NOTES

THE CONVEX HULL OF PLANE BROWNIAN MOTION

By J. R. KINNEY

Lincoln Laboratory¹

Denote by $Z(t, \omega)$ the Brownian motion in the plane starting at the origin. Let $J(\omega)$ be the least closed convex set containing $Z(t, \omega)$, $0 \le t \le 1$, let $K(\omega)$ be the boundary of $J(\omega)$, and let $p(s, \omega)$ be the point on $K(\omega)$ at a distance s along $K(\omega)$ in the counterclockwise direction from the intersection of $K(\omega)$ with the positive x-axis. Let $\theta(s, \omega)$ be the angle made by the tangent to $K(\omega)$ at $p(s, \omega)$ and the x-axis when such a tangent exists. Define

$$\alpha(s, \omega) = [\theta(s, \omega) - \theta(0, \omega)]/2\pi$$

for points where $\theta(s, \omega)$ is defined. Elsewhere let $\alpha(s, \omega) = \lim_{t \uparrow s} \alpha(t, \omega)$. As s increases from 0^- to $l(\omega)$, the length of $K(\omega)$, $\alpha(s, \omega)$ increases from 0 to 1. Hence $\mu[E, \omega] = \int_E d\alpha(s, \omega)$ is a completely additive probability measure on Borel sets in $[0, l(\omega)]$. P. Levy [3] introduced $J(\omega)$ and showed $\mu[E, \omega]$ to be singular with respect to Lebesgue measure. The purpose of this paper is to show that this measure can almost always be concentrated on a set $T(\omega)$ which is small in the sense of Hausdorff measures.

DEFINITION. Let h(t) satisfy (A), namely, be a positive monotone continuous function with h(0) = 0. Let $h_{\rho}^{*}(E)$ be the greatest lower bound of $\sum_{i>0} h(\operatorname{diam} O_{i})$ where the greatest lower bound is taken over all sets $\{O_{i}\}$ of circles with diameter less than ρ covering E. Define $h^{*}(E)$, the h-measure of E, by $h^{*}(E) = \lim_{\rho \to 0} h_{\rho}^{*}(E)$.

by $h^*(E) = \lim_{\rho \to 0} h_{\rho}^*(E)$. It is known that $h^*(E)$ is an outer measure in the sense of Carathéodory. For a general discussion of the properties of these measures see [2].

THEOREM. Let h(t) satisfy A and

(1)
$$\lim_{t\to 0} h(t) \log 1/t = 0.$$

For almost all ω there exists a set $T(\omega)$ in $[0, l(\omega)]$ for which $\mu[T(\omega), \omega] = 1$ and $h^*(T(\omega)) = 0$.

Proof. The proof rests on the following result of Baxter [1]. Let $\{X_i\}$, i=1, 2, \cdots be independent, identically distributed, complex-valued random variables with uniform angular distribution. Let $S_0 = 0$, $S_i = \sum_{k=1}^{k=i} X_k$. If H_m is the

327

Received June 20, 1962.

¹ Operated by the Massachusetts Institute of Technology with support from the U. S. Army, Navy, and Air Force.

² Baxter did not use the last restriction.

number of sides in the boundary of the complex hull of $\{S_0, S_1, \dots, S_m\}$, then

(2)
$$E[H_m] = 2\sum_{i=1}^{i=m} 1/i \cong 2\log m.$$

Let $J_n(\omega)$ be the convex hull of $\{Z(i/2^n, \omega), i = 1, 2, \dots, 2^n\}, K_n(\omega)$ its boundary, and $M_n(\omega)$ the number of sides in $K_n(\omega)$. The

$${Z(i/2^n, \omega) - Z((i-1)/2^n, \omega), i = 1, \cdots, 2^n}$$

satisfy the conditions on the $\{X_i\}$ of the theorem of Baxter, so

$$E[M_n(\omega)] = 2\sum_{i=1}^{i=2^n} 1/i \cong 2n \log 2.$$

Let $v(n) = a(n)/h(2\pi \cdot 2^{-n/6}) \log 2^n$. By (1), a(n) can so be chosen that $\lim_{n\to\infty} a(n) = \lim_{n\to\infty} v(n)/n = 0$, and $\lim_{n\to\infty} v(n) = \infty$. Let $\{n_i\}$ be a subsequence for which $\sum a(n_i) < \infty$ and $\sum 1/v(n_i) < \infty$. Since $M_n(\omega) > 0$, Prob $\{M_n(\omega) \ge v(n)E[M_n(\omega)]\} < 1/v(n)$. By the Borel-Cantelli lemma,

(3)
$$M_{n_i}(\omega) < v(n_i) E[M_{n_i}(\omega)] \cong 2n_i v(n_i) \log 2,$$

for all but a finite number of i, for almost all ω .

For linear Brownian motion, Levy [3] has shown

$$\lim \sup_{s\to 0} |Z(t+s) - Z(t)|/[2s\log(/s)]^{\frac{1}{2}} = 1$$

uniformly in t, with probability one. It follows from this that for plane Brownian motion $\lim_{s\to 0}|Z(t)-Z(t-s)|s^{-1/3}=0$ uniformly in t, with probability one. We let $J_n^*(\omega)=\{p\mid \text{distance }(p,J_n(\omega))<2^{-n/3}\}$ and call its boundary $K_n^*(\omega)$.

