Z Z cov (Xin; X;w) = N EIX — E(X)J™

Some definite integrals which have been used in evaluating the moments of
chi order statistics will be given below. In evaluating these integrals, integration
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by parts has been employed wherever possible. The limits of integration are
(0, ») unless otherwise specified. f and F respectively denote f(z) and F (z).

27) j; of dv = §(b) — f(a), e>b>0
(2.8) f frde =at

(2.9) f fde = 2/(3%).

(2.10) f F'f"df = —n(m + 1)~ f F*™*2 da,

for all positive integral m and n.

(2.11) f F"dF = (n 4+ 1)7.

(2.12) f Ff*dx = 20~"* Arc tan 272,

(2.13) f Ff’ dz = 2/(3"%x).

(2.14) fF2f2 dz = 20 %% Arc tan 87 = 7 (1 — 47" Arc tan 27%),

since Arc tan 8 4+ 2 Arc tan 27 = 7/2.

(2.15) f P do = [4/(3%)] Are tan 157
(216) [rw | [ @ ae]ay = cn
(2.17) ffz(y)F(y) [_/;y () dx:| dy = 27 Arc tan 57

When an integral contains a power of F, the integral can be thought of as a
multiple integral by using F(u) = ff)‘ f(®) dt. (2.12) and (2.13) have been
evaluated using polar coordinate transformation and (2.14) to (2.17) have
been evaluated using the transformation v = p, v = px, w = py and well-known
integrals.

Using (2.2) recurrently, one can generate the W@ =1,2, -, N) if the
v (@ =1,2,---, N — 1) and any one of the v are available. Similarly,
using (2.3) recurrently, one can generate the »; ;v(¢ < j,%,j = 1,2,---, N)
if the »; ;v < j,%,7=1,2,---, N — 1) and any N — 1 of the »; ;~ are
available. Formulae (2.3) to (2.5) can be used for checking the computations.
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3. Certain relationships. In the formulae of this section we find some rela-
tionships among the moments of order statistics in samples drawn from the
chi-population (1 d.f.). One can also find some relationships between the mo-
ments of order statistics from the chi (1 d.f.) and the standard normal distribu-
tion. These formulae can be used for checking numerical values from existing
tables, for computing some in terms of others and for obtaining some values
from existing values for the normal distribution. Formulae (3.3), (3.4), (3.5)
and (3.6) will be used for the discussion in Section 4. All the formulae of this
section will be listed below; the proofs will be given later.

When N is even,?

N2 ) AN

(3-1) VNN = Zo (—‘1)12N—1_1 <’L ) MN—i,N—i -
If N + kis odd,*

N-—-1 A X N
(3.1.1) W= () S (—1ye (2 ) Bt

1=0

N

(3.2) vy = Zi (-1~ <]y> Vi
(3.3) vy =1+ YN—1,N N -
(3.4) viv =1+ vow — N@/m) viwa.

When N is even,

(N=2)/2 1 (N
Vi, NN = Z (—l)z (’L)V“ VN—i,N—i

=1
(3.5)
— 1
+ (_1)(N 2)/2 <§><NIZQ> 1/12\,/2'1”2 .
When N is odd,
N—2 ) (N
(3.6) VN—1,N.N = Zo (—1)" 2N <z> MN—i—1,N—i,N—i -
N
Vig, N = 2_22 (—1)1—1 <]zf> Vi-1,i,i
(3.7) e
+nem' E 07 (V) o =g
iz
When N is even,
No1 /a7 ) i f
(3.8) 2V1,N,N = 2NM1,N,N + 2:1 <'L )(_I)H‘IVI,N—@' [Zl <]> Vi,i:|-
i= i=

3. 4 Formulae (3.1) and (3.1.1) were found by Professor Milton Sobel at the 1958 Summer
Statistical Institute, sponsored by the National Science Foundation.
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N
(3.9) Dovin=1— 3.
j=2
N—1 )
(3-10) 21 ViN N = N(2/7r)iVN—1,N—1 - 1(»'2.1)v + 1.
i
N N
(3.11) Zlui,m — le-l.m =1—»%, 1<i<N-1.
J=i+ J=

For all positive integral N
i—1
ma—m N
Vij N = 2N Z (_1) 2 <m> Mi—m,j—m ,N—m

m=0
o izt —_ 7
+ (M) S —m (V77 s amsesin
(3.12) t/m= Jormm
: i N—j+1 B N
1 m—1
0T 2 (D <j+n— 1)
j+n-—1
: i—m Vn,j—itn,j—itmtn—1 -
Proof of (3.1). Consider the expression
(A) 2NN_£ zo(z)[®(x) — 4% da.

If we let 2&(z) — 1 = F(x), so that 2¢(z) = f(x) then (A) becomes
N7 af@)[F ()] " de = vy .

