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1. Introduction. There are very few distributions, which, like the normal dis-
tribution, have intrinsic extensions to the multivariate situation other than the
trivial extension requiring the components to be independent. Of these dis-
tributions, the stable distributions occupy a unique position. The multivariate
stable distributions may be characterized by the requirement that every one-
dimensional marginal distribution (that is the distribution of every linear com-
bination of the variables) is a stable distribution. A proof that such a requirement
characterizes the multivariate normal distribution may be found in Anderson’s
book [1], pg. 37. This paper is concerned with an investigation of the symmetric
multivariate stable distribution with characteristic exponent 1, namely, the
symmetric multivariate Cauchy distribution.

DrrINITION. A random vector X' = (X1, ---, X)) is said to have a multivariate
Cauchy distribution if, and only if, for every real vectort' = (4 , - - - , t), the random
variable tX = D t.X; has a Cauchy distribution. The distribution is said to be
symmetric if the mass is distributed symmetrically with respect to some point in
r-dimensional space.

The following simple lemma is the basis for this study. A similar result for
arbitrary stable distributions may be found in Lemma 2 of [2], but note that the
word symmetric is used there in a different sense.

Lemma 1. The distribution of a random vector X is multivariate Cauchy if, and
only if, the characteristic function of X has the form

(1) ox (t) — e—a(t)+i"/(t)’

where g(t) = 0 and v (t) are real functions satisfying the equations
) g(at) = lalg(t)

(3) v (at) = ay(t)

for every real number a. If the distribution is symmetric with respect to a point ~
in r-dimensional space, then
4) r(®) = 1t

Proor. If a characteristic function has the form (1) where g and y satisfy
(2) and (3), then

pvx(a) = B = gx (at)
(5) — e—o(at)+i7(at)

= ¢ lalo®+iav(t)
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which is the characteristic function of a Cauchy distribution with median 7 (t)
and semi-interquartile range g(t).
Conversely, if for every t,

(6) dvx(a) = e

where g(t) = 0, we see by putting @ = 1 that (1) is satisfied, which in turn
implies that

—la]g(t) +iay(t)
b

(7) ¢X (at) = e_o(‘lt)'f‘i'y(at).
Equating real and imaginary parts of (6) and (7) immediately yields equations
(2) and (3).

If the distribution is symmetric about v, then for every t, t' (X — v) has a
Cauchy distribution with median zero. This implies equation (4) and completes
the proof.

It should be noted that not every function ¢x (t) of the form found in Lemma, 1
will be a characteristic function. It is the purpose of this paper to find necessary
and sufficient conditions on a real function g (t), when t is a vector in two dimen-
sions, in order that exp{ —g(t)} be a characteristic function of a bivariate Cauchy
distribution symmetric with respect to the origin. It is proved in Theorem 1
that the only condition needed in addition to (2) and non-negativeness is that
the contours of g(t) be convex.

ExawmpiE 1. Let X; and X, be independent, each having a Cauchy distribution
with median zero and semi-interquartile range (SIQR) one. The joint density of
X: and X; is fxy,x, (@1, @) = 7 °(1 + 23) 7" (1 + 23) . The joint characteristic
function of X; and X is ¢x,,x, (1, &) = exp {—|t;] — |t|}. The contours of this
characteristic function are squares with center at the origin and vertices on the
axes.

ExampLE 2. Let X; be as in Example 1 and let ¥; = ¥, = X;. The joint
distribution of Y; and Y, is a singular bivariate Cauchy with characteristic
function ¢y, v, (1, t2) = exp{—|t + #|}. The contours of this characteristic
function are lines equidistant and parallel to the line ¢ + £ = 0.

ExampLE 3. Let random variables X; and X, have a joint density fx,x,(x:, 72) =
(27)7'(1 + «f + 23) 7}, the so-called circular bivariate Cauchy distribution.
The characteristic function of X; and X, is ¢x,,x,(t1, &) = exp {— (& + tg)}}.
The contours of this characteristic function are circles centered at the origin.
Such distributions occur, for example, when X; = U;/V and X; = U,/V, where
Ui, U; and V are independent random variables having normal distributions
with mean zero and variance one.

