SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON
EXPERIMENT'

By B. J. Trawinskr anp H. A. Davip
Tulane University and Virginia Polytechnic Institute

1. Introduction and summary. In the method of paired comparisons several
“treatments” under investigation are presented in all possible pairwise combina-
tions to a judge who states which member of each pair he prefers. The experi-
ment may be repeated by the same judge or carried out by several judges acting
independently. Expressions of no preference may be permitted but we shall
exclude this and other complications. The method is widely used when no
meaningful absolute measurements can readily be made on the ‘“treatments,”
a term which may stand for “stimuli,” “objects,”” and the like. By concentrating
on just two treatments each basic comparison is free of the confusing effects
which may arise when more than two treatments are compared simultaneously.
There are also situations, as in testing a variety of contact lenses for irritability,
when two is the only possible block size. The results of the experiment may be
summed up in the total number of preferences or the “score’ obtained by each
treatment. We define the best treatment as the one with the highest expected
score.

This paper deals with two procedures in which the emphasis is on the selection
of the best treatment. Such methods have received considerable attention in
many settings since the basic work by Bechhofer [2]. Making assumptions
analogous to his we obtain tables giving the smallest number of replications
ensuring that with at least a specified probability the best treatment will emerge
with the highest score. However, it is interesting to note that in the present
case the procedure does not have the usual conservative properties associated
with Bechhofer’s approach.

The second method is concerned with the selection of a subset of the treat-
ments which will include the best treatment with at least a specified probability
(see Gupta [7] and Gupta and Sobel [8]). In contrast to the first method which
stresses the determination of experiment size prior to experimentation this
approach, as we apply it, is a method of analysis which allows the elimination of
inferior treatments. Further experimentation on the selected treatments may
be necessary. If a more detailed grouping or ranking of the treatments is re-
quired, without special emphasis on the best-treatment, other methods of analysis
are more suitable [10]. In order to guarantee the inclusion of the best member
in the subset at some prescribed probability level we assume that the treatments
are judged on a characteristic which satisfies a linear model. Table 2 makes the
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76 B. J. TRAWINSKI AND H. A. DAVID

determination of the subset immediate for a wide range of experiment sizes.
The procedure is illustrated by an example.

2. Distribution theory.

2.1. General model and assumptions. Consider a balanced paired-comparison
experiment consisting of 7 replications of all 3£(¢ — 1) comparisons between the
treatments T;(¢ = 1, 2, ---, t). Let ;;, be a characteristic random variable
corresponding to the comparison of T'; and T'; in the yth replication:

(2.1) xm=1 ?f et (= L2 A
0 if T,—)T, 'Y=172;"')n)7
where T'; — T'; denotes preference of T; over T'; . We assume that ties are not
permitted, that there is no replication effect, and that all int(¢ — 1) com-
parisons are independent. Preference probabilities ;; can now be defined by

(2.2) Pr (xm = 1) = Tij, Pr (xij.y = 0) = T = 1 — mij «

The score a; of treatment T'; is given by
(2.3) a; = Z Aiy = Z ZI Tijy y
y=1 y=1 j

where a;, denotes the (partial) score of T; in the yth replication, and »_; in-
dicates summation over all j excluding j = <.

It should be noted that X iy aiy = (¢t — 1), D iy a: = Int(¢ — 1), show-
ing that a;, and a;, are correlated, as are a; and a; .

2.2. Joint distribution of the scores. Let a,(r > s) be the number of times
T, is preferred to T, in n comparisons. In view of our assumptions the o, are
independent and their joint distribution is therefore given by

t
n Qpg N—Qpg
(2-4) f(at,t—l y Xte—2, * ", a21) = I;I <a > Trs Ter .
Since the scores may be expressed as
a;=ang + o+ -+ ag,
(2.5) @ = o+ o+ oo F oo (0 — @), 0,
o= (n—oau) +(n—oau) + -+ (n— aa),

it follows that the joint distribution of any u = ¢ scores is given by summing
(2.4) subject to the restrictions on the u scores imposed by (2.5); in particular,
if w = ¢ the probability function of the vector of scores, @ may be written as

(26) a5 0rs) = L IL() wieratren,

where C'(w;;) stands for the configuration of preference probabilities ;;, and
P, denotes the restrictions (2.5).
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If all treatments are equally good (2.6) becomes

t
fla;C(3)) =27 311 (" )
P, 7>3 \(rs
Since f(a; C'(3)) must be a symmetric function of the scores we have established
incidentally that
12
n

(2) oasm) = S ()

P, r>s \Qrs
is symmetric in the a; . The function g(a; n) gives the number of ways the out-
come a can be realized.

2.3. Partition function. From g(a; n) we can obtain immediately the partition
Sfunction G(a; n) giving the number of permissible partitions of iné(t — 1) into
t scores a1, @z, - -, a; trrespective of order. In view of the symmetry of g we
have

(2.8) G(a;n) = (t!/IkI me ) g(a;n),

where m; is the number of scores all of magnitude az . A program for an IBM
650 digital computer has been written giving G(a; n) for all combinations of
(¢, n) up to (2,66), (3,21), (4,11), (5,6), (6,4), and tables up to (3,20), (4,7),
(5,3) appear in [11]. The cases n = 1, ¢ < 8 have been tabulated in [6], and
closely related tables have also been prepared by Bradley and Terry [5] and
Bradley [4].

2.4. Asymptotic distribution theory. It is clear that the exact probability func-
tion (2.6) does not lend itself to ready evaluation for larger values of ¢ and n.
In order to construct comprehensive tables for the two decision rules, we now
develop some asymptotic distribution theory based on the general model of
Section 2.1 and the multivariate central limit theorem.

