THE SAMPLE MEAN AMONG THE EXTREME NORMAL ORDER
STATISTICS!
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0. Summary. This paper begins with a discussion of convex spherical polyhedra.
This discussion touches on conditions for degeneracy, sub-polyhedra, lunes, and
simplices, and terminates with Schlifli’s fundamental differential relation for the
measure of such a polyhedron. The paper then proceeds to the computation of
bounds for the measure of an equilateral spherical simplex. The asymptotic
measure of an equilateral spherical simplex then is computed by means of these
bounds. (As was brought out in the course of the refereeing, this asymptotic
measure has recently been computed elsewhere, but by a different method.)
These results are applied to the computation of the asymptotic value and bounds
of the probability that a normal sample mean falls between successive order
statistics of fixed order. These computations constitute the asymptotic solution
of Youden’s “Demon Problem”, and yield probabilities of order substantially
lower than had previously been hypothesized.

1. Introduction. This is one of two papers dealing with the magnitude of the
sample mean relative to the order statistics for normal populations. In this paper,
emphasis will be placed on the extreme order statistics for normal populations;
intermediate order statistics are considered in the other paper [8].

Section 2 marshals some geometry needed in the subsequent development.
Though some of this material appears to be new (notably Theorem 1 of Sub-
section 2.1), the important formula is Schléfli’s expression (formula 1 of Sub-
section 2.3) for the differential of the measure of a spherical simplex.

Based on Section 2, Section 3 derives the asymptotic value of the measure
of an equilateral spherical simplex,” and also exact bounds for this measure.
Let P(n, k) be the probability that a normal sample mean falls between the
%'th and the (k 4 1)’st order statistics. Leaning on Section 3, Section 4 derives
an asymptotic expression for P (n, k), as well as exact bounds. It appears from
these investigations that a normal sample mean will reach the extreme order
statistics considerably less often than has been suspected [14]. Specifically,
P(n, 1) asymptotically equals (¢/2rn)"*n*r*/e (Sub-section 4.4). Additional
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1 This paper is part of a dissertation submitted to the Department of Statistics, Uni-
versity of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

2 In the course of the refereeing of this paper, H. S. M. Coxeter and a referee pointed out
that derivations in [5] show an argument by H. Daniels in [24] to have in effect established
the asymptotic value for equilateral spherical simplices of unit edge. Subsequently, H. S.
M. Coxeter further pointed out that Rogers recently obtained [25] this asymptotic value
for arbitrary edge length, i.e., the asymptotic result of Section 3, but by a different method.
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34 HERBERT T. DAVID

computations give the exact values of P (4, k) and P (5, k). It should be noted
that multivariate normal probabilities other than P(n, k) can be evaluated
asymptotically as spherical measures, if only those corresponding to spherical
polyhedra expressible in terms of equilateral simplices. However, no such ex-
tensions will be considered in this paper.

J. Youden has called the evaluation of P (n, k) the Demon Problem and has
evaluated these probabilities for low n by Monte Carlo computations at the
National Bureau of Standards. He has kindly made these computations avail-
able to me (Sub-section 4.5). Other work on P(n, k) is that of Kendall [14]
who has approximated P (n, k) by the Edgeworth series. The computation of
P(n, k) in this paper is in the language of the geometry discussed in Sections
2 and 3.

The probability P (n, k) clearly equals (Z) times the probability B (n, k) that

the mean is larger than the first & unordered observations, and smaller than the
last n — k unordered observations, which in turn is the probability, under the
spherical normal distribution, of a polyhedral cone C' with bounding planes of
the form z; — & = 0. By the spherical symmetry of the spherical normal, this
last probability is equal to the spherical measure, relative to the spherical measure
of the unit sphere S, of the spherical polyhedron C' N 8. Finally, as is shown in
Sub-section 4.3, this relative or normed polyhedral measure is expressible as a
linear combination of the normed measures of a set of equilateral simplices of
descending dimension. Alternatively, transforming to, say, y; = z;: — &, B(n, k)
also equals the probability of the first orthant, induced by the normal density
with covariance structure that of the transforms y;, and it might have been
possible to reach the results of this paper by exploiting this interpretation of
R(n, k).

Evaluating arbitrary normal first-orthant probabilities as normed spherical
measures has been discussed by van der Vaart [33], [34]. Fisher [11] and Ruben
[26], [27] have used normed spherical measures for related statistical problems.

Spherical simplex measures have interested several mathematicians, among
them, Bohm [1], Dehn [9], p. 572, Poincaré [23], p. 116, eqn. (9), Schléfli [29]
and [28], p. 71, eqn. (1), and Sommerville [30], p. 110, eqn. (3.74). These writers
arrive at a generalization of the angular excess formula of the 2-sphere, which
gives the normed spherical measure of a spherical simplex imbedded in a hy-
persphere of even dimensionality as a linear combination of the relative con-
tents of simplices in spheres of next lowest and lower dimensions. F. N. David
[7] has pointed out the relation of their formula to a well-known theorem of
probability theory that she attributes to Boole.

The numerically most fruitful approach to the spherical simplex problem seems
to have been that of Schliafli ([28], pp. 57-68), who derived the fundamental
relation stated in Sub-section 2.3. In addition, Schlifli has given several ex-
tensions of the generalized spherical excess formula explored by Dehn, Poincaré,
Sommerville and himself. The Schléfli theory is the fundamental tool in the
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present investigation. Schlifli’s fundamental differential relation recently has
been restated by Ruben in [26] eqns. (71), (71"), (72), and restated and re-
proved by van der Vaart in [33] eqn. (3.18) and in [34], Theorem 4.

Neither the generalized spherical excess formula nor Schlifli’s relation yield
closed expressions in terms of elementary functions for the normed spherical
measure of an arbitrary spherical simplex of dimensionality greater than two,
or, equivalently, of the arbitrary normal orthant for more than three dimensions.
As a matter of fact, only Schlifli’s differential relation yields exact and closed
expressions, and these are not elementary. However, the problem of closed
evaluation in special cases has been considered by several authors. Coxeter [4]
has given closed expressions for a class of simplices in the 3-sphere, and Schlafli
[28] has considered various classes of right simplices on spheres of various low
dimensionalities including 3.

As indicated above, the evaluation of R(n, k) corresponds as well to com-
puting the probability of the first orthant under a normal density with a certain
covariance structure. Several authors have studied the ‘“normal orthant”
problem without reference to the language of spherical geometry. As mentioned
earlier, the results of Section 4 might perhaps have been obtained as well by
extending some of the work in this area.