On the other hand, if N is even, the integrand in (A) is an even function and we
can write (A) as

N2 ! /_er ro(x)[®(x) — 4V de

= (N — 1\ = [ S
= N2V I_Z(:) (—1)'< i >2 ’/ zo(2)®" " (2) dx,
which simplifies to the form given in (3.1).

Proof of (3.1.1). If N + k is odd, then symbolically vi% = () (2ui? — 1)7,
if powers of u{? say (u{%)® are replaced by u$¥ fors = 1; for i = 0, we define
uss as zero.

Proof of 3.2. Writing »,~ as an integral, expanding [I — F(2)]"" as a bi-
nomial series and integrating termwise, one gets the desired result. Note that
(3.2) is true for an arbitrary F(x).

Proof of (33). vwaww = NN — 1) [ [ococyceo 2yf (@) f () [F (2)]¥* da dy.
Integrating with respect to y one gets

vwanw = NN — 1) [§af* @) [F ()] da.
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Writing f(2)[F (x)]"™ = d/dz[F* " (z)/(N — 1)] and integrating by parts
we get the desired result.

Proof of (3.4). Use the method of (3.3).
Proof of (3.5).

nn =N =) [ auf@)@)F@) — F@P do
Since N is even,
= INOV = 1)/2] | 7: 2yl @ WF ) — P& de dy.

Now, expanding [F (y) — F (x)]"* and integrating termwise, we get the result.
Proof of (3.6).

vwanvy =NHN — 1) fo ) af* (@) F¥*(2) dx (See the proof of 3.3)
— 2NN - 1) [ @B - 1

+o0
=N - [ al@re) - 3,

N—

when N is odd. Now expanding [® (z) — 4]"* and integrating term by term, one

gets the result.
Proof of 3.7). maw = NN = 1) [[oqyrc sl @F W1 — F @) duv dy.
Integrating with respect to y one gets

viey = —N(N — 1) f: zf*(2)[1 — F(z)]" *da

+ NN — 1)(2/71-)%[)@ zf(2)[1 — F(2)]¥* da.

The result follows after expanding [I — F (z)]"* and integrating termwise.
Proof of (3.8).

= 2NN =) [[ ape@le@)e) — #@)" do dy.
0<z<y<oo
The integrand is symmetrical with respect to origin and in z and y. Consider

pww =NV =D [[ ape@pe)lat) — 2@ da dy

0<z<Y<0

= 2_(N_1)1’1,N,N + NN —1) ]=_ fy:o zye(2)e(y)[®(y) — @(x)]N_2 dz dy.
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Expanding [® (y) — ®(z)]"* and changing z to —z, one gets
N-—-2
(N i -2
Mi,NN = 2 w I)VI,N.N + Zo (—1) +1N(N - 1) <N i )

. Uom 20(2) {1 — ®(2)}V dz:":(, Yo (y) ' (y) dy]

N-—2 . N _ 2
— 2—(N—1)V1,N,N + Z (_1)1+1< ; )N(N _ 1)2—N

. [fo‘::f(Z) {1 —F@R)}" dz:";[o yf {1 + Fy)}' dy].

Now, expanding [I & F)® in powers of F and integrating termwise we obtain
the result.

Proof of (3.9).
s N!

LHS. = 2 ey = 71

[ @) — F@F L - FOP da dy.
0 <z<y<oo

Taking the summation underneath the integral sign, we get

LHS. = N(V — 1) f fo o @ = F@)I™ de dy

=N —1) fom zf2(x)[1 — F(x)]"" de.

Now the result follows after one integration by parts.
Proof of (3.10). Following the same method as in (3.9), we get

LHS. = NN —1) ffo<z<u<w ayf (@) (IF )" dx dy.

vy—in .y + LHS. of (310) = NV — 1) ‘/om '[n xyf(x)f(y)[F(x)]”‘2 dz dy

= N(2/7")%VN—1,N—1 .

The result follows after using (3.3).
Proof of (3.11). Following the method of (3.9), we have

N

Z Vij,N

j=Tt1

NN —-1) --- (N —1) i—1 N—i—1

= e g f /0 s, W@ WFT @)L = F(@))" dwdy
NI

TN —i—= DG = 1!

fom zf () F ()1 — F(2)]¥ 7" da.
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Write (N — 0)f(@)[l — F(2)]""' = —d[l — F(z)]""* and integrate by parts.