ExamprE 4. Let X, Xs, ---, X, be a sequence of independent random vari-
ables all having the same Cauchy distribution with median zero and SIQR one.
Let a1, a2, -+, an and by, bs, -- -, b, be real numbers, and let ¥V; = a;X; +
®Xs + -+ 4+ axXnand Vo = 0:.X; + 5Xe + - + b,X, . Examples 1 and 2
are special cases of this example. The joint distribution of ¥; and Y, is easily
seen to be bivariate Cauchy, and the characteristic function is

(8) ¢Y1.Y2 (t]_ , t2) - e_z'l'la;tl-l.b‘gz'.
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The contours of this characteristic function are convex polygonal paths sym-
metric with respect to the origin. This may be seen by noting that in a neighbor-
hood of any point not lying on one of the lines a;t; + by = Ofors =1, ---, n,
the exponent in the right side of (8) is linear. In fact, between any two such
neighboring lines, the function g (4 , &) = Z]aitl -+ bu,| represents a plane whose
value at the origin is zero. Consequently, the contours 2_|a#; + bi] = ¢, ¢ > 0,
are convex polygons with vertices on the lines a.; + bi#; = 0. If the lines are
distinct, there will be exactly 2n vertices.

The distributions of Example 4 are very important. The corollary to Theorem
1 states that these distributions are dense in the set of all bivariate Cauchy
distributions symmetric with respect to the origin. The proof of the sufficiency
part of Theorem 1 (that every convex curve symmetric with respect to the
origin can be attained as the contour of the characteristic function of a sym-
metric bivariate Cauchy distribution) consists merely of showing that every
convex polygon symmetric with respect to the origin can be attained as a con-
tour D 7lai# + bits| = 1 for suitably chosen a; and b, .

In Section 3 we shall discuss the relation which exists between the representa-
tion of the symmetric bivariate Cauchy distribution found in Theorem 1 and
a similar representation of Paul Lévy [4]. In the last section we show that the
representation of Theorem 1 cannot be extended directly to three dimensions,
in that there exist convex surfaces symmetric with respect to the origin which
cannot be attained as a contour of the characteristic function of any symmetric
three-dimensional Cauchy distribution.

One is led to believe that the validity of Theorem 1 is an “accident”’, that there
is some more intrinsic property defining the contours of the functions ¢ (t) when
t is in n-dimensional space, which just happens to coincide with convexity when
n = 2. If so, I believe that it is a fortunate accident, because it seems to me that
a characterization in terms of the contours of the characteristic function is what
one really wants. Given a symmetric bivariate Cauchy distribution and knowl-
edge of its marginal distributions in several directions, one would like to know
what possibilities are available for the marginal distributions in a few other
directions. Information of this sort, which is difficult to obtain from Lévy’s
representation, can easily be obtained from Theorem 1.

Certain unsolved problems are suggested naturally by the results of this
paper. Since Theorem 1 does not extend directly to higher dimensions, the prob-
lem arises to find the condition which characterizes the shape of these contours
in three or more dimensions. This condition must be stronger than convexity.
Another interesting problem is the extension of these results to symmetric bi-
variate stable laws with arbitrary characteristic exponent o, 0 < « < 2. This
paper treats the case o = 1, and shows that the contours of the characteristic
function are the convex curves symmetric with respect to a point in the plane.
For a = 2, the distributions are normal, and the contours of the characteristic
function of bivariate normal laws are the ellipses. For each « between 1 and 2,
there is a condition, yet to be determined, on the contours of the characteristic
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function, which characterizes the stable distributions with characteristic ex-
ponent . This condition gets increasingly stronger as « increases from one to
two, starting from the general convex symmetric curves, to the “most convex”
curves of all—the ellipses. Equally interesting and unknown are the conditions
on the contours for @« < 1. These contours do not have to be convex, as is ex-
hibited by the case where the individual variables X and Y are independent.

2. The main theorem. A function satisfying (3) is said to be homogeneous of
degree one. A function satisfying (2) is said to be positive homogeneous of de-
gree one.

Suppose that g(t, &) is positive homogeneous of degree one and that
g(t, ) 2 0. Then on any straight line through the origin, either g is identically
zero or g is zero at the origin and in either direction away from the origin increases
linearly from zero to infinity. Thus, on any line through the origin, the contour
g(t, &) = 1 will have either no points at all, or exactly two points symmetric
with respect to the origin. Any contour, g(t, &) = ¢, ¢ > 0, is a projection
from the origin of any other contour. Thus g (4 , ) will be completely known
when one contour is specified.