One attempt to evaluate the “normal orthant” is that of Kendall [15] and
Moran [21], who developed an infinite series involving successively higher powers
of the correlation coefficients. The convergence of this series apparently is
felt to be rather slow (F. N. David [7]). Another idea is to express the n-fold
integral involved as a single integral of a tabulated function. Two special cases
have been studied in this light. Moran [20], Ruben [26], and Dunnett [10] have
given such a reduction for the case of equal correlation coefficients; in this case
the tabulated functions turn out to be essentially powers of the error function.
Also, Ruben has pointed out that, in the case of P(n, k), ie., the particular
problem under discussion in this paper, the multiple integral may be reduced to
a single integral of a tabulated function which is essentially a product of G-func-
tions (cf., Godwin [12]). Again, along somewhat different lines, McFadden [17]
has considered an approximation suggested by the form of analogous prob-
abilities occurring in certain dependent sampling schemes. Finally, Lomnicki
and Zaremba [16] have obtained certain characterizations of the orthant prob-
ability in the case of four dimensions, and Steck [32] and Das [6] have given
workable numerical methods for three dimensions.

A comprehensive bibliography covering all areas mentioned above has re-
cently been compiled by Gupta [13].

A final word on notation: a reference to, say (17) means a reference to equa-
tion (17) in “this” sub-section; a reference to, say, (3.17) means a reference
to equation (17) of Sub-section 3 of “this” section, while a reference to, say,
(2.3.17) directs the reader to section, sub-section, and equation, respectively.

2. Convex spherical polyhedra.
2.1. The supports of a convex spherical polyhedron.
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DErintTION 1. Let & be a Buclidean space containing a set W of vectors w.
The point set C{W} = {z:|z| = 1;z-w = 0, we W} in § is a convex spherical
polyhedron, and W is a set of supports for C{W}.

Lemma 1. Let & be a linear subspace of &, and let E™* be a set of vectors spanning
the orthogonal complement &* of & in §. Let C; = C{WU E*U —E*} = C{W}N &
and let Cy = C{W*U E*U —E*} = C{W*} N &, where W* is obtained from W
by replacing any set of vectors of W by their orthogonal projections on &. Then
01 = Oz .

Proor. For any z in &, since orthogonal projection is self-adjoint, z-w = 0
holds if and only if &z -w = 0, which in turn holds if and only if z-&w = 0 (where
the symbol &, by a notational device to be used repeatedly below, denotes
orthogonal projection onto &) . Hence x ¢ [C{W} N g]if and only if z ¢ [C{W N e).

DeriNiTION 2. C{W} is called degenerate relative to a subspace G of & if
C{W} N g lies entirely in a proper linear subspace of G. In other words, C{W}
is degenerate relative to G if the spherical m-measure of C{W} N G is zero, where
m = dim § — 1.

Context allowing, the phrase “relative to” sometimes will be omitted.

DeriNITION 3. X is the set of non-zero elements of X.

LemMma 2. A convex spherical polyhedron C{W} s degenerate relative to G if
and only if £-GW > 0fornoz eG.

ProoF oF NEcEsSITY. Suppose z-GW > 0 for some z ¢ G, say %, . Then there
exists a neighborhood N (x,) of @, in G such that [z ¢ N (x,)] implies [z Sw > 0].
Hence, by scaling every z in N (z,) by an arbitrary positive constant, there
exists a cone D in G such that the intersection of D with the unit m-sphere in
G yields a set S on the unit m-sphere in G, of non-zero spherical m-measure, such
that [z & S] implies [x- SwW > 0].

Now denote by W, the set of vectors w of W such that Gw # 0; denote by
W, the set of vectors of W such that Gw = 0. W, clearly is in the orthogonal
complement of G, so that [z £ G] implies [z- W, = 0]. Using this fact, plus the
self-adjointness of orthogonal projection as it was used in the proof of Lemma 1,
one obtains the following chain of implications: [z eG; x- SWw > 0] =
keGa-GW,>0=[xeG G- Wi>0=xeGa-Wi>0=[reGz W,=0;
2 Wy >0 =[xegz-W = 0], or [xe (C{W} N G)]. Hence, if S C G 1s such
that [z & S] implies [x-GW > 0], then S © (C{W} N G).

The two italicized portions of the above argument imply that C{W} N g
is not degenerate relative to G.

Proor oF SUFFICIENCY. Suppose z-GW > 0 for no z ¢ G. Then, unless C{W}
is empty, there is for every z of C{W} N G a subset GW (z) of GW such that
2-Gw = 0 for GweGW (2), z-Gw > 0 for Gwe GW (z). We now show that
C{W} is degenerate relative to G by showing that nu(c(w)ng)gW (x) is not
empty, i.e., that C{W} N G lies entirely in some hyperplane z-Gw, = 0 in G,
Gw, some vector of GW.

Suppose that ()aeconngGW (z) is empty. Partition the pointsz of C{W} N G
into, say, K partitions, according to the composition of GW (z). (Note that
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K =< 2" — 1; n the number of vectors in GW ; where the subtraction of 1 is due
to the original premise excluding z-GW > 0.) Now, from each of the K parti-
tions, pick an x, say vx, 1 = k = K. Then if n“cgw,nggW(m) is empty then
N+SW (z) is empty. This last in turn implies that & GW > 0, where & =
> ai/k £ G since x € G.

In summary, if ()zcwngGW (z) were empty, then there would exist an
T eG with 2-GW > 0, contradicting the original premise that z-GW > 0 for
nozxeg.

Lemma 3. 2-GW > 0 for no x G if and only if 0e ccGW, where ccGW s
the convex closure of GW. .

Proor or NecEssiTy. If 0 £ ccGW, then the normal £ to the supporting hyper-
plane separating 0 and ccGW satisfies £-GW > 0.

Proor or Surriciency. Let {g;} denote the elements of GW. If there exists
an z, say ., such that z,-GW > 0, then z,- O augs = 2 (as) (@o-g:) > 0 for
any set {a,} of convex weights, i.e., > ag: = 0 for no set {ay} of convex weights,
ie., 0z ccGW.

TuroreM 1. C{W} is degenerate relative to G if and only if 0 ¢ ccéW.

Proor. By Lemmas 2 and 3.

A result analogous to Theorem 1 for convex Euclidean polyhedra is given on
page 16 of [2].

DerintTION 4.

(i) C{W} is a proper lune (orange section peel) relative to G if the subspace
U spanned by GW has dimension less than (m 4 1), (m + 1) being the di-
mension of G.

(ii) the type of the proper lune C{W} relative to Gis (m + 1) — dim (V).