We let $J_n^*(\omega) = \{p \mid \text{distance } (p, J_n(\omega)) < 2^{-n/3} \}$ and call its boundary $K_n^*(\omega)$. By Levy's result, $Z_t(\omega) \subset J_n^*(\omega)$, $0 \leq t \leq 1$, for large n, with probability one. Hence, $J(\omega) \subset J_n^*(\omega)$. Obviously, $J(\omega) \supset J_n(\omega)$. Hence $K(\omega) \subset J_n^*(\omega) \cap cJ_n(\omega)$, which is a strip about $J_n(\omega)$ of width $2^{-n/3}$. Let the vertices of $K_n(\omega)$ be V_1, V_2, \cdots . About V_j as center, we put the circle C(j, n) of radius $2^{-n/6}$. Let $A(j, n) = \{s \mid p(s, \omega) \in C(j, n)\}$. Let the change of angle of the tangent to $K_n(\omega)$ at V_j be α_j .

Suppose $A(j,n) \cap A(j+1,n)$ and $A(j,n) \cap A(j-1,n)$ to be empty. Since $K(\omega)$ is contained in $J_n^*(\omega) \cap cJ_n(\omega)$, a strip of width $2^{-n/3}$, and C(j,n) has radius $2^{-n/6}$, it is not difficult to see that $2\pi\mu[A(j,n),\omega] \ge \alpha_j - 3\cdot 2^{-n/6}$.

Likewise, if A(k, n), A(k + 1, n), \cdots , A(l, n) is a maximum sequence of successively overlapping segments, i.e., $A(k - 1, n) \cap A(k, n)$ and $A(l, n) \cap A(l + 1, n)$ are empty, $2\pi\mu[\mathbf{U}_{j=k}^{j=l} A(j, n), \omega] \geq \sum_{j=k}^{j=l} \alpha_j - 3 \cdot 2^{-n/6}$.

There are at most $M_n(\omega)$ maximum sequences of successively overlapping segments, and since $\sum_{j>0} \alpha_j = 2\pi$,

$$\mu[c\bigcup_{i>0} A(j,n), \omega] \leq 3M_n(\omega)2^{-n/6}/2\pi.$$

³ By $cJ_n(\omega)$ we mean the complement of $J_n(\omega)$.

Then for fixed ω not in one of the exceptional sets and large enough k,

$$\sum_{i>k} M_{n_i}(\omega) 2^{-n_i/6} \leq \sum_{i>k} 2n_i \log 2v(n_i) 2^{-n_i/6} \leq 2 \log 2 \sum_{n>n_k} n^2 2^{-n/6} < \infty.$$

We apply the Borel-Cantelli lemma with respect to the measure $\mu[E, \omega]$ to see that $\mu[T(\omega), \omega] = 1$, where $T(\omega) = \bigcap_{k=1}^{\infty} \bigcup_{i \geq k} \bigcup_{j} A(j, n_i)$. Since $A(j, n_i)$ is part of the boundary of the convex set $J(\omega) \cap C(j, n_i)$, which is a subset of $C(j, n_i)$, the length, $|A(j, n_i)|$, of $A(j, n_i)$ is less than $2\pi \cdot 2^{-n_i/6}$. Take $\epsilon_k = 2\pi \cdot 2^{-n_k/6}$. We have:

$$h_{\epsilon_k}^*(T(\omega)) \leq \sum_{i \geq k} \sum_j h(|A(j, n_i)|) \leq \sum_{i \geq k} M_{n_i}(\omega) h(2\pi \cdot 2^{-n_i/6}).$$

From (3) and the properties of v(n) and a(n), we obtain

$$h_{\epsilon_k}^*(T(\omega)) \leq \sum_{i>k} 2n_i v(n_i) h(2\pi \cdot 2^{-n_i/6}) \log 2$$

$$= 2 \log 2 \sum_{i>k} n_i a(n_i) h(2\pi \cdot 2^{-n_i/6}) / h(2\pi \cdot 2^{-n_i/6}) \log 2^{n_i} = 2 \sum_{i>k} a(n_i).$$

Since
$$\sum a(n_i) < \infty$$
, $\lim_{k\to\infty} h_{\epsilon_k}^*(T(\omega)) = 0$, so $h^*(T(\omega)) = 0$.

REMARK. From the uniformity of the Brownian motion, it would be surprising if $K(\omega)$ had actual corners. One might even suspect that if k(t) satisfies (A) and $\lim_{t\to\infty} k(t) \log 1/t = \infty$, one would have $k^*(E) = \infty$ for any E such that $\mu[T(\omega) \cap E, \omega] > 0$.

REFERENCES

- [1] Baxter, G. (1961). A combinatorial lemma for complex numbers. Ann. Math. Statist. 32 901-909.
- [2] CARLESON, L. (1950). On a class of meromorphic functions and its associated exceptional sets. Thesis, University of Uppsala.
- [3] LÉVY, P. (1948). Processus Stochastiques et Mouvement Brownien. Gautier-Villars, Paris.

ON THE SAMPLE FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A GAUSSIAN PROCESS

By T. S. PITCHER

Lincoln Laboratory¹

Let x(t) be a real measurable Gaussian process on an interval T with mean 0 and correlation function R(s,t). We assume $\int_T \int_T R^2(s,t) ds dt < \infty$ so that R(s,t) has an L_2 expansion $\sum \lambda_i \varphi_i(s) \varphi_i(t)$ with $\sum \lambda_i^2 < \infty$. We will write R(s,t) for the compact integral operator gotten from R(s,t). For any f satisfying $\int_T [R(t,t)]^{\frac{1}{2}} |f(t)| dt < \infty$ we can form the random variables $\theta(f,x) = 0$

Received September 12, 1962.

¹ Operated by the Massachusetts Institute of Technology with support from the U. S. Army, Navy, and Air Force.