We have at once

8(Tijy) = mij, var (Tijy) = mimsi,
13

t
&(aiy) = Z' Tij s var (aiy) = Z' T3 js
J J

To find the covariance of a;y, and a;y, (¢ # j), consider the variance
of a;y — a;y, taking ¢« = 1 and j = ¢ for convenience. Then

12 t—1
var (a1, — as) = var (}?_; Tihy — kf_‘i xtk.,>

I

-1
var l:lg (T1ey — Zany) + 21y —1]

t—1

= Z (7|'1k TR + T 7rlct) + 4w
k=2

var (aiy) + var (agy) 4 2w ma .
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Thus cov (ai1y, @) = —muwa. From the independence of replications it
follows that

17
(2.9) var (a;) = nkzz TUTrL cov (a1, a;) = —nmryumy.
Of special interest here is the distribution of the vector of differences

d = (di,dy, - ,diy), whered; = a; — a; (5 = 1,2, - -+ , t — 1). The variate
d; has mean

¢ t—1
(2.10) 01 =1n <Z T — Z Wtk) ,
=2 =1

and variance

t—1
(2.11) Cad, = N [1622 (7w mr + wo Te) + 4wy 7rt1:|-
The covariance of d; and dy can be written as var (a;) — cov (a, a;) —

cov (a:, as) + cov (ai, az), giving from (2.9)
t—1
(2.12) Cddy, = N [k}__; oo Tie + (T Ta + Toe Tee — w12 7r21)] .

Now di = 2 7oy (@iy — a4y) = 2 ydiy and the d;, have, for any given v
means, variances and covariances 8;/m, ¢aq,/% and og,4,/n, respectively. It
follows from the independence of replications and the multivariate central
limit theorem (see e.g. Anderson [1]) that the limiting distribution as n — o«
of (1/n*)(d — 8) is multivariate normal N(0, ) where £ is the matrix

(l/n) (‘Tdidj ) .
2.5. Linear Model. Suppose that treatment T'; has true value or “merit” V;
when judged on some characteristic. The ¢ true merits Vi, V., -+, V, can be

represented by ¢ points on a merit scale. The observed merit of T'; will vary from
observation to observation and may be represented on the same scale by the
continuous random variable y; (—® = y; < «). In a paired comparison of
T; and T'; the former will be preferred if y; > y;, the latter if y; < y;. If it is
possible to construct a merit scale such that the probability of preference

mi; = Pr (yi — y; > 0)

can be expressed for all ¢, j as H(V; — V), where H(z) increases monotonically
from H(—») = 0to H(») = 1and H(—z) = 1 — H(x), then the preference
probabilities may be said to satisfy a linear model. H(x) is seen to be the c.d.f.
of a random variable symmetrically distributed about zero.

Since for H specified the m;; depend only on the differences V ; — V; it follows
that all 7;; are expressible as functions of ¢ — 1 independent differences of the
Vi, with m;; > 4, = 4, < % accordingas V; > V;, = V,, < V;. The merits
of the treatments can therefore be usefully represented by ¢ points on a linear
scale with arbitrary origin, hence the term “linear.” We may also say that the
characteristic under study satisfied a linear model or follows a linear scale if the
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merit of any treatment (not only of the ¢ treatments T';) can be represented on
a linear scale.

The linear model is a generalization of the Thurstone-Mosteller model for
which the y; are assumed to be normal N(V;, ¢°) variates, equi-correlated with
common correlation coefficient p. This corresponds to taking

el

Ty = H(V; — V;) = f o(z) dr,
—wi—v)
where Vi = Vi/[26°(1 — p)]' and o(z) = (27) ¢ *". Another important special
case is provided by the Bradley-Terry model (Bradley, [3]) for which

HV,—-V;) = lf sech21ydy,
4 —(Vi=V;) 2

where in Bradley’s notation V; = log m; (7; = 0, Zm; = 1); it follows that
T = i/ (1 + 75).

In the remainder of this paper it will frequently be assumed that a linear model
is applicable. A theoretical ranking of the treatments may then be made accord-
ing to their “merits.” We associate treatment T, with merit V(; , where

(2.13) Vo =Ve = =V,

and write a¢; for the score of T . It is to be noted that a; is a theoretical
quantity as in a practical situation we do not know which treatment to label
T . For convenience of writing we will leave off brackets on the subscripts of
7’s and will henceforth mean by ;; the preference probability Pr {Ty — T5}.

3. Selection of the best treatment.

3.1. Formulation of the problem. In many experiments designed to compare ¢
treatments the primary interest lies in the detection of the best treatment. For a
balanced paired-comparison experiment it is natural to declare as best the
treatment with the highest score but this may not, in fact, be the best treat-
ment, due to chance fluctuations. However, if T is strictly better than T¢_y ,
and if the number n of replications is large enough, then 7', should emerge with
the highest score with a probability P as close to 1 as desired.

We may therefore proceed as follows:

(i) Find n corresponding to given values of ¢, C(w;;), and P.

(ii) Perform the experiment and declare best the treatment with the highest
score; if m scores tie for first place declare best one of the corresponding treat-
ments at random.

While step (ii) is straightforward, (i) needs further discussion. Since, for
fixed ¢ and P, n depends on C(w;;) we shall specialize the =;; in line with the
general approach due to Bechhofer [2]. We suppose that T has probability
7m(>%) of being preferred to each of the other treatments and that the remaining
t — 1 treatments are of equal value. This assumption expresses in simplified
form that a superior treatment is present and would appear to be reasonable as
a basis for determining the number of replications of the experiment. While
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completely analogous to the kind of specialization employed by Bechhofer it
turns out that in the present case this choice of the 7;; does not necessarily cor-
respond to a least favorable case. This last rather surprising point will be further
considered in Section 3.4.

The model chosen can be summed up thus:
(3.1) TR AERR oI

7r’i.7'=%’ ,5=12---,t—1; 1 # ).