(iii) for $ any subspace of G such that 0 C 8 C g, $* the orthogonal com-
plement of $ in G, and S* any vector set spanning 8*, C{W} N 8 = C{WU S*U
— 8"} is the base of C{W} corresponding to 8, of order (m + 1) — dim (8)
relative to G.

(iv) C{W} N U is the minimal base of C{W} relative to G.

The type of a proper lune clearly is the order of its minimal base.

LemMa 4. If C{W} is a proper lune relative to G, then C{W} may be degenerate
relative to G.

Proor. By Definition 4 C{W} is a proper lune relative to G if dim (V) < m
By Theorem 1, C{W} is degenerate relative to G if and only if 0 & ccGW. These
two conditions clearly are not inconsistent.

DerinitioN 5. C{W} is a simplex relative to G if GW is a maximal inde-
pendent set of G, i.e., a set of (m -+ 1) independent vectors.

Lemma 5. If C{W} is a simplex relative to G, then C{W} is not degenerate rela-
tive to G.

Proor. If C{W} were degenerate relative to G, then some convex combination
of the elements of GW would equal zero, contrary to the independence required
in Definition 5.

LevmMa 6. Let C{W} be a proper lune relative to G, W spanning U CG;
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let C{W} N 8 be a base of C{W}, where U C 8 C G. Then C{W} is degenerate rela-
tive to G if and only if C{W} N 8 is degenerate relative to 8.

Proor. C{W}N 8 = C{WU S*U —S*}. Hence, by Theorem 1, C{W} N 8is
degenerate relative to $ if and only if cc(SWU 8S*U § — = cc8W contains
zero. Again, by Theorem 1, C{W} is degenerate relative to 9 if and only if ccGW
contains zero. But W spans 0 C 8§ C G, so that SW = W = GW, or ccSW =
ccGW.

2.2. Subpolyhedra and dihedral angles. To simplify the exposition, it will be
assumed in this section that W e G, so that GW = W. In addition, statements
regarding C{W}, concerning degeneracy, and simplicial or lunar nature, often
will omit the phrase “relative to G.” Statements regarding subpolyhedra of
C{W} will always contain the corresponding phrases, specifying the pertinent
subspaces of G.

DerintrioN 1. Let C{W} be non-degenerate, and let U be an arbitrary subset
of W, spanning a subspace U of G of dimension £, 0 < & < m. Then C{WU —U}
is the subpolyhedron of order & of C{W} corresponding to U.

LemMa 1. Let U™ be the orthogonal complement of U in G. Let
Then the order-k subpolyhedron C{W U — U} of C{W} equals C {

Proor. Applying Lemma 1.1 with § = a*,

C(WU —U} = ¢{TU UU —U} = ¢{u*TU w*UU u* — U} = C{uT).

LemMa 2. A simplex C{W} has subpolyhedra of all orders, i.e., of order k,
0 £ k £ m. All these subpolyhedra are themselves simplices; specifically,
C{WU —U} = C{u*T} is a simplex relative to U*.

Proor. Let U be a set of & vectors of W. We must show that w*T is a maxi-
mal independent set in U*. But, since the elements of U are independent,
dim (u*) = m + 1 — k; hence we must show that W*T isaset of (m + 1 — k)
independent vectors.

Let 7 = W — U as in Lemma 1, and denote the elements of w*T by ‘LL s .
Now suppose that ) el %; = 0; then U™ ( Z aidl) = 0, or 2 adi; = u' €.
But the elements u; of U span a, so that u™ = D ba, and we conclude that
> adfi; = D baus, which implies that a; = b; = 0 by the independence of the
elements of W = {us, -+, us, %, -+, Gmp—s}. In particular then, a; = 0.

Lemma 3. If C{W} is a proper lune of type t relative to G, then C{W} has no
subpolyhedra of order higher than (m + 1 — ¢).

Proor. Since the subspace O of G spanned by W has dimension (m 4+ 1 — £),
no subset of W spans a subspace of dimension greater than (m -+ 1 — ¢).

Note, incidentally, that the subpolyhedron of order (m + 1 — ¢) of a proper
lune of type ¢ is the full (¢ — 1)-sphere.

Lemma 4. Consider a non-degenerate proper lune C{W} of type t, with W span-
ning VO C G. Consider a subspace 8 of G, U C 8§ C G, determining the order-s base

C{W} N § corresponding to 8. Consider also a subset U of W determining the order-k
subpolyhedron C{W U —U} = C{u*T} of C{W} corresponding to U, C{u* U}
assumed non-degenerate relative to W*. Then

ﬁ~= W — U.
w*vj.



EXTREME NORMAL ORDER STATISTICS 39

(1) C{u U} 18 a proper lune of type t relative to U™ C{‘LL U} possesses a base
B = Cc{utU} N (N u*) corresponding to $ N ‘IL , of order dim (u*) —
dim (8N w*) = (m+1—4k) — (m~+1—Fk—s) = srelative to U*, and
B is non-degenerate relative to (SN w*).

(2) the base C{W} N 8 = C(W U S8*U —8* of C{W} corresponding
to 8 is mon-degenerate relative to S, and has an order k  subpolyhedron P =
C{w U 8*U —8*U —U}. (For the definition of a subpolyhedron of the base
C{W} 0 8 read Definition 2.2.1 with S substituted for G; SW need not be substi-
tuted for W, since W ¢ 8 by assumption.)

() B = P, from which it follows that P is non-degenerate relative to $ N U*,
since B is non-degenerate relative to SN ™.

g m+1

e ——

—_ —
J;m+l-s;-— /";s;S"'
e, S

—_ WM-—_\

Uimti-tw
— — ~
Uik -0

Mw\

— } } t i
~— —— e
R
~— v
U imt-k-

Fic. 1.

Proor. Except for the non-degeneracy of C{W} N 8§ and of B, which follows
from Lemma 1.6, verification of (1) and (2) follows straightforwardly from the
definitions; it may be facilitated by the schematic in figure 1, indicating the
various subspaces of G, their dimensions, and their spanning vector sets. (3)
follows as readily, since

P=C{WU S*'U —8*U —U} = C{WU — UU S*U —84
=C{wWU =UjNns=c{wu —=Uu}N (sN u*)
=c{u'U}n (sN u*) = B.

The content of Lemma, 4 is summarized by the statement that a subpolyhedron
of a base is the base of a subpolyhedron. ‘

As will be shown below, subpolyhedra of order 2 corresponding to independent
pairs (wy, wi) of supports of C{W} are important in computing the spherical
m-measure of C{W}. Equally important are the dihedral angles of C{W} cor-
responding to (wy , wy).