The distance from the origin to the contour g (¢, ) = 1 in the direction 6
(i.e., along the line ¢ sin § — #, cos § = 0) will be denoted by p(6). The contour
in polar coordinates (r, ) may then be written as r = p(6). Since p(6) may be
infinite but not zero we prefer to work with the reciprocal 4 (6) = p(6) 7" The
equation defining A () may be written

) h(8) = g(cos 0, sin 6).
We shall say that the contour g (¢, &) = 1 is convex, if the set
{th,t):gt, ) < 1)

is convex. This will apply equally well for unbounded contours. It takes an
elementary calculation, which we omit, to show that the contour g (¢, , &) = 1 is
convex if, and only if, for every ; < 8, < 6; for which 6; — 6, < =,

(10) h(ea) sin (02 —_ 01) + h(ﬁl) sin (03 - 01) g h(02) sin (03 —_ 01).

The reader may refer to Hardy, Littlewood and Polya ([3], pp. 98, problem 123)
for a discussion of circular convexity. If the function % (6) admits two continuous
derivatives, the above convexity inequality may be simplified to an equation
involving only one arbitrary 6,

an h(6) + h”(6) 2 0

for all 6.

THEOREM 1. In order that a function ¢ (4, t;) = exp {—g(t,, t2)} be the char-
acteristic function of a bivariate Cauchy distribution symmetric with respect to the
origin, it is necessary and sufficient that g (t, , t;) be real, non-negative, and positive
homogeneous of degree one, and have convex contours.
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Proor.

Necessity. That g (¢, {;) must be real non-negative and positive homogeneous
of degree one is contained in Lemma 1. To show that the contours are convex,
we must show that if (u;, uz) and (v1, v2) are two points for which g (u; , us) =
g, v;) = 1, then for every o, 0 < a < 1, ga = glaws + (1 — a)vy, aus +
(1 — @)v;) < 1. Let (X, Y) denote a random vector whose distribution has
characteristic function exp { —g (1, t2)}. Then, for 0 < r < 1,

gu Bl|(cus + 1 — @)v) X + (auz + (1 — @)v2) Y|'g3}
S dEluX 4+ wY| + (1 — a)'EjnX + vY|

from the c,-inequality of Lodve [5] pg. 155. The three expectations in the in-
equality (12) are all equal to E|Z|" where Z has a Cauchy distribution with
median zero and SIQR one. We may cancel these expectations and write

(13) ga=d+ (1-a)

for all r, for which 0 < r < 1. This inequality must also be true for r = 1, im-
plying that g» < 1 as was to be shown.

Sufficiency. Let g (4 , {2) represent a non-negative function, positive homogene-
ous of degree one, having a contour, g (4 , t;) = 1, which is convex. If the func-
tion A (#) defined by equation (9) is zero for all 6, then g(#, &) is identically
zero, and exp {—g(#, )} is the characteristic function of the degenerate (bi-
variate Cauchy) distribution. If for some 6,, 4 (6,) = 0, but & is not identically
zero, then the convexity implies that the contour consists of a pair of straight
lines parallel to the line # cos 6, + & sin 6, = 0. In this case, exp {—g(t, &)} =
exp { —cl|t; cos 6y + & sin 6]}, the characteristic function of a singular bivariate
Cauchy distribution. Henceforth, we assume that A () > 0 for all 6.

Let —ir = 6, < 6, < - -+ < Opa < 6, = 37. We claim that there exist num-
bers a;, -+, @n, and by, - -+, b, such that the polygon

(12)

have its vertices at the points where the contour g (4 , &) = 1 intersects the lines
{1 8in §; — f cos 8; = Oforj = 1, --- , n. If the vertices are to be on these lines,
the discussion of Example 4 shows that we may as well choose a; = r; sin 6, and
b; = —r;cos8;,fori = 1, --- , n. Thus we claim that there exist non-negative
numbers 7y, ---, 7, such that
(15) > rio(6;)|sin 8; cos 6; — cos 8 sin ;] = 1,

=1
forj = 1, - - -, n. This equation may be written as

(16) _ilr, sin (6; — 6:) + _ilri sin (6; — 6;) = R(6)),

t=j+
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forj = 1, -- -, n. The solution to this set of »n linear equations in #» unknowns
may be written as

h(0:41) sin (8; — 6:—1)

17) e = + h(6:y) sin (Biy1 — 0:) — h(8:) sin (6iy1 — 0i1)
* 2 sin (0.;+1 —_ 0,‘) sin (0.— - 01;_.1) ’
fori =1, ---, n, where 0, is defined to be 6; 4+ =, and A is, of course, periodic

of period m. This may be checked by substituting (17) into (16) and noting
that the result is an identity in the A(6;). In addition, all the r; will be non-
negative from the convexity inequality, (10). Our claim is thus verified.