3.2. Exact distribution theory. From (2.6) and (2.7) the joint distribution of

scores under model (3.1) may be written

(32) faw) = 272 )g(a; mya" (1 — myneD T,

Suppose that m scores tie for first place. Of the G(a; n)/g(a; n) permutations of
the scores a;, az, *++ , a;, a proportion m/t must have a top score in the last
place, that is, associated with T, . By the randomization process referred to
in 3.1 (ii) the corresponding contribution to the probability of correct selection
Pig

(33) 1_],;_% .2—n(t21) '%_’LG(a;n)Ta(z)(l _ ﬂ_)n(t—l)—-a(t),

which is independent of m. P is then given by summing (3.3) over all a(, which
can be maximum scores and over all permissible values of the other scores, and
may be expressed as

n (t—1)

(34:) P = 2_n(t;1) Z Wa(t)(l - W)n(t—l)—a(c) Z (l/t)G(al y A2y * ¢, Qg ?’L),

a(t)y=c

where the last summation extends over
t—1 t
;1 Ay = n<2> — Q)

and where c is the smallest integer greater than or equal to 3n(f — 1).
Exameie, If £ = 3and n = 1 (3.4) reduces to

P = 2—1[7"(1 - W)%G(l’ 17 1; 1) + 7"2%(71(0; 1, 2; 1)]7

where G(0, 1,2; 1), the frequency of the partition [210],is 6, and G(1,1,1;1) = 2.
Thus, as is otherwise obvious in this simple case, P = #* + %w(1 — =). The
leading term of P is always =",

A program has been written for the IBM 650 computer from which P can be
evaluated for the combination of n and ¢ listed in Section 2.3 and for
7 = 0.55 (0.05) 0.95.

When t = 2, f(a¢) simply states that ae has a binomial (, n) distribution.
For n odd, say n = 2r — 1, the probability of choosing the better treatment is

2r—1
27'_ 1 a r—l—a
o= 3 ()i -,

a(p=r\ @@®
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and for n = 2r, the probability is
27
P, — Z <27’> 7ra(2)(1 . 7r)2r—-a(2) 'I" % (27'> 7I'T(1 _ r)r‘
a(g)=r+1 a(2) r

It is interesting to note that P, = P., as can easily be shown. Thus it is ad-
vantageous to work with odd values of n.

3.3. Asymptotic approximation to n. In the present case it is clear that the
t — 1 differences d¢;y = aw — @ are identically distributed equi-correlated
variates. By (2.10) — (2.12) their means, variances and covariances are

8= —nt(r — %), oz =n[+2)r(l —7) + :(¢ — 2)],
poi = nf(t + 1)m(l — ) — 4.

Since the probability of ties tends to 0 as n — «, the probability of selecting
the best treatment is asymptotically

P =limp. Pri{dsm <0;4=1,2,---,¢ — 1}
= limyne Priv: < A;2=1,2, -+, ¢ — 1},

(3.5)

(3.6)

where v; = (d@ — 8)/0a, and A = —§/aq. From the limiting multivariate
normality of the »; we have

A A A
37) P= @0 B [ [ [ Cep -3 0B dondoy - doie,

R being the correlation matrix of the v;, with elements 1 along the principal
diagonal and p elsewhere. As is well known, for B to be positive defi-
nite p > —1/(¢ — 2). It is possible to simplify (3.7) considerably as the v;
are equi-correlated. To this end we express d; as

(3.8) doy =¥y —ye 1=12,--,0—1,
with all ¢ ¢’s mutually independent. The correct means of the d(; are achieved
if we take &(y;) = 0, &(y:) = —34. Also since

(39) o5 = var y; + var y,, and poj = cov (d;, d;j) = var y,

we complete the specification of the y’s by taking var y; = (1 — p)oy,
var y; = poy. Standardizing the »’s we put uw; = y./[(1 — p)adl,
u; = (y: + 6)/p%o'd and have v; = (y; — y: — 6)/oa = (1 — p)%u.- — p'u; . Then
from (3.6)

P = limg.. Pr {u; < [p/(1 — p)]é u, — 6/I(1 — p)*ad],i =1,2---,t—1}
= [O [Pr {u; < Uz | w1 o(us) dus,

where

(310) U= [o/(1 — p)Pus — 8/[(1 — p)lodl,  o(u) = (2m) 7 ™"
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Thus, writing ® for the unit normal c.d.f., we have
(311) P= [ U o) dus.

It should be noted from (3.9) that this simplification of (3.7) is possible only
if p > 0, and not if —1/(¢ — 2) < p = 0. The restriction is not too serious
since for = = % it is easy to see that p > 0 as long as 7 < & + [/t + 1)]%
Permissible values of = therefore increase with ¢ but even for ¢ = 3, = may be as
large as 0.933. For values of = larger than this sufficiently high values of P can
be achieved with n quite small and the exact theory of Section 3.2 may then be
applied.

3.4. Comments on Table 1. For an experiment involving ¢ treatments subject
to the model (3.1) the table gives the smallest number of replications n which
ensure that the highest score in an experiment of size (¢, n) will correspond to
the best treatment with at least a pre-assigned probability P’. In the construc-
tion of the table exact theory was used for the combinations (¢, n) up to (2,269),
(3,18), (4,8), (5,4), (6,1), (7,1), (8,1), and asymptotic approximations else-
where. Comparisons of exact and asymptotic values showed good agreement for
the larger of these experiment sizes.

If model (3.1) were conservative the value of » obtained from Table 1 would
ensure correct selection with probability P = P’ as long as

(3.12) Pr (T(t) - T(t_1)) = T¢,t-1 g .

That this is not necessarily so is most readily seen from Figs. 1A and 1B which
show how P increases as a function of = for n = 1 and 10 when model (3.1)
holds. For example, take ¢ = 20 and suppose that the first five treatments,
considered by themselves, satisfy the model (3.1) with ¢ = 5. Complete the
specification by adding to these five treatments fifteen of no value, that is, having
probability zero of being preferred to any of the first five. The condition (3.12)
is clearly satisfied in this augmented case. Now for n = 1, Fig. 1A shows that P
is greater for ¢ = 20 than for ¢ = 5 if 0.69 < = < 0.95. Thus for this range of
7 the augmented case, which leads to the same value of P as the case ¢ = 5
graphed, is actually less favorable than the case labelled ¢ = 20. There is, of
course, no guarantee that it is least favorable. In fact, considerations of this kind
indicate that it would in general be difficult to determine the least favorable
configuration and that this configuration may be far removed from a realistic
situation. We have not succeeded in determining the least favorable configuration
except in very special cases. Thus Table 1 can be used as a safe guide to the
appropriate n only if model (3.1) holds. However, this model is of considerable
importance in its own right, corresponding as it does to the situation of a single
“outlier.”

It may be remarked that, in view of the lack of independence among the
scores, there is no contradiction here with the most-economical character of some
Bechhofer and Sobel decision rules established by Hall [9].