DeriniTioN 2. Given two independent vectors wy, and w; of W, the dihedral
angle of C{W} corresponding to (w, w;) is defined by

Ox,1 = arcos (—wi-wy/|wi|-|wi);0 < 64,1 < 7.
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Dzrintrion 3. Consider the order-% subpolyhedron C{W U —U} of C{W}
corresponding to U: w;, w;, --- , w, . Given two elements w; and w; of W such
that U*w, and U*w, are independent, the dihedral angle of C{W U — U} cor-
responding to (w; , w,) is defined by®

Oi " = arcos (—W'wp- W wy/| W we|- [Ww,]); 0 = 65" <

2.3. Spherical simplices and their measures. Since simplices with identical
dihedral angles are congruent, differing at most in their position and orientation
on the sphere, the (m + 1) (m)/2 dihedral angles of a simplex determine its
meagsure; the dihedral angles determine as well existence:

Lemma 1. (Schldfli [29] and van der Vaart [33]). Given (m + 1) (m) /2 numbers
0:5,0 = 0;; = m, there exists a simplex with dihedral angles 0;; if and only if the
mairix M = ||— cos 0]l (with 1’s on the diagonal) s positive definite.

Proor. The Lemma follows from Definition 1.5, since the positive-definite-
ness of M is equivalent to the independence of the elements of W.

Lemma 2. Given (m 4+ 1) (m) /2 numbers 0.5, 0 < 0;; < , there exists a proper
lune (which may or may not be degenerate) with (m —+ 1) supports and
(m 4+ 1) (m)/2 dihedral angles 0;;, if and only if M (defined as in Lemma 1)
s singular and positive semi-definite.

Proor. The lemma follows from Definition 1.4, since M is singular if and only
if the subspace spanned by W is of dimension less than (m + 1).

DrrintrioN 1. The measure |C{W}| (relative to 9) of the spherical polyhedron
C{W} is the spherical m-measure of C{W} N G; in other words, |C{W}| is the
fraction of the unit m-sphere* in G occupied by C{W} N G, multiplied by the
spherical m-measure of the unit m-sphere.

DerINITION 2. The measure [C{W U —U}| (relative to U™) of the sub-
polyhedron C{W U —U) of C{W} is the spherical (m — k)-measure of
C{WU —U} N u*; in other words, [C{W U —U}| is the fraction of the unit
(m — k)-sphere in U* occupied by C{W U — U}, multiplied by the spherical
(m — k)-measure of the unit (m — k)-sphere.

Schlafli [28] first showed that the dihedral angles of a spherical simplex con-
stitute natural vehicles for the study of its measure. Adapting our notation to
this fact, we shall often designate the measure of a simplex C{W} by |C[B]]
rather than by |C{W}|, emphasizing thereby the dependence of the measure on
the set © of dihedral angles 6;,; of C{W}. In addition, we shall usually write, say,
|C[®]] to remind the reader that, say, spherical m-measure is being computed.
Similarly, the symbol |C,,_+[®"* ]| will often be used in place of |C{W U — U}|
to denote the measure of a subpolyhedron.

The fundamental formula, first given by Schlifli, and also given by Plackett
[22], Ruben [26], and van der Vaart [34], is

(1a) 9|Cwul®]|/38i; = [Crnal®@ ]|/ (m — 1);m = 2

3 As pointed out by Ruben in a forthcoming monograph, — cos 6;;""*® is the same function
of the quantities { — cos 8m.»} that the partial correlation coefficient px,i.i,...,- is of the margi-
nal correlation coefficients {om.n} .

¢ The unit m-sphere is taken here to be the set of points {z: D12 } = 1}.
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(1b) [C4[O]] = 6; (Note that, for m = 1, the set © consists of the single angle
0.)

(le) |Co| = 1. (Note that, for m = 0, there exists only one simplex C, , namely
the one-point “hemisphere”).

Exphc1t expressions for the (m — 1) (m — 2)/2 elements 653 of the set
0" in terms of the (m) (m + 1)/2 elements 6;,; of the set ©, given by Schlifli
on page 62 of [28], are obtained by a process more recently called Grammian
proyectwn

(2) — cos O] = ALI(AMATH)™?
where
—co8 O,y —cos O;,; —cos b,;
Ayl = |—cos 0;,; 1 —cos 0; ;
—cos 0;,; —cos b;,; 1
and
— cos #;; = 1.

Relation (1a) can be integrated as follows.® Suppose that it is desired to find
|C[01]] While |Cu[60]] is known. Since both spherical polyhedra are assumed to
be simplices, their respective dihedral angle cosine matrices, call them
| — cos 64] and ||— cos 6|, will be positive definite by Lemma 1. Hence,
for every ¢, 0 <t =1, the matrix ||— cos 8 (t)| = || (cos bo,:;) (¢ — 1) —
(cos 0y;45) () || will be positive definite, so that, by Lemma 1, there will exist a
family of simplices C[O (¢)], 0 < ¢ < 1, with the elements 6. ,(¢) of © (¢) given
by

(3) 8:;(t) = arcos ((cos Oy;4;) (1 — &) + (cos 6y,45) (2)).
Hence (1a) yields -

(4) 1Cal0ill = 1alO] + (m — 1) [ 52 ([Cad @) (05(0))

where the summation extends over the (m -+ 1) (m)/2 pairs (3, 7), the set
©™(t) is derived from the set O(t) by (2), and where the derivative 6;,(¢) of
0:; (t) with respect to ¢ is obtained from (3).

2.4. The measure of an equilateral spherical simplex. For equilateral simplices
(writing the single dihedral angle 6 in place of the set ©), (3.1a) and (3.2),
as well as (3.1b) and (3.1c), become (Ruben [26])

(1a) 9|CA[0]]/960 = ((m + 1) (m)/2(m — 1))(|Cm_s [arcsec (sec 8 — 2)]|);
m = 2,

(1b) |Cil6]] = 6,

(Le) |Co =

The integration could be performed here, as in (3.4), by selecting a straight-

5 See footnote 3.
¢ See also Plackett [22] and Ruben [26].
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line path in cosine space; this choice was made for (3.4) because, although lead-
ing to an unwieldy integration formula, it simplified the necessary verification
of existence. However, in the equilateral case, choosing a straight-line path
P. In cosine space amounts to choosing a straight-line path p, in angle space.
Hence a path p. may be chosen to simplify the integration, while the corre-
sponding path p, still establishes the required existence. Lemmas 1 and 2 effect
the integration of (la) along a suitable straight-line path p, in angle space.

Lemma 1. |C,, [arcsec m]| = 0.