As n tends to infinity, and as the mesh of the set of points (6o, 6;, -, 0s)
tends to zero, the approximating functions will converge to g, pointwise.

n

(18) > rit sin 8; — #y cos 8 —> g (b1, &)
1

1=

Since the negatives of the terms on the left side of (18) are all logarithms of char-
acteristic functions from Example 4, and since the hypotheses on g imply that
it is continuous at the origin, the two-dimensional continuity theory may be
applied to show that the function exp { —g (¢, #2)} is a characteristic function
of a distribution which Lemma 1 asserts to be bivariate Cauchy, symmetric with
respect to the origin. This completes the proof.

In the proof of this theorem we have seen that the characteristic function of
any bivariate Cauchy distribution, symmetric with respect to the origin, is the
limit of characteristic functions of the type (8) where, as n — «, the a; and b;
may depend upon n. Conversely, any such limit, if it exists, must satisfy the
conditions of Lemma 1, and, if it is a characteristic function, it must be the
characteristic function of a bivariate Cauchy distribution. This proves the
following corollary.

CoROLLARY. The set of distributions which are limits of distributions with char-
acteristic function of the form (8) is the set of all bivariate Cauchy distributions
symmetric with respect to the origin.

3. Relation to Lévy’s representation. Lévy, [4] Section 63, has derived a
representation of the characteristic function of the general multivariate stable
distributions. When specialized to the case of multivariate stable distributions of
characteristic exponent one, Lévy’s representation gives for the logarithm of the
characteristic function

(19) Y(t) = iyt — f{!u’tl + 21_2; u't log [u't[} d®(u)

where ®(u) is a finite measure giving all its mass to the unit circle u'u = 1.
The integrand in formula (19) is the logarithm of the characteristic function of
a random vector X = Yu, where Y is a scalar random variable having a stable
distribution with characteristic exponent one and maximum positive asymmetry,
and u is a fixed vector. If ® is a discrete measure giving mass o1, a2, - -+, @ t0
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vectors u;, Uz, - -+ , U, , then the integral in (19) becomes a sum and ¥ (t) is
clearly the logarithm of the characteristic function of a random vector
X = ey + @Yoy + -+ + a,Y,u,, analogous to Example 4, where
Y,, Y., -+, Y, are independent random variables having the same stable
distribution with characteristic exponent one and maximum asymmetry. The
general case, then, may be considered as a limit of sums like those defining X,
so that an analogue to the corollary of the preceeding section is valid in this
more general case.

When the center of gravity of ®(u) is at the origin, or equivalently, when
fu't d®(u) = 0 for all vectors t, it is easy to check that the distributions corre-
sponding to the representation (19) become multivariate Cauchy according to
the definition given in section one of this paper. Furthermore, when ®(u) dis-
tributes mass symmetrically with respect to the origin, then ¥ (t) can obviously
be written in the simpler form,

(20) v(t) = iyt — f |u't] d®(u),

the logarithm of the characteristic function of a symmetric multivariate Cauchy
distribution. When @ (u) has center of gravity at the origin but is not symmetric,
representation (19) provides an example of a multivariate Cauchy distribution
which is not symmetric ((4) will not be satisfied). One sees that there is an
error in the top paragraph of page 149 in my paper [2].

From the representation (20), the corollary of the preceeding section would
follow immediately. Indeed, Lévy’s representation in the general form shows
that similar corollaries are valid for all multivariate stable distributions. More-
over, a proof of Theorem 1 could undoubtedly be based on the representation
(20). We have preferred, however, to prove Theorem 1 directly without using
Lévy’s representation, since it can be derived by elementary methods. Here
we shall merely note the correspondence between the function & (), representing
the semi-interquartile range in the direction 6, and the measure ®, now a sym-
metrical measure on the unit circle in the plane. We introduce a cumulative
distribution function (with total mass not necessarily equal to one) ¥ on the
half open interval (0, 2x] by the formula

(21) ¥(e) = [ do

8¢

where S, is the arc on the unit circle where the angle 6 is in the half open interval
—1x, ¢ — 7). From symmetry, d¥(¢) is periodic of period =. We may write

27
(22) g(ur, up) = '/; |u sin ¢ — s cos ¢| d¥(g).
Then, from ¥ (¢) one may immediately find & (6) by the formula

(23) ho) = fo " lsin (6 — ¢)| d¥ ().
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Conversely, in order to obtain the distribution function ¥ (¢) from the function
h(8), one may use the following ¢nversion formula, of the integral transform (23).
The derivative of h() exists at a point ¢y if and only if ¥ (p) is continuous at ¢, .
If ¢o and ¢ are any two such points, and 0 < ¢y < ¢y < 2m, then

$1
(24) 40 (r) — F(gy)] = L 1(8) d8 + 1 (¢) — K ()

This may be checked directly, or it may be derived from formulas (17) and (18).
The proof is omitted.