Smallest number of replications required to ensure with at least a pre=
determined probability P! the selection of the best treatment when

- T2 w(i=4,2,000, t o), Pr(T

Pr(T

PAIRED-COMPARISON EXPERIMENT

TABLE 1

- Tm)=% (1#35 £5=14,2,00est=1)

83

(t) (1)

P! t ~2_1 o.55 0. 60 0. 65 0,70 0.75 0,80 0,85 0,90 0,95
2 45% 14% B 3% 1% 1% 45 1% 1%

3 69 17% 8% 4% 3% 2% 1% 4% 1%
4 74 18 8% 5% 3% 2% 2% 1% 1%

5 68 17 8 4% 3% 2% 2% 1% 1%

6 65 16 7 4 3 2 2 1% 1%

7 61 15 7 4 3 2 2 1% 1%

0.75 8 58 15 7 4 3 2 1% 1% 1%
° 9 54 14 6 4 2 2 1 1 1
10 52 13 6 4 2 2 1 1 1

12 47 12 5 3 2 2 1 1 1

14 43 14 5 3 2 2 1 1 1

16 39 10 5 3 2 1 1 1 1

18 37 9 4 3 2 1 1 1 1

20 34 9 4 3 2 1 1 1 1
2 163% 44% 17% 9% % B 3% 1% 1%
3 165 44 18% 10% 6% 4% 3% 2% 1%
4 150 37 16 9 6% 4% 3% 2% 4%
5 135 33 15 8 5 4% 3% 2% 1%
6 122 30 13 7 5 3 2 2 1%
7 112 28 12 7 4 3 2 2 1%
0,90 8 103 26 14 6 4 3 2 2 1%
9 95 24 11 6 4 3 2 1 1

10 89 22 10 6 4 3 2 1 1

12 79 20 9 5 3 2 2 1 1

14 74 18 8 5 3 2 2 1 1

16 64 16 7 4 3 2 2 1 1

18 59 15 7 4 3 2 1 1 1

20 55 14 6 4 2 2 1 1 1

2 269% 6% 29% 15% 9% TH Bk 3% 1%

3 243 60 26 15% 9% 6% 4% 3% 2%
4 242 52 23 12 8% B 4x 3% 2%
5 186 46 20 - 14 7 5 3% 3% 2%

6 166 44 18 10 6 4 3 2 2

7 150 37 16 9 6 4 3 2 2

0.95 8 137 34 15 8 5 4 3 2 2
9 126 34 14 8 5 3 2 2 1

10 147 29 13 7 5 3 2 2 1

12 102 26 11 6 4 3 2 2 1

14 94 23 10 6 4 3 2 1 1

16 82 24 9 5 3 2 2 1 1

18 75 19 9 5 3 2 2 1 1

20 69 17 8 5 3 2 2 1 1

2 537 133% 7% 31% 19% 13% 9% Bk 3%

3 433 106 45 24 15% 10% T* 5% 3%

4 358 88 38 20 12 8% 53 4% 3%

5 306 75 33 18 11 7 5 4% 3%

6 267 66 29 16 10 6 4 3 2

7 238 59 26 14 9 6 4 3 2

0,99 8 244 53 23 13 8 5 4 3 2
° 9 195 48 24 12 7 5 3 2 2
10 180 45 20 14 7 4 3 2 2

12 155 39 17 9 6 4 3 2 2

14 437 34 15 8 5 4 3 2 1

16 123 34 14 8 5 3 2 2 1

18 142 28 12 7 4 3 2 2 1

20 102 26 14 6 4 3 2 2 1

*Values based on exact theory,
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1.00

1.00
.90 .90
.80 .80
.70 .70
.60 .60

.50 .50
40 .40
.30
.20

J10

1 1 L L T .00 L 1 L 1 1 T
.50 55 60 65 70 .75 .80 .85 .90 .95 10 .50 55 .60 .65 .70 .75 .80 85 .90 .95 |0

.00

1 1 L 1

Figc.1A.n =1 Fig. 1B. n = 10

Probability of correctly selecting the superior treatment 7'() in the presence of ¢t — 1
equal others; » = number of replications,

T = Pr {T(g)'ﬂT(i)}, i=1,2,"',t—1

4, Selection of a subset containing the best treatment.

4.1. Formulation of the problem. Consider the set of treatments T =
{T1,Te, ---, T4 and let S be a subset of T consisting of those treatments with
the highest scores. In this section our aim is to select S just large enough to
ensure, with at least a pre-assigned probability P*, that the best treatment
Ty is included in S. Following Gupta and Sobel [8] we use the decision rule &:

Retain in S only those treatments T'; for which a; = Gmex — 7, Where Gmax
is the highest score and », a non-negative integer, is a function of ¢, n, and P*.

For P* = 0.75, 0.90, 0.95, 0.975, 0.99, and a wide range of values of ¢ and n,
the value of » is given in Table 2. It should be noted that the size of S is a random
variable which can range from 1 to ¢ The rule gives a correct selection
if @@y = Gmax — v. For fixed ¢ and n, the probability of correct selection P ¢g
depends on » and on the configuration of preference probabilities C(w;;), and
we have

Pes = Pr {a(t) = Omax — ¥ l t, n, C(WU)}'

In Table 2, » has been chosen as the smallest integer making Pes = P* when
C(ms) = C(3), i.e. when all treatments are equivalent (we tag treatment
T so that ay is still defined). It will be shown in Section 4.4 that for fixed
t, n, v, the configuration C'(3) leads to the infimum of P ¢g for any C(;;) satis-
fying a linear model. In this case we may speak of C(3) as a conservative con-