Proor. Consider the (m 4 1) supports w; of an equilateral simplex, each
assumed normed to unit length. These supports satisfy the two sets of relations
wi-w; = 1 and w;-w; = \. Now suppose that A = —m™. Then

(Zw) - (Zw) = (m=+1) + (m)(m~+1)A) =0,

so that > w; = 0 and |C,,{W}| = 0 by Definition 2.2 and by Theorem 1.1.

Lemma 2. [Cu[6]] = {[(m + 1) m)]/2(m — 1)} [arescc m|Cmz [aresec (sec
t — 2)] dt.p

Proor. The matrix with diagonal and off diagonal elements equal, respec-
tively, to 1 and to — (m + €)™ is positive definite. Hence, by an argument
analogous to that given in the paragraph preceding (3.3), the points of the
half-open line segment p. in cosine space from (m ™", -+, m™) to (cos 6, -- -,
cos §) all determine simplices. Hence (1a) may be integrated along the half-
open line segment p, in angle space from (arcsecm, - - - , arcsec m) to (6, -- -, 9),
and the result follows from Lemma, 1.

2.5. The edge of an equilateral spherical simplex.

Derinition 1. Let C{W} be an equilateral simplex relative to an m-dimen-
sional subspace of . A subpolyhedron of order (m — 1) of C{W} is defined to
be an edge of C{W}. The edge length of C{W} is the measure of any of its sub-
polyhedra of order (m — 1), or, by (4.1b), the dihedral angle ¢ of any of these
subpolyhedra.

Lemma 1. cos¢ = (cos8) (1 — (m — 1) cos 6) ';¢ = arcsec (sec§ — m + 1).

Proor. By Definition 2.3, the lemma follows from a straightforward compu-
tation using Grammian projection (see (3.2), the A’s now being (m X m)
determinants with all non-unity elements equal to — cos 6).

Let |Cw(z)| denote the measure of the equilateral simplex with edge
arcsec (z -+ 1). The curved brackets of |C,. (z)| indicate that measure is being
considered as a function of (sec ¢ — 1) = z. Introduction of the new argument

7 As pointed out by the referee, this result corresponds to the well-known fact that a
(m + 1)-variate distribution with correlations all equal to —1/m is singular, and therefore
in particular the (m 4+ 1)-variate normal distribution.

8 In the present ‘‘acute’ case, the integration limit arcsec m is more natural than the
limit /2 used by Ruben [26] for the ‘‘obtuse’’ case; the present limit further does away with
the additive constant (3)™!, a feature which is useful for the asymptotic computations
below.
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x will facilitate proofs in later sections. By Lemma 1, square brackets and
curved are related by

|[Cw(@)| = |Cw [aresec (x + m)]|
|Clf]] = |C (sec 6 — m)|
and the relations (4.1) become in terms of z:

_ (m + 1)(m)|Cra(z)] .
(2a) 8|Cm(2)|/0x = 5m = )@ + m((@ F mp = 1)’ mz 2,
(2b) |Ci(z)| = arcsec (z + 1),
(2¢) |Co = 1.
2.6. Arbitrary convex spherical polyhedra. By decomposing arbitrary polyhedra
into simplices, Schifli [28] has shown that (3.1a) holds for the former as well as

for the latter:
1) dICAW} = (m — 1)"1(2) [ConaofW U —u; U —uj}|db;,
%

(1)

where the summation extends over all independent pairs (u;, ;) of elements
of W. Observe that the required independence of u; and u; insures that w*
has dimension (m — 2). Hence, by Definition 3.2, the measures on the right of
(1) are, as indicated by the subscript, spherical (m — 2)-measures. Observe as
well that some of the subpolyhedra of order 2 entering (1) often will be de-
generate, in which case their contribution to the summation is of course zero.
Such a situation is illustrated by the specialization of (1) to the 2-sphere, where,
unless the polyhedron in question is a proper lune, the second-order subpoly-
hedra corresponding to any two independent supports either are empty or
equal Co (see (3.1c)). If the two supports correspond to adjacent sides the
corresponding subpolyhedron equals Cy, and it is empty otherwise. Hence, by
(8.1¢c), (1) becomes for m = 2:

@) d|Co{W}| = 2°% dby

where D" indicates summation over all generator pairs (u;, u;) corresponding
to adjacent sides.

Equation (2), plus the fact that the interior angles of a Euclidean A-gon add
to A\ — 2) (), and the fact that near-degenerate convex spherical polyhedra
are near-Euclidean, yields the familiar spherical excess formula for the spherical
A-gon:

3) ICo{ W} = 2265 — (\ — 2)m.

2.7. The normed measure of a proper lune.

DeriniTioN 1. Let Z, be the spherical m-measure of the unit m-sphere.
The normed measure (relative to G) of C{W} equals |C,{W}|/=Z. . An analogous
definition holds for subpolyhedra of C{W}.

Lemma 1. The normed measure of any base of a proper lune equals the normed
measure of the lune.



44 HERBERT T. DAVID

Proor. Let the base be of order s; we must show that
(1) |Cousf WU S*U —8Y|/Zps = |CW{ W}|/Z ]

This is proved straight forwardly by induction on m, using (6.1) and the fact
that the base of a subpolyhedron of a proper lune is a subpolyhedron of a base
of the lune (see Lemma 2.4).

3. The measure of an equilateral spherical simplex.
3.1. Bounds. The Euclidean (m -+ 1)-measure M of a Euclidean pyramid with
altitude 7 and base of Euclidean m-measure b is ([31], p. 123)

(1) M = hb/(m + 1).

It follows from (1) that the Euclidean m-measure |S,(L)| of the m-dimen-
sional equilateral Euclidean simplex S,, (L) of side L is ([31], p. 125)

@) [8m(@)| = (m + 1)/ (m2™?) .L™.

Approximating the curved base by a Fuclidean grid, (1) also implies that
the Euclidean (m + 1)-measure 9 of a spherical pyramid with altitude A and
base of spherical m-measure b is given, as in (1), by

(3) M = hb/(m + 1).

Consider the equilateral spherical m-simplex C, (z) of edge arcsec (z + 1),
the notation being that introduced in (2.5.1). Let |4| be the Euclidean m-meas-
ure of its exscribed equilateral Euclidean simplex 4, and let | B| be the Euclidean
m-measure of its inscribed equilateral Euclidean simplex B.