When the second derivative of h(6) exists everywhere and is continuous, the
distribution ¥ will have a continuous density, say f(¢) = ¥ (¢), and the inversion
formula (24) takes on the simpler form,

(25) 4f (@) = h(¢) + A" ()
for all values of ¢. The convexity inequality (11) will imply that f(¢) = 0.

4, Non-extendability to three dimensions. In this section it will be shown
that Theorem 1 is not true in three dimensional space. Theorem 1 does imply
that all contours of the function g(¢; , ¢, ¢3) will be convex. However, there do
exist convex surfaces symmetric with respect to a point which cannot be achieved
as contours of a characteristic function of a symmetric trivariate Cauchy dis-
tribution. The cube is one such surface. It is shown in Theorem 2 that if the
contour of the characteristic function of a symmetric trivariate Cauchy distribu-
tion agrees with two pairs of opposite faces of a cube, then the whole contour
must be a cylinder with a square base unbounded in two directions.

In order to prove Theorem 2 we will need a lemma giving upper and lower
bounds for E|X 4+ Y|" when 0 < r < 1. The upper bound replaces the c,-
inequality used in the corresponding part of Theorem 1. If X and Y are random
variables, I (XY < 0) is used to denote the random variable equal to one if
XY < 0 and zero otherwise. More generally, I (A), where A is a measurable set
in a probability space, denotes the random variable equal to one if 4 occurs
and zero otherwise.

LemMa 2. Let 0 < r < 1 and let X and Y be random variables for which E|X|
and E|Y|" are finite. Then

@ — DIEIX] + B|Y[} < EIX + Y]

(26) + 2E{min (|X|, |YNI (XY < 0)} < 2'"{E|X|" + E|Y[}.

Proor.

Case 1. XY = 0. We use the elementary inequality 2" — 1 = (1 +2)" — 2 =1
when 0 < z < 1. Suppose, first, that |[X| = |Y]; then [ X + Y| = [X|"(1 + 2")
wherez = |Y|/|X|and0 < z < 1. Thus, 2" — D{| X"+ Y]} = " — 1)|X|" +
YI" < |X + Y" < |X]" + |Y]" £ 27{|X]" + |Y|'}. By symmetry, the same
inequality must be true when |Y| = |X]|.

Case 2. XY < 0. We use the elementary inequality 1 < (1 — 2)" 4+ 2" < 2"
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when 0 < z < 1. Suppose, first that |X| = |Y]|; then |X + Y| = |X|'(1 — 2)
where z = |Y|/|X| and 0 £ z = 1. Thus, (2" — D{|X|" + ||} — 2|Y| =
X" — |YI" < |X + Y < 27X — |Y[" = 27X + |Y]} — 2[Y]" By
interchanging X and Y and combining the resulting inequality with the one just
derived, we find (2" — D{|X|" + |¥Y|} = |X + Y| + 2 min (X[, |Y]) =
27X + YT

Combining cases 1 and 2 and taking expectations will yield the lemma.

TureoreM 2. Suppose that (X, Y, Z) has a trivariate Cauchy distribution sym-
metric with respect to the origin. If the marginal distributionsof X, Y, X + Y +
Z,X+Y—2,X—Y+Z,and X — Y — Z are identical, then Z is degenerate
at zero.

Remark. The hypotheses of this theorem imply that the points (1, 0, 0)
(_170) 0)7 (07 170)7 (07 _110)7 (11 1, 1) (_11 -1, _1)7 (1: 1, _1)7 (_17 -1, l)
a, —1,1), (-1,1, —-1)(1, =1, —1), (=1, 1, 1) all lie on the same contour of
the characteristic function of (X, Y, Z). The points without zeros form the
eight corners of a cube. The four points with zeros lie at the center of four of the
six faces of this cube. Since the contours must be convex, these four faces are
entirely contained in this contour. If the cube itself was the contour, then the
points (0, 0, 1) and (0,0, —1) would have to lie on the contour, which is equiva-
lent to saying that Z has the same marginal distribution as X, Y, etc. The con-
clusion of the theorem contradicts this, so that the cube cannot be a contour
of the characteristic function of a symmetric trivariate Cauchy distribution.
In fact, since Z must be degenerate at zero, the contour must consist of a cylinder
with square base containing in its center the entire z axis.