Values of v for the decision rule R

TABLE 2

2

2 3 4 5 6 7 8 9 40 44 42 43 44 45 46 47 48 19 20
P = 0,75
4l 4©° 1° 20 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6
2f0 20 20 3 3 4 4 5 5 5 6 6 6 7T 71 1 8 8 8
314 28 3 4 4 5 5 ¢ 6 7 17 7 8 8 9 9 9 40 40
4f 20 2* 3* 4 5 5 6 7 17 g8 8 9 9 40 40 40 41 44 42
51 1° 3* 4 5 5 6 7 7 8 9 9 40 40 44 44 42 42 43 413
6 22 3* 4 5 6 7 7 8 9 9 400 44 44 42 42 43 413 414 14
71 1° 3* 4 s 6 7 8 9 9 40 44 44 42 43 43 414 44 415 45
8l 2° 4 5 6 7 8 9 9 40 44 42 42 413 44 44 45 45 16 16
913 4 5 6 7 8 9 40 11 42 412 43 14 44 415 46 16 47 17
10 20 4 5 7 8 9 40 40 14 42 43 414 44 45 44 16 17 18 18
14} 3° 4 6 7 8 9 40 41 42 43 44 14 45 46 47 47 48 19 49
2 22 4 6 7 8 9 .10 44 42 43 14 415 46 47 47 48 419 19 20
131 3* 5 6 7 9 40 14 42 43 44 45 46 46 47 48 49 20 20 24
141 20 5 6 8 9 40 44 42 43 44 45 46 47 48 49 49 20 24 22
51 3* 5 71 8 9 44 42 43 44 45 46 47 48 48 49 20 21 22 23
6] 20 5° 7 8 40 44 412 43 44 45 416 47 18 49 20 24 22 22 23
17} 3° 57 7 9 40 44 42 44 45 46 47 48 49 20 24 24 22 23 24
81 20 5" 7 9 40.42 43 44 45 46 47 48 49 20 21 22 23 24 25
19137 5 7 9 40 42 43 44 46 47 48 49 20 24 22 23 24 24 25
200 4 & 8 9 44 42 4. 45 46 47 48 19 20 24 22 23 24 25 24
25| 3 6 8 10 42 44 45 47 48 49 20 22 23 24 25 26 21 28 29
301 4 7 9 44 43 45 47 48 20 24 22 24 25 26 27 29 30 34 32
351 3 7 40 42 44 46 48 20 21 23 24 26 27 28 30 34 32 33 34
401 4 8 44 43 45 47 49 24 23 24 26 27 29 30 32 33 34 36 37
45| 5° 8 44 44 46 48 20 22 24 26 27 29 34 32 34 35 36 38 39
501 4 9 42 45 47 49 24 23 25 27 29 34 32 34 35 37 38 40 41
60 6" 10 43 46 49 24 23 26 28 30 32 33 35 37 39 40 42 44 45
701 67 40 44 47 20 23 25 28 30 32 34 36 38 40 42 44 45 47 49
80f 6 44 45 48 22 24 27 30 32 34 37 39 44 43 45 47 48 50 52
90| 6 42 46 20 23 26 29 314 34 36 39 41 43 45 47 49 51 53 55
100} 6" 42 47 24 24 27 30 33 36 38 41 43 46 48 50 52 54 56 58
P¥ = 0,90

447 20 20 3 3 4 4 4 5 5 5 6 6 6 6 T 1 1 1
2l 2* 3 3 & 5 5 ¢ 6 1 1 8 8 8 9 9 9 410 10 40
313 3 4 5 6 6 7 8 8 9 9 40 40 44 44 412 412 12 43
4120 4 5 6 7 7T 8 9 9 40 44 44 42 42 43 43 414 414 15
513 4 5 6 7 8 9 40 44 44 12 42 43 44 44 45 45 16 16
61 4 5 6 17 8 9 40 44 42 42 13 14 44 415 44 16 17 47 48
713 5 6 8 9 10 44 42 42 43 414 415 416 46 47 418 48 419 20
8| 4 5 7° 8 9 410 44 42 43 44 45 46 47 47 48 19 20 20 24
91 3° 6 7 9 40 44 42 43 44 45 46 47 48 48 49 20 21 21 22
10/ 4 6 8 9 40 42 43 44 45 46 47 48 49 49 20 24 22 23 23
141 5° 6 8 40 44 42 43 45 46 47 418 48 419 20 24 22 23 24 24
121 4 70 8 40 44 43 44 45 46 47 48 419 20 24 22 23 24 25 26
131 57 70 9 40 42 43 45 46 47 48 49 20 24 22 23 24 25 26 27
141 4 70 9 44 42 44 45 46 48 419 20 24 22 23 24 25 26 27 28
151 5° 8 9 41 43 44 46 47 48 49 24 22 23 24 25 26 21 28 29
161 6° 8 40 42 43 45 46 48 49 20 24 22 24 25 26 27 28 29 29
17/ 5° 8 40 42 44 45 47 48 49 24 22 23 24 25 26 27 28 29 30
18] 6 8 40 42 44 46 47 49 20 21 23 24 25 26 27 28 29 30 34
191 5" 8 44 43 44 46 48 49 24 22 23 24 26 27 28 29 30 31 32
200 6 9" 44 43 45 47 48 20 24 22 24 25 26 27 29 30 314 32 33
251 7° 40 42 45 47 48 20 22 24 25 27 28 29 34 32 33 34 36 37
30| 8 44 43 46 48 20 22 24 26 28 29 30 32 34 35 36 38 39 40
350 7° 44 45 47 20 22 24 26 28 30 34 33 35 36 38 39 41 42 44
40| 8" 42 46 48 24 23 26 28 30 32 34 35 37 39 40 42 44 45 47
451 9° 43 46 19 22 25 27 29 32 34 36 37 39 41 43 45 46 48 49
50140° 44 47 24 23 26 29 34 33 36 38 39 42 43 45 47 49 50 52
60110° 45 49 23 26 29 34 34 37 39 44 43 46 48 50 52 53 55 57
70142° 46 24 24 28 31 34 37 39 42 44 46 49 54 54 56 58 60 62
80142° 47 22 26 30 33 36 39 42 45 48 50 53 55 57 60 62 64 66
90142° 48 23 28 34 35 38 42 45 48 50 53 56 58 g1 63 65 68 70
100142° 19 25 29 33 37 44 44 47 50 53 56 59 61 64 6 69 11 714