The vertices of 4 are the intersections, with the hyperplane tangent to the
unit m-sphere at the center of C..(z), of the vertices of C,, (), so that A has
edge length

“) @rm+ 1))@+ m+ 1)

The edges of B are the line segments connecting the vertices of C,,(z), so that
B has edge length

(5) @)@+ 1t

Let 2; be a vector oriented in the direction of the ¢'th vertex of the simplex
A (or B). Formulas (4) and (5) are proved by noting that, for |z = r, 2;-2; =
7/(x + 1), so that |e; — 2;] = (2°1 — (@ + 1)™))?, which yields (5) set-
ting 7 = 1; on the other hand, z2:2 = r*(m + = + 1)/(m + 1) (x + 1), or
r = |z (m 4+ 1) (@@ 4+ 1)/(m + = + 1), so that, setting |z = 1, |; — 2, is as
given in (4).

Let @, ®:, By, B, and @ be, respectively, the Euclidean pyramid with base
4 and vertex at the origin, the Euclidean pyramid with base B and vertex at

¢ As pointed out by the referee, the probabilistic basis of this result is the joint normality
of homogeneous linear functions of jointly normal random variables.
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SijSles
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the origin, the Euclidean pyramid with base B and vertex at the center of C,, (),
the (2m + 2)-sided Euclidean polyhedron &, U ®,, and the spherical Euclidean
pyramid with base C,, (z) and vertex at the origin.

It is clear that ® C € C @ so that |@] + |®] = |®| = |€| = |@] where the
vertical bars indicate Euclidean (m - 1)-measure. Hence, by (1) and (3),

(6) [B|-hs + |B|-hs = |Cm(2)|-hs = |A] hs,

where |B| and |4]| are as defined in the paragraph following (3), and where
k1, he , h3 and hy are the respective altitudes of ®;, B, , € and @. But &, + hy =
hs = hs = 1; hence (6) implies |B| = |[C\n(zx)| = |4], or, by (2), (4) and (5),

CWLWX@iDYEwmmg(@%%Q

T ROy
m

The factor (/{1 + [z/(m + D™} clearly is approximately unity for m
large or x small.

3.2. A heuristic derwation. In view of (1. 7), it seems worthwhile to explore
the possibility that

(1) 1@@»=Cm+”)meWumwmw>

where 7 (m, z) tends to unity for z fixed and m large. The program of this sec-
tion is to produce tentative solutions for f and ¢; these tentative solutions are
vindicated in the next section.
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It follows from (1.7) that

< 1 >m/2 - |Om(x)| - ( m + 1 )m/Z
z 4+ 1 = (@) ((m + 1)/m!) T \z+m + 1

so that
- |Cn(2)] _
@ 5 @+ DymD
Substituting in (2) the expression (1) yields
3) lim,.o (f(z)/z)"" (g (x)) (n(m, 2)) = 1
which suggests that
4) limzo f(2) = =,
5) lim,.og(z) = 1.

Next substitute the expression of (1) into equation (2.5.2A). This yields
6) f@) + [2f(x)/m] [In g(x) + In n(m, z)]
= [F(m)/F(m + x)]ln(m — 2, z) /n(m, z)],

where dotting indicates differentiation. Assuming that in % (m, z) tends to zero
with m large and that [n(m — 2, z)/9(m, )] — 1 is of order less than m ™,
and using the fact that F (m)/F(m + z) = 1 — 2z/m -+ o(m™), equate terms
of order 1 and terms of order m ™ in (6), giving respectively

() J@) =1

and

(8) (f@) (ng@) = —a.
Equation (7), together with (4), yields

9 f@) ==z,

so that equation (8), together with (5), yields

(10) g(z) =€ "

Finally, if (1), (9) and (10) are true, then substituting (9) and (10) in (1),
and substituting the resulting expression for |Cy,(z)| in (2), leads to

limz_.o,m fixed ﬂ(m, x) = 1.

In summary, assuming (4) and (5), plus the smoothness assumption discussed
following (6) one is lead from (1) to

(11) ICn@)| = @™ (m + 1)}/e'm)) (n(m, 2)),
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where 5 (m, ) tends to unity for x fixed and m large, and also for m fixed and
x small.

It seems of interest to point out the similarity of (11) and the upper bound
in (1.7). (11) is proved in the next section; note that the asserted behavior of
n(m, x) for m fixed and = small needs no further verification, since it follows
immediately from (1.7).

3.3. The asymptotic measure of an equilateral spherical simplex. Let \(m, x)
be the function ™ (m + 1)%’/ ¢"m! of (2.11). This section is devoted to showing
that |C, ()| is uniformly asymptotically equal to A (m, z) in the following sense.
Let

1 n(m, ) = |Cn(@)|/N(m, 2),
and let £ be arbitrary and fixed. Then
(2) limye (SUPogz<e [9(m, z) — 1]) = 0.
The proof of (2) is as follows. Relation (2.5.2a) states that
@) ACw@)|/9z = [(m + 1) (m)([Ca@)I/I2) (m — 1) (F(m + 2))]

where F(t) = t(# — 1)%. In view of Lemma 2.4.1 and (2.5.1), |C,.(0)| = 0,
so that integrating (3) yields

(4) 'r)(m, x) = xmme” ‘/ow (tm/2e—t)< mF(m)

2F(m + 1)

Relation (4) is now investigated for m large. Below, K (z) will denote a con-
stant depending on z, and not necessarily the same constant each time that it
appears; o;(m,t) will denote a function of m and ¢ such that o;(m,t) <
K (z)- (t/m)* for m large and 0 < ¢ < a; w;(m, ¢) will denote a function of
m and ¢ such that

(5) wi(m, ) < K(z) -m™ formlargeand 0 < ¢ < z.

n(m — 2, t)) dt.

The coefficient of 9 (m — 2, ¢) in (4) equals
/2001 + t/m] (1 — m™) /(1 = m™* (1 + t/m) ™)}
= [m/20][1 — 2t/m + o (m, O][L + 01(m, &)/ (m" — 1)]™
= (m/2t — 1) 4+ o1(m, t) + we(m, t) = (Mm/2t — 1) + wi(m, ¢).
Using this last expression and working with the new functions
(6) e(n, ) = (n(n,s) — 1)/s,

equation (4) becomes

1+ ze(m, z) = & ™%" / "% (m/2t — 1)(1 + te(m — 2,1)) dt
(7) o

+ R(m, x).
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Since [§ ™% ' (m/2t — 1) dt = 1, the right hand side of (7) equals

(8) 14 2% fo P 2t — 1) (e(m — 2, 1)) db + R(m, z) =

©) 1+ <m’i 2)<x""’2e’” fo fomtd) gt (m ;; 2 _ 1> (elm — 2,1)) dt>

4+ S(m, z) + R(m, z),

or

(10) e(m, z) = (n_tl—nl——zxx—%(mﬂ)e” fo’ om — 2,0 d(t%(m+2)e—t))