Proor. Let Q. denote the expectation of |X|", and hence of |Y|", | X + Y 4+ Z[',
etc. and suppose that Z is not degenerate at zero. Then there exists a positive
number g such that Z/g has the same distribution as X, so that E|Z|" = Q.4". We
will show that g = O contradicting the non-degeneracy of Z.

We apply the left inequality of Lemma 2 in the forms

@27 (2 —DI{EX+ Y+ EZ} S EX+ Y+ Z" + 2E{ml (41)}
(28) (2" — D{E|IX + Y — Z|"+ E|Z|'} < E|X + Y| + 2E{m,I (4:)}
where m; = min (X + Y[, |Z]"), me = min (X + Y — Z], |Z]),

A ={(X+Y)Z<0}, and 4 ={(X+Y — 2)Z <0}.
Eliminating E|X + Y| from these two inequalities one may deduce that

2r+1 _ 221 2
(29) 2'g’Qr = T;_l— Q- + o —1 E{ml I(Al)} + 2E {mz I(Az) }
We shall proceed to derive upper bounds for the expectations on the right side
of equation (29). To this end we apply the right hand inequality of Lemma 2 in

the form
2E|X|" 4 2E {min (|X + Y — Z', X — Y + Z|))I(By)}

(30) < 1—r r r
<SEX+ Y- Z + E)X — Y + 2|},
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where B, = {X* < (Y — Z)%.But when X* < (¥ — Z)*, min (X + ¥ — Z|,
X — Y+ Z]) = |Y — Z]| — |X|, so that inequality (30) may be written
(31) E{(Y — Z| — [XD'T(B))} = a1,

where ¢; = (2" — 271 Q, . Similarly, since the problem is symmetric in X and
Y, we may deduce the analogous inequality

(32) B{(X — z| - [¥DI(B)} <
where B, = {Y’ < (X — Z)},and e, = 27 — 27°)Q, = ¢; .
Now we shall find a bound for the first expectation on the right side of (29).

Suppose, then, that A; holdsand Z > 0,sothat X + ¥V < 0.If X < Y, implying
that X < 0, we will have

Zl=Z<min(Z—X—-Y,Z—X+7Y) =1Z—X|— |7
If Y < X, we will have |Z| £ |Z — Y| — |X|. Together, this implies that
(33) 1Z]" = max ((Z — X| = [Y])", (1Z - Y| — |X])").

Similarly, if A; holds and Z < 0, we will again be able to arrive at equation (33).
Thus, (33) will hold whenever A; holds. If we now write the first expectation on
the right side of (29) as

EmlI (A]_) = EmlI (AlBle) + Em]_I (AlBlBg)
+ EmII(AlBiBz) + E’mlI (AlBi ;),

the first term will be bounded by ¢; + ¢., the second term by ¢; , the third term
by ¢z, and the last term will vanish. Thus we find that

(35) Emd (Al) = 2(61 + Cz).

Next we shall bound the second expectation on the right side of (29). Suppose
that Asholdsand Z > 0,sothat X + Y — Z < 0. If Y > 0, then

X+Y—2=Z—-X-Y=1|Z—X| -7
IfY<0and X >0,then | X+ Y —Z|=|Z— Y| — |X|.Butif ¥ < 0and

X<O0,then|Z|]=Z=max(Z—-X+Y,Z4+X—-Y) =max(|Z — X| —
|Y], |Z — Y] — |X|). Combining these cases we see that

(36) my = max ((1Z — X| — |Y])', (1Z — Y] — |X])).

If A, holds and Z < 0, equation (36) may be proved in a similar manner.
Thus, (36) will hold whenever 4, holds. Proceeding as in the previous para-
graph, we may prove that

(37) EmoI (4s) < 2(c1+ ¢2).

Equations (29), (35), and (37) together imply that
27‘+1

.y _ 22r 2,-
(38) 2'qg Q = T:-—I—Qr + (a1 + c)4 (-2—'———_1> ,
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which, after replacing ¢; and c; by their values and canceling Q. , reduces to

. 2r+1 _ 221‘ 21‘ — .
(39) 2'g é—ﬁ +8(21_1 (21 -2 1)

which is valid for all » between zero and one. It must also be valid in the limit
as r — 1, which implies ¢ = 0, finishing the proof.
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