° Values based on exact theory
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TABLE 2 (continued)

n 3 5 6 7 8 9 40 44 42 413 414 415 416 417 48 49 20
P% = 0,95
4114 2°0 3 3 4 4 5 5 5 6 6 6 7 1 T 8 8 8 8
2f2 3 4 5 5 ¢ 7T 17T 8 8 9 9 9 40 40 414 44 41 42
313 4 5 ¢ 7T 7 8 9 9 40 410 14 42 42 43 43 414 414 14
4|4 5 6 7 8 9 9 40 44 44 42 43 43 44 415 415 416 16 17
513 5 6 8 9 40 40 44 42 43 44 14 415 416 416 47 47 418 19
6|4 6 7T 8 9 40 44 42 413 414 15 46 416 17 418 48 19 20 20
715 6 8 940 44 42 43 414 15 16 47 48 48 49 20 21 24 22
8|4 70 8 410 11 42 43 44 45 46 47 48 49 20 24 24 22 23 24
9|58 70 9 40 412 43 414 45 46 17 48 49 20 24 22 23 23 24 25
106 T 9 44 42 44 45 46 47 418 49 20 24 22 23 24 25 25 26
14| 5 8 40 44 43 44 46 47 48 49 20 24 22 23 24 25 26 27 28
12| ¢ 8 40 42 43 45 46 47 49 20 24 22 23 24 25 26 27 28 29
13 5° 8 44 42 44 45 47 48 419 24 22 23 24 25 26 21 28 29 30
14 6 9 44 143 14 46 48 49 20 24 23 24 25 26 27 28 29 30 31
5|7 9" 44 43 45 47 48 20 24 22 23 25 26 27 28 29 30 31 32
16| 6 9" 12 14 45 47 49 20 22 23 24 26 27 28 29 30 31 32 33
477 10 12 414 416 48 49 24 22 24 25 26 28 29 30 34 32 33 34
18| ¢ 40" 42 44 416 48 20 24 23 24 26 27 28 30 31 32 33 34 35
19| 7° 10" 43 45 47 49 20 22 24 25 26 28 29 30 32 33 34 35 36
20) 8 40" 43 15 47 49 24 23 24 26 27 29 30 31 32 34 35 36 37
250 9° 42 45 47 49 24 23 25 27 29 30 32 33 35 36 38 39 40 42
30| 8 43 46 19 24 23 26 28 30 34 33 35 37 38 40 41 43 44 46
35| 9" 44 47 20 23 25 28 30 32 34 36 38 40 41 43 45 46 48 ° 49
40 [10° 45 48 22 24 27 30 32 34 36 38 40 42 44 46 48 49 51 53
45 |44° 46 20 23 26 29 34 34 36 39 44 43 45 47 49 51 52 54 56
50]42° 47 24 24 27 30 33 36 38 41 43 45 47 49 54 53 55 57 59
60 |12° 18 23 26 30 33 36 39 42 44 47 49 52 54 56 58 60 62 64
70|44 20 24 29 32 36 39 42 45 48 51 53 56 58 61 63 65 67 170
80|44 21 26 34 35 38 42 45 48 51 54 57 60 62 65 67 70 72 T4
90 {16° 22 28 32 37 44 44 48 51 54 58 60 63 66 69 T4 14 76 79
400 {46° 23 29 34 39 43 47 54 54 57 64 64 67 70 73 75 78 81 83
P* = 0,975
14 22 3 4 4 5 5 6 6 6 1T 7 1 8 8 8 9 9 9
2|22 4 & 5 6 7 7 8 8 9 9 40 40 44 44 42 42 43 43
313 5 6 7T 8 38 9 40 40 41 42 42 43 43 14 44 45 15 46
4|4 5 7T 8 9 40 40 41 42 13 43 44 415 45 46 417 417 418 48
5/5 ¢ 7 9 40 44 42 43 43 44 45 46 46 47 418 49 19 20 20
6| 4 T 8 9 44 42 43 -44 15 46 416 47 418 49 20 20 21 22 22
705 7 9 40 44 43 414 45 46 47 48 49 20 20 24 22 23 23 24
8| & 8 99 44 42 44 45 46 47 48 49 20 24 22 23 23 24 25 26
9] 5° 8 40 12 43 44 46 47 48 419 20 24 22 23 24 25 26 27 27
10 ¢ 8 44 42 44 45 47 48 49 20 24 22 23 24 25 26 =27 28 29
14| 7 9 44 13 44 46 47 419 20 24 22 23 24 26 27 28 28 29 30
12| ¢ 9 42 13 45 47 48 49 24 22 23 24 26 27 28 29 30 .31 32
13| 7* 10" 12 14 16 47 49 20 22 23 24 25 27 28 29 30 34 32 33
14| 8 40" 12 44 416 48 20 24 22 24 25 26 28 29 30 31 32 33 34
15) 7° 40" 43 45 47 49 20 =22 23 25 26 27 29 30 34 32 33 34 35
16| 8° 414" 43 45 47 49 24 22 24 25 27 28 30 34 32 33 34 35 37
17| 7° 41" 44 16 48 20 22 23 25 26 28 29 30 32 33 34 35 37 38
18| 8 11" 14 16 18 20 22 24 25 27 28 30 34 33 34 35 36 38 39
19| 9° 42 44 47 49 24 23 25 26 28 29 34 32 34 35 36 37 39 40
20| 8 42" 15 47 49 24 23 25 27 28 30 32 33 34 36 37 38 40 41
25| 9° 44 47 49 22 24 26 28 30- 32 34 35 37 38 40 41 43 44 46
30{40° 45 48 24 24 26 29 34 33 35 37 39 40 42 44 45 47 49 50
35[44° 46 20 23 26 28 31 33 36 38 40 42 44 46 47 49 51 52 54
40 |12 47 24 24 27 30 33 36 38 40 42 45 47 49 54 52 54 56 58
45 (43" 48 22 26 29 32 35 38 40 43 45 47 50 52 54 56 58 59 61
50 |14° 49 23 27 31 34 37 40 42 45 48 50 52 54 57 59 61 63 65
60 {16° 241 26 30 34 37 40 44 47 49 52 55 57 60 62 64 67 69 T4
70 {46 23 28 32 36 40 44 47 50 53 56 59 62 64 67 69 72 14 7
80 (48" 24 30 35 39 43 47 50 54 57 60 63 66 69 72 T4 17 19 82
90 |18° 26 32 37 41 46 50 53 57 60 64 67 70 73 76 79 81 84 87
100 [20° 27 33 39 43 48 52 56 60 64 67 74 T4 77 80 83 86 89 91