+ (S(m, x) + R(m, z))/=.
The next step is to bound sup.<: |[S + R]/z| for m large. To this end, define
(11) M (n, x) = supo<i<s |€(n, 1)].
Comparing (4) and (7),
sup.<t [R(m, x) /|

= SUP,<: x_%("‘“)e’/o % (wi(m, t)) (1 + te(m — 2, 1)) di|,

and, since [5" "¢ ' dt < "¢/ (n — =), this last expression is no greater than
SUpsx¢ {[SuPogiss (Wi(m, 1)1/ (m/2 + 1 — @)
+ [suposizs (wi(m, t)e(m — 2, 8))1lw/((m/2) + 2 — )]}
= [supogigs (wi(m, 8))1/[(m/2) + 1 — ¢
+ [suposese (wi(m, ) e (m — 2, 1)1/ (m/2) + 2 — §)],

which, by (5), is in turn no greater than K Em? + KEMm — 2, Hm>
Summarizing this derivation of a bound for sup.<; |R(m, z)/z|,

(12) Sup.<t | R (m, ©) /o] £ KEm (1 + M(m — 2, §).
A similar argument, following the comparison of (8) and (9), yields

sup.<¢ [S(m, x) /x|

(13) = SUPs<t (x_%('"“)e’” f £ e (m — 2, 1) dt)l
0

< K(5)m”M(m — 2, §).
Relations (10), (12), and (13) now yield that, for m large,
(14) M(m, &) = [m/(m + 2)](M (m — 2,£))
+ (K ©) /m' 1 (M (m — 2,8) + [KE&)/m].

_2
m + 2
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Let p be a fixed integer large enough so that (12) holds with m — 2 = p.
I show next that
(15) M, §) < K< o,

By (1), [Co(2)] = n(p, 2)N(p, 2) = n(p, 2) @ (p + 1)¥/e°p!), so that (1.7)
yields

»/2
4" s = ¢ /(145

or
¢ — (14 )™ F— {1+ [/(p + D)™
z(l + )P e{l + [&/(p + DIJ2

Hence, to demonstrate (15), it is sufficient to show that a function of type
" — (1 + A=2)”]/lx(1 + Az)®] does not become infinite in the interval 0 <
& = £ which obviously is true, since, in the questionable range, i.e., near zero,
both ¢® and (1 4 Az)® are of the form 1 + O (z).

Tterating (14) for m, m 4+ 2, m + 4, --- | and using (15),

M(p +2(g+1),8) = K(&) - (%) + K@) - (é <}T—|—1_2¢>>

which, letting ¢ — o, implies that, for m large, M (m, £) = O (m™), or, recalling
(6) and (11),

< e(pa) ¢

(16) SUpoga<e [[n(m, ©) — 1)/x| = O(m™).
Since (¢/2) =z 1for 0 = z = £, multiplying through by (¢/z) in (16) yields
a7 SWPo<ast [n(m, z) — 1| = O(m™)

which, of course, implies (2).

4. Applications of the geometry.

4.1. The mean among the order statistics in normal samples of size four. Let
P (4, k) be the probability that, in a normal random sample of size four, the
sample mean lies between the £’th smallest and (& -+ 1)’st smallest observation.
Since P(4,3) = P(4,1) and P(4,2) = 1 — 2P (4, 1), only P(4, 1) need be
computed.

Clearly

(1) P@4,1) = (?) Priz. £ 2 < m, 2, 24,

where the x;’s are unordered. (1) can be rewritten
P4,1) =4Pr{—8xi + a2+ 25+ 24 = 0

—x + 3%y — x5 — 24 = 0;

2)

—x — T2+ 3x3 — x4 = 0;

—& — 2 — 23 + 3z = 0}.
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Let u be the population mean. Conditionally on (z; — w)® + -+ +
(x4 — u)* = R’ the point (z;, 2, x5 , 24) is distributed uniformly on the 3-sphere
with center at (s, g, 4, u) and radius R. Hence, conditionally on (z; — u)® + - -
+ (s — u)® = R’, the probability of (2) is the spherical measure of the sub-
set {xix-wi, z-wa, z-ws, x-ws = 0} of the 3-sphere with radius R, relative to
the spherical measure of this 3-sphere, where w; , ws , ws and w, are the vectors
(-38,1,1,1), (-1,38, -1, —1), (—1, —1,3, —1) and (1, —1, —1, 3). But
this relative measure does not depend on R; hence, setting R = 1 and recalling
Definition 2.1.1, (2) can be rewritten

(3) P(4:, 1) = 4|03{w1 s We 5 W3 5 W4} I/Es .
Now w; = wy + ws + ws, so that [x-w., z-ws, x-ws = 0] implies [x-w; = 0].
Hence Csf{w: ; we ; ws ; wd = Caf{ws ; ws ; wa, and (3) can be rewritten

P(4:, 1) = 4:,03{’(1)2 s Ws ;w4}|/23 .
Since w, , ws and w, are independent, Cs{w. ; ws ; wa is a proper lune of type 1
(see Definition 2.1.4), and, by (2.7.1),"
(4) P(4,1) = 4|Co{ws 5 ws 5 wg|/ 2.

The three dihedral angles arcos [—w;-w;/|ws|- [wj]] of Co{we ; ws ; we are equal,
and equal to arcsec 3. Hence Cy{w. ; ws ; w4 is the equilateral spherical simplex
C; [arcsec 3] with dihedral angle arcsec 3, and

5) P(4,1) = 4|C, [arcsec 3]|/Z .

Equation (2.6.3) for A = 3 is the spherical excess formula for spherical tri-
angles, which yields in this case |C; [arcsec 3]| = 3 arcsec 3 — . Since =, = 4,
(5) therefore can be rewritten
(6) P(4,1) = [(3 arcsec 3) /7] — 1.

4.2. Normal samples of size five. The definition of P (5, k) is analogous to the
definition of P(4, k). Since P(5, 4) = P(5, 1) and P(5 3) =
P5,2) = (1 —2P(5,1))/2, only P (5, 1) need be computed.

An argument similar to that leading from (1.1) to (1.5) shows that
(1) P (5, 1) = 5|C; [arcsec 4]|/Zs

and Schlifli’s decomposition” of spherical tetrahedra into “orthoschemes’
(see for example p. 155 of [5]) yields

2) |Cs [arcsec 4]] = 24|W],

10 H. Ruben has pointed out that R. A. Fisher used a dimension reduction in [11] that is
similar to the step from (3) to (4); indeed, this type of argument appears already in Schlafli’s
work.