The result follows.
Proof for 3.12. v;,; x is given by the integral

Vijn = Ci'j,N 2N—i+1
[ mleate) — 17e() — #@)F 7 - W) e(2)e(y) do dy
0 <z<y<eo

where C;;x = N[ — DIG— ¢ — DIV — DI

0 0
N—i+1
Vi'j'N = Ci,j'N2 [ff - / f - ff ].
—0Lrly<®™ g=—0 Vy=0 —0<z<y<0,

Writing [20(z) — 1] = Dl (—=1)" (Z) [2® (z)]" ™ and integrating term-

wise one obtains

—1 s —m N
2N +ICi,j,N /:/ <ocy< = 2 E ( ].) 2 ( ) Mi—m ,j—m ,N—m -
—o<lzly<w m=0

”N2N—z+1 fx#w/- __C”N2N—z+1( 1)° _21:1< 11;7/— 1)
: Uo 2(20 — 1)@ — 37T () d:c]-

. Uow y(@ — H™1 — 3) e(y) dy]-

Express the integrands in terms of F’s and f’s, and integrate. Change m + 1
to m and obtain

Com2 [ [ = (-1 ( )Zz(: m™

N —
: j — i —m Vj—m,j—m Vm,N—j+m «

In the third integral put x = —=z, y = —y, use and relationships ®(—=z) =
1 —®(z) and F (z) = 2®(x) — 1 and obtain

N—i+1
Cijn2 ff
—0<lz<y<0

= (07 [[ P @@ - PGP+ FOIM @) de dy.
Now, write

r@ =2 (C) o - Fern

- FI" =3 (N n j) F)TI,

n=
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integrate termwise and obtain

N—i+1
Cijn2 f f
—00<lz<y<0

i N—j+1 .
i1 m—1 N j+n-—1
1) 7;1 "Z_ ( 1) (j + n — 1)( i - m Vn,j—it+n,j—itm+n—1 «
If we combine the three preceding results, (3.12) readily follows. Formula
(3.12) expresses the relationship between »; ; » and vy_j41 x_i41.x given a table
of values of the u’s up to N and the »’sup to N — 1.

4. Minimum number of integrals to be evaluated. It will be useful, especially
when we are interested in exact lower moments, to find out the number of inte-
grals required in order to evaluate the first, second and mixed moments of
order statistics in a sample of size N, given these moments in samples to size
N — 1 and a table of these moments of normal order statistics to size N. Hence
the following theorem.

THEOREM 4.1. In order to obtain the first, second and the mized moments of
order statistics in a sample of size N, one has to evaluate at most one single integral
(second moment) and (N — 4)/2 double mtegrals when N is even, for example,

evaluate vin and vy ;x , for Jj = 3,4, , N/2; and one single integral (first
moment) and (N — 3)/2 double mtegmls when N 4s odd, for example, evaluate
Vi,N and V1,5,N fm‘j = 3, 4, crey, (N - 1)/2.

Proor. If N is even, vy y can be computed from the normal tables (see (3.1))
and by use of (2.1) the rest of »;» can be found. Compute »{% and find the
rest of »{% by use of (2.1). Since (3.12) expresses v;,;x(1 < ]) in terms of
vN—jt1,8—i+1,v and the u’s up to size N and the »’s up to N — 1, it is enough
if we consider just the v, ; x(¢ < j) that lie in the upper wedge shaped por-
tion of the matrix (v; ;) (See Figure 1). It is easily seen that the number of
vi,jn (1 < j) that lie in the aforesaid portion of the matrix (v; ;) is N°/4 and
that (2.2) gives N (N — 2)/4 independent constraints among the »; ;v (i < j)
lying in the upper wedge shaped portion of the matrix (v; ;). Moments », 5 x
and »,y,v are respectively known from (3.4) and (3.5). Hence the number of
vi,;n (T < J) to be evaluated is

[N°/4] — [IN(N — 2)/4] — 1 — 1 = (N — 4)/2.

HL,NN

k1,1, N

F1e. 1. The upper wedge shaped portion of the matrix (v:,;,5) for even N.
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BPR(N-1)}(N-1),N M3 (N-1),3(N+3), N

BYN+).H(NH)N

F16. 2. The upper wedge shaped portion of the matrix (v:,;,5) for odd N.

Thus, it is sufficient to evaluate »,;5 for j = 3, 4, ---, N/2. In order to find
the rest of »; ;v use (2.2) withi¢ =1,7=2,3,--- N —1;¢=2,7=2,3, ---,
N — 2; etc. until the total number of these relationships is N (N — 2) /4. While
applying (2.2) with ¢ = 1 and any j less than N, write ¢ = N — j + 1 and
J = N.Solve for vy_jpinn,5=2,8,---, (N — 2)/2 using (3.12).