‘ Values based on exact theory
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TABLE 2 (continued)

2N 2 3 4 5 6 7 8 9 40 44 42 43 44 45 46 47 18 19 20
Px = 0,99
1114 20 3* 4 4 5 6 6 701 7 8 8 9 9 9 40 40 40
212 4 5 ¢ 7 8 8 9 9 410 44 44 42 42 43 43 413 414 414
313 5° 6 8 9 9 40 44 42 42 43 44 44 45 45 46 416 47 48
414 6 7 9 40 414 42 43 43 44 15 46 16 47 48 48 49 20 20
5|5 7° 8 40 44 412 43 44 45 46 47 48 18 49 20 24 24 22 23
616 77 9 44 412 413 44 45 46 47 48 19 20 24 22 23 23 24 25
7|5 8 40° 42 43 44 46 47 48 419 20 24 22 23 23 24 256 26 27
816 9" 41° 42 44 45 47 48 49 20 24 22 23 24 25 26 27 28 29
917 9° 44 43 45 46 48 49 20 24 22 24 25 26 27 28 29 29 30
10f 8 40" 42 44 46 47 49 20 24 22 24 25 26 27 28 29 30 341 32
441 7° 40° 43 45 46 418 19 24 22 24 25 26 27 28 29 30 32 33 34
421 8" 44° 43 45 47 49 20 22 23 25 26 27 28 30 34 32 33 34 35
131 9° 44° 44 46 48 49 24 23 24 26 27 28 30 34 32 33 34 35 36
14] 8" 42° 44 46 48 20 22 24 25 27 28 29 34 32 33 34 36 37 38
151 9° 42° 45 47 49 24 23 24 26 28 29 30 32 33 34 36 37 38 39
16140° 42° 45 48 20 22 23 25 27 28 30 314 33 34 35 37 38 39 40
171 9" 43° 46 48 20 22 24 26 28 29 31 32 34 35 37 38 39 40 42
18 140° 43° 46 49 24 23 25 21 28 30 32 33 35 36 38 39 40 42 43
19| 9° 447 47 49 24 24 26 27 29 34 33 34 36 37 39 40 44 43 44
20(40° 44" 47 20 22 24 26 28 30 32 33 35 37 38 40 44 43 44 45
25|44° 46 49 22 25 27 29 34 34 36 37 39 41 43 44 46 48 49 54
3042° 47 24 24 27 30 32 34 37 39 44 43 45 47 49 50 52 54 55
35(43° 49 22 26 29 32 35 37 40 42 44 46 49 54 52 54 56 58 460
40|44 20 24 28 34 34 37 40 42 45 47 50 52 54 56 58 60 62 64
45)145° 24 25 29 33 36 39 42 45 48 50 53 55 57 60 62 64 66 68
50146° 22 27 314 35 38 414 45 47 50 53 55 58 60 63 65 67 69 72
60(48" 24 29 34 38 42 45 49 52 55 58 61 64 66 69 T4 14 76 78
70|20° 26 32 37 44 43 49 53 56 59 63 66 69 74 T4 77 8 82 85
80|20 28 34 39 44 48 52 56 60 64 67 70 73 76 79 82 85 88 90
90|22° 30 36 42 47 54 56 60 64 67 74 74 78 84 84 87 90 93 96
400)24° 314 38 44 49 54 59 63 67 74 75 78 82 8 89 92 95 98 404

® Values based on exact theory

figuration and have
Pos{C(mij)} 2 Pes{C(3)} = P™

It would be of interest to know something about the distribution, particularly
the expected value, of the size of S (compare [8]). It is hoped to investigate this
problem in a later paper.

We now give the exact and asymptotic theory underlying the construction of
Table 2.

4.2. Ezact evaluation of v. To determine » as outlined above, we require an
exact formula for P¢s{C(%)}. A convenient expression may be obtained with
the help of tables of the partition function G(a; n) referred to in Section 2.3.

Rewrite Pesg{C(3)} as ,
Pg,g ZPr {a(t) = Omax — V l a, O(%)}p(a7 C(%))

= 27U DIPr (4 = tmex — 7| @, C(2)}G(a; )],

where p(a; C (%)) is the partition probability function and where the summa-
tion extends over all the distinct partitions @ of 3ni(¢ — 1). To evaluate the
quantity Q(a; n, »), say, in square brackets, consider all possible permutations
@iy y Giy, *+, a;, of @ and take a;, to be the score corresponding to the best
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treatment T';) . Then Q(a; n, ») is the frequency associated with permutations
for which a;, = @max — ». The proportion of permutations for each distinet value
of a;, is ms/t, where m; is the number of scores in a tied with as, .
Thus Q(a; n, ») = M(a; v)G(a; n)/t, the multiple M being the number of a’s
in @ which exceed or equal am.x — ». For a given n, ¢, and », we have therefore

Po{C(3)} = 727" V2M (a; »)G(a; n).

We illustrate the procedure for ¢ = 4, n = 2. In this case there are 16 per-
missible partitions of which a typical one (written in ascending order) is [0345]
with frequency G(0, 3, 4, 5; 2) = 144. Also we see that for

v=0 M =1, corresponding to a¢y = 5

v =1 M = 2, corresponding to a¢y = 5, 4

v =234 M =3, corresponding to a¢y = 5, 4, 3
v=2>5 M = 4, corresponding to a¢y = 5, 4, 3, 0.

Thus the contribution to Pes{C(})} from this partition is, for a given
v, 36M (v)/2". If the corresponding contributions for all 16 partitions are added
up, the resulting values of P ¢g{C(%)} are:

v 0 1 2 3 4 5
Pes{C(%)} 0342773 0559570 0.769042 0.905273 0.975098 0.997070

The entries in Table 2 for ¢ = 4, n = 2 follow at once.

The procedure here illustrated has been formalized for use on the IBM 650,
details being given in [12].