11 The following derivation of the value of P(5,1), suggested by the referee, replaces a
more cumbersome earlier derivation.
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where |W| is the spherical measure of the spherical simplex W with dihedral
angles 0, = 033 = 7/3, 0 = (arcsec 4)/2, and 613 = 614 = 6 = /2. But, as
is pointed out by Plackett in [22] (eleventh line of the table on p. 359 of [22]),
Schléfli’s exact value for the Schlifli function f (o, 8, ») at (a, 8, ») = (x/3, /3,
(arcsec 4) /2) yields

3) |[W|/2s = (arcsec 4) /487 — &4,
so that (1), (2) and (3) yield
(4) P(5,1) = (5 arcsec 4) /27 — 1.

4.3. Normal samples of arbitrary size. Let (21, .-+, x,) be an unordered
normal sample, and set

R(n, k) = Pri{zy, -+, xs
Define as well

(1) Q(n’ k) = Pr {j = T41, * " 1x”}’

lIA

T = Tty * ) Tafe

¢

It is clear that Q(n, k) =D ¢, <k> R(n,4),0 =k = n, or
(2) (Q(n’ 0)’ ) Q(n, 'IZ)) = (R(n, 0)’ ) R(n’ n)) (M)7
where M is a matrix with elements M ;; equal to<‘i.) , 5o that inverting (2) yields

3) R(n, k) =§0 (—1)* (f) Q(n,9), 0=k=n.

Further, geometric interpretation of (1) and dimension reduction based on
(2.7.1) give

4) Q(n, %) = |Cpiy larcsec (n — 1)]|/Zn_is .
Finally, defining P (n, k) analogously to P (4, k) and P (5, k), it is clear that
®) P(n, ) = (Z)R (n, ),

so that (3), (4) and (5) yield

k
ik
(6) P k) = (Z) Z; (-1)* (z> |Cnia [aresec (n — 1)]]/Zn_is .
A form of (6) more convenient for computation is obtained by applying Lemma
2.4.1 and (2.5.1), and by changing the summation index from 7 to j = & — 4.
This yields

k—1
@ o = (1) Z (10D k),
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where

(8) D(n, k,j) = ( ]-) [Cototima (B — §) |/ Zntoit -

Given (7), bounds for P(n, k) can be computed using (3.1.7) and the fact
that ([3], p. 303)
©) Zn = 208"/ T (G 0m 4 1)),

Thus, for example, P (n, 1), which equals #|Cy—2(1)|/Z.—2 by (7), is bounded
from above by

(n - 1)*(“_2’  (m)(n — 'I((n — 1)/2)

n 2(n — 2)lx@-Dr2

and from below by

(1>*‘"'2) (e — 1)'T((n — 1)/2)
2 2(n — 2)lx@=DP '

4.4. The mean among the exireme order statistics. The asymptotic probability
that the mean falls among the extreme order statistics is computed in a series
of lemmas.

LemMA 1. Let D(n, k, ) be defined as in (3.8); then

1) limu.o {D(n, k, ) /D(n, k,j + 1)} = », 0=j=k—2.

Proor. For0 = j=k—1=n—2,

D(n, k, j) = ((’;) (k — j)*‘""“*"‘”)

=k +DHTER —k+D))0n —k+35— 1,k —3))/
@) () (0 — k + 5 — 1))

by (3.8), since Z,, is given by (3.9) and |C,| is given by (3.3.1).
Hence, for0 < j <k —2=n—3,D(n,k, 7)/Dn, k j+ 1) equals

()

(2)

(Il — g)*— )( (n — & + )} )

( k > <(k_j_1)§(n—k+i) n—k+4 + 1)

j+1

@) < I(3(n — & +4)) )(ﬂ(n—k+j—1,k—j)>
G —k+j+ 1)/ \ntn —k+j,k—3j—1)

(F) () 2742

Forn, kand jin the range 0 = 7 < k — 2 < n — 3, the first factor of (3) is
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a constant; the second‘l1 factor of (3) equals 1/(1 — (& — H)™H" (% — 5t =
1/ — ™72 %) the third factor of (3) is no smaller than

n— k)Y m—k+ 1}

the fourth factor of (3) is no smaller than n — 1; by (3.3.2), the fifth factor of
(3) tends to 1 with n large; the sixth and seventh factors of (3) are constants;
and the eighth factor is no smaller than (n — k). Hence, for n large, the second
factor of (3) exceeds any power of n, whereas all other factors of (3) exceed
n~", which verifies (1).

LemMma 2. Let P (n, k) be defined as in (3.5). Then

(4) thaw{F%n,k)//[(Z>1)OukgO)]} = 1.

Proor. For n large, the D’s of (3.7) decrease and the second is negligible
with respect to the first. Hence, in accordance with a fundamental property of
sums of oscillating terms, P (n, k) is approximated by the leading term

<@Dmhm

of (3.7).
LemMma 3.
) tima{(7) Do, b, 0) 50, B = 1,
where
(6) o, k) = k""" /2 (k1) (n) " (2r) "M

Proor. Consider the expression for D (n, k, 0)/y(n — k — 1, k) obtained
from (2) by setting j = 0 and dividing by 9(n — k — 1, k). Easy simplifica-
tions using Sterling’s formula show that (Z') D(n, k, 0)/n(n — k — 1, k) is
asymptotically equal to f(n, k). Hence (5) is proved if it can be shown that
) limywn(n — k — 1, k) = 1.

But (7) is an immediate consequence of (3.3.2).

TuroreM 1. Let P(n, k) be defined as in (3.5), and f(n, k) by (6). Then
limgo {P (1, k)/f(n, B)} = 1.

Proor. The proof follows from Lemmas 2 and 3.

4.5. Calculations. It may be of interest to show P (n, k) for several values of
n and k, computed exactly when possible, computed by the asymptotic f(n, k)
of (4.6), and computed also by a National Bureau of Standards Monte Carlo
run whose results kindly were made available to me by J. Youden. Note that
Monte Carlo sample size was 7000 for n = 4, and 1000 for all other n; also,
letting P (n, k) denote the Monte Carlo estimate of P (n, k), the Monte Carlo
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estimates reported here are not P (n, k), but rather the more stable averages

P (n, k) 4+ P(n,n — k)) /2.

Exact Value f(n, k) Monte Carlo
P4, 1) .175 .122 174
P(5, 1) .049 .036 .049
P@®, 1) .011%* .0088 .011
P, 1) .0019 .0025
P@, 2) .064 .094
P8, 1) 0004 .0015
P, 2) .002 .033

* Obtained by numerical integration of the expression verified in Lemma 2.4.2.
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