When N is odd, evaluate one v,y ; for example, evaluate », 5. By use of
(2.1), solve for the rest of »; 5 . Also, from (3.1.1) we can obtain »$% in terms of
second moments of normal order statistics. Using (2.1), one can solve for the rest
of »{’» . As remarked earlier, since (3.12) relates vi,jn and vy_jp v—ia v (7 < 7),
we consider only those »; ; x (¢ < j) that lie in the upper wedge shaped portion of
the matrix (v;,;~) (See Figure 2). It is clear that the number of »; ;v (i < §)
lying in the aforesaid portion of the matrix (v; ;) is (N> — 1)/4 and that the
number of independent constraints among these »;,; v (¢ < j) lying in the upper
wedge shaped portion of the matrix is (N — 1)°/4. Moreover, (3.4) gives
v1,2,5 . Thus the number of »; ;» (¢ < j) to be evaluated = [(N* — 1)/4] —
(N — 1)%/4 — 1 = (N — 3)/2. Hence, it is sufficient to evaluate », ; v for
J=3,4---, (N 4+ 1)/2 Solve for vy_jrunw,j=2,3,---, (N — 3)/2
using (3.12). By use of (2.2) as stated in the case N is even, until the number
of relationships is (N — 1)°/4, the rest of »; ; » can be solved for.

ReMARK 4.1. It will be easier to find vy_; » .y from (3.3) rather than from
(3.12) with known v 5y . Further, it might be convenient to write the con-
straints given by (2.2) with¢ = 2,7 =3,4,--- ,N;¢ =3, =3,4,---, N,
etc. until the total number of these is (N — 1) (N — 2)/2 and use (3.12) to
obtain the rest of the constraints needed.

REMARK 4.2. Formulae (2.3), (2.4) and (2.5) do not constitute constraints
independent of those given by (2.1) and (2.2). Formulae (2.3) and (2.4) can
be obtained by summing (2.1) on¢ = 1,2, --- , N — 1, with £ = 1 and 2 re-
spectively. Similarly, (2.5) can be obtained by summing (2.2) on¢ = 1,2, -- -,
N—-—landj=7+4+1,74+2,---,N.

Let us demonstrate how one obtains the moments of order statistics in sam-
ples of sizes three and four. Assume that the table of these moments for N = 2
and the table of these for the standard normal distribution are available.

N = 3: Evaluate » ;. Solve for » 3 and »;; from the following equations
obtained from (2.1).
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va3 + 23 = 3n, and 2v35 4+ va3 = 3vp.

From (3.1.1), we can compute »§3 which is given by the equation v$y = 448y —
6usy + 6. Using (2.1) with k = 2, we can solve for »3 and »$% . Also, (3.3)
and (3.4) respectively give vy 33 = v§23) — land » 23 = v§23) + 3(2/7) Y 2 — 1.
Formula (2.2) with< = 2,7 =3,and N = 3gives o33+ 33+ 23 = 3vas,
from which we can solve for », 33 .

N = 4: From (3.1) we have vsy = 4 (2us,s — 4us3 + 3uz,2). We can solve for
V14, v2,4 and vs 4 from the following equations obtained from (2.1). v2 4 + 314 =
4y 5,254 + 2004 = 4ve3and 3vss + w34 = 4vy;. Now evaluate »{% and solve
for »$% , »$% and »{% , using (2.1) with & = 2. Also,

(33) gives V344 = vﬁ) — 1,

(3.4) gives a4 = v\d + 4(2/m) s — 1,

(3.5) gives V144 = 4(2/1!')%1/3,3 - 3113,2 .

Formula (2.2) with

i=2,7=3gives o34+ v134+ 2v24 = 4v123,

1 = z,j =4 gives Vous + 20144 + visa = v y

t=3,7 =4gives 2v344 + v244 + 234 = 41233,
from which we can solve for »1 34, v234and vz a4.

The above discussion is pertinent especially for the evaluation of exact mo-
ments of order statistics for each N. However, it will be difficult, if not impossible,
to evaluate these exactly except for small values of N. For the numerical evalu-
ation of normal order statistics, it has been pointed out by Pearson (see [6],
p. 152) and Srikantan [7] that there will be a steady decrease in accuracy due
to the repeated application of the recurrence formulae (2.1) and (2.2) for work-
ing “upwards.” The same can be said in the case of the chi-order statistics be-
cause of the relationship of the chi and normal density functions. However, as
noted in [6] and [7], by writing the formulae as

ViN—1 — N_l[illi.l.l,)v + (N - i)Vi,N], i= ]., 2, ctt N —_ 1

and
Vi-1,j—-1,N—1 = N_l[(’lf - I)Vi,j,N + (] - Z) Vi-1,j,N + (N - ,7 + I)Vi—l,j—l,N],
1<i<j=<N-1,

TABLE II

Expected values of the largest order statistic for even N, computed using (3.1) and
Teichroew’s Tables [8]

N YN.N N YN.N
4 1.46472798 14 2.02252221
6 1.65399631 16 2.07705370
8 1.78336710 18 2.12406668
10 1.88071558 20 2.17252108
12 1.95829680
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they can be used for working ‘“downwards” with no serious accumulation of
rounding error.
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