4.3. Asymptotic approxzimation to v. In the manner of Section 3.3 the asymp-
totic probability of correct selection under rule ® may be written, with a con-
tinuity correction on », as

Pes = liMyoseo Pr {Gmax — a@y < v + 1}
=limpPri{dy <v+3;i=1,2,---,¢t— 1}
In the present case equations (3.5) are simply
(4.1) §=0, o3=3nt, poy=1ni

and, with p = 1, P ¢g reduces to

(4-2) Pos = /_: [®(u: + ’w)]t_] o(ur) du, )
where
(4.3) w =2y + 3)/(nt)".

Values of w as solutions of (4.2) have been tabulated by Bechhofer [2] and
Gupta [7] for a wide range of ¢ and P¢s. We therefore obtain asymptotic ap-
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proximations to » by using the tabulated values and (4.3). These values have
been found in [12] to agree well with the exact results. In Table 2 exact values
are used for the range of (¢, n) up to (2, 100), (3, 20), (4, 8), (5, 3), (6, 1),
(7, 1), (8, 1). Elsewhere the approximate values as obtained by solving (4.2)
and (4.3) have been rounded upward to the nearest integer.

It should be noted that for ¢ = 2 and increasing n the values » in Table 2
corresponding to odd and even values of n form two non-decreasing sequences
consisting respectively of odd and even numbers. As a result, it would be in-
correct to use, for example, » = 6 when n = 95 and P* = 0.75. With the help
of the Tables of the Binomial Probability Distribution, Harvard University
Press, 1955, one finds P¢g(n = 95, » = 5,6) = 0.73080, Pos(n = 95,» = 7,8) =
0.79405, and therefore concludes that for n = 95 and P* = 0.75 the required
value for » is 7.

4.4. Conservative nature of configuration C(%). For any configuration C(w;;)
and a chosen value of » the probability of correct selection P s can be written
as

n (t—1)

Pes = 2, Pr{Tgscoresaw} Pri{Tw (i =1,2,-++,t—1)
a(t)=0
(44) scores at most aqy + »}
n(t—1)
= Zof(am) Priam = aw + v|aw, 9,
a(t)y=

where the dependence on C'(w;;) and on the experiment size (¢, n) is understood.

Suppose now that the characteristic on which the treatments are judged
satisfies a linear model. We will show that P¢s is 8 minimum for C'(3), that is
when all V; are equal.

(i) Pgs clearly increases with V) for fixed Vi (¢ = 1,2, -+, ¢t — 1) so
that V(; must be taken as small as is compatible with (2.13), namely V) =
Vi -

(ii) The probability that au—y > a@ -+ v is greatest when all V, are equal.
To prove this we note first that under (i) m; = Tt (7=1,2, , b — 2).
Write «; for the common value, o for a1, a;, o for auj, ouy,j, respectlvely
Then

t—2 t—2
(4.5) ap = a + Zl:aj, aen =N — a+ _L:Ola",
= =

and

t—2
Pr {0(1_1) — auy > 1’} = ZUZ_" <Z> H [(Z;) 7"7:;(1 - Wj)n_ai

Jj=1

(4.6) (",> 2% (1 — w,-)"-“}]
aj
2\ (n) (n o o’
- S () ()t -
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where >, extends over all permissible values of the o’s which give
A1) — Ay > V.
For t = 3, (4.6) reduces to

(4:.7) Pr {a(g) — ag > y} T ZU (’ﬂ)<n )(’n’> qu+a; (1 _ 7['1)2"_0‘1_“;'.
o o,/ \&1

Now consider the terms in )y for which « has a fixed value and A — Q@ =
A(A=1,2,---,2n). Thenby 4.5)n — a4+ a1 — a — oy = A,oroz{ - =
A+ 2a — n = ¢ (say). The values of o; and a; satisfying this are, if any,
a{=n, a=mn—c¢ and o = ¢, a = 0;

’ ’
ar=n—1, es=n—c—1 and ass=c+ 1, o = 1;

a1=n—14, aa=n—c—14 and o =c+i, o=
continuing as long asn — ¢ — ¢ = 0 (c has been taken non-negative;if ¢ < 0
reverse roles of a1 and a;). Thus the terms in )y can be paired off as indicated,
resulting in the typical term

@ (n> (a + ) ("1 — my)™™ o a$ (L — )],

which is easily seen to be a maximum for = = . If ¢ = $(n — ¢) only one term
arises. ThJS is proportional to =7 (1 — )" and hence also a maximum for
m = %. Thus (ii) is true for ¢t = 3.

For t > 3 refer to equation (4.6) and to start with fix ox, a; for
k=23, ---,¢t— 2. Then

t—2 ’ ’
Pr {a(t—l) — aw > 1}} = 9" II (’n) <n/) r?k-'-ak (1 _ Wj)2n—ak—ak
(4:.8) k=2 \Ck (647

2 () = me
1 1

where the sum now extends over all permissible values of «, oy, a1 which give
G-y — Q@ > v. As for the case ¢t = 3 this sum is a max1mum form =1,a
result which holds for all permissible ch01ees of oy and oy . The argument can be
repeated with oz, s , m replacing a; , a;, m to show that to maximize (4. 8)
we require also m, = %, and in fact m = m = -+ = m,_y = 1. This establishes
(ii).

(iii) The chance that one or more of the first ¢ — 2 treatments has a score
exceeding a¢;) -+ » is improved by making the merits of these treatments as
large as possible, that is, by making V, = V, = -+ = V,_; = V,, which com-
pletes the proof. _

4.5. An Example. We illustrate the application of the decision rule ® on data
supplied by E. Jensen of Faellesforeningen for Danmarks Brugsforeninger,
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Copenhagen. Fifteen persons examined all possible pairings of 4 different samples
for taste. The following preference table was obtained:

T T, T3 i ai
T — 3 2 2 7
T, 12 — 1 3 26
T 13 4 — 5 22
Vin 13 12 10 — 35

We have am.x = 35. To ensure that with at least a pre-assigned probability
P* = 0.75 the best sample is in the selected subset we enter Table 2 for ¢ = 4,
n = 15, P* = 0.75, find » = 7 and hence retain only T in the subset. For
P* = 0.90 we have » = 9, so that the subset consists of T and T’ , and so on.

Acknowledgment. The authors express their appreciation to the referees for
suggestions related to Section 